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A physics-based-adaptive plasma model and an appropriate computational algorithm

are developed to numerically simulate plasma phenomena in high fidelity. The

physics-based-adaptive plasma model can be dynamically refined based on the local

plasma conditions to increase model fidelity uniformity throughout the domain at all

times of the simulation. The adaptive plasma model uses continuum representations

of the plasma, which include a kinetic Vlasov model for the highest fidelity, multi-fluid

5N-moment plasma model, and single-fluid MHD model for the lowest fidelity. The

models include evolution equations for the electromagnetic fields, electron species, ion

species, and neutral species. A nodal discontinuous Galerkin finite element method is

implemented and is coupled with various implicit and explicit Runge-Kutta methods.

Various model coupling techniques are investigated for a 5N-moment multi-fluid models

with a Vlasov-Maxwell model, and a 5N-moment two-fluid model with an MHD

model. Continuum plasma models using consistent normalizations and identical spatial

representations provide straightforward and accurate coupling between the models.

The solution approach offers high-order accuracy and computational efficiency. Target

compute platforms are heterogeneous computer architectures using a compute model

that minimizes data movement.

Keywords: high-fidelity plasma models, physics-based adaptivity, multi-fluid plasma models, continuum kinetic

plasma model, Vlasov-Maxwell, magnetohydrodynamics, computational plasma physics, discontinuous Galerkin

1. INTRODUCTION

There are a wide variety of computational plasmamodels available which balance physical accuracy
with simplifying approximations. When the assumptions for the reduced models are justified, the
predictions from the reduced models approach those from higher fidelity models while requiring
a fraction of the computational resources. However, there are a wide range of scientific and
engineering applications which may violate the assumptions of a given reduced model only in a
localized subset of the domain. The domain boundaries between the valid physical models may
evolve as the dynamics progress.

Some notable examples include the current sheet behavior during geomagnetic reconnection
[1, 2], plasma photonic crystals [3, 4], field-reversed configurations (FRC’s) [5–7], and Z-pinches
[8–10]. Reddell [2] showed that the distribution plasma function within the thin sheath boundary
was not near Maxwellian, but regions inside the reconnected region or far away from the sheath
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were still near Maxwellian. Tummel et al. [10] demonstrated
that kinetic effects can have a stabilizing effect on a flow-shear
stabilized Z-pinch, while the bulk plasma may still be mostly well
described by a fluid model. However, some physical phenomena
are not adequately captured with reduced models and require
models with higher fidelity. Drift turbulence [11] is accurately
represented by multi-fluid plasma models [12] but not by single-
fluid plasma models.

Spatial coupling of multiple plasmamodels offers the potential
to minimize the computational cost for the required degree
of physical fidelity throughout the domain. The investigation
is performed using a high-order discontinuous Galerkin finite
element method [13–15], specifically involving the continuum
kinetic multi-species plasma model, 5N-moment multi-fluid
plasma model, and magnetohydrodynamics (MHD) models,
implemented in the WARPXM (Washington Approximate
Riemann Plasma) codes [12, 16, 17], which provides a general
framework for performing parallel computational plasma physics
simulations. It is demonstrated that transition mixing layers do
not necessarily guarantee conservation of important physical
quantities such as mass, momentum, or energy. Nevertheless,
coupling between the models can be performed consistently.
Two such numerical fluxes are derived, of which one flux is
consistent with the MHD and two-fluid plasma models, and a
second flux guarantees conservation properties but without a
consistent definition of the underlying variables. Investigations of
spatial coupling of the continuum kinetic and 5N-momentmulti-
fluid plasma models are also presented. The continuum kinetic
model is implemented on a mixed structured/unstructured phase
space finite element mesh to be able to handle complex physical
space geometry while maintaining the computational efficiency
of a rectilinear mesh in velocity space.

Related research switches between fluid and kinetic equations
solved with a finite volume method using the Knudsen number
and gradients of primitive variables as switching criteria between
models within the domain [18, 19] or have a static region solved
with a kinetic particle method embedded in domain modeled
with the MHD model [20]. Other work considers a hybrid
approach where charged particles may be simulated using a fluid
model while neutrals are simulated kinetically [21] or the ions
are modeled as kinetic particles and the electrons as a fluid [22].
There has also been work to couple different numerical methods
[23] investigating a blended finite element method to solve the
five moment multi-fluid plasma model [12].

In this work, coupling procedures between plasma models
are presented, including between the MHD and 5N-moment
multi-fluid models as well as between the 5N-moment multi-
fluid model and continuum kinetics. An implementation of the
kinetic model on a mixed structured/unstructured mesh is also
described that facilitates coupling to the 5N-moment multi-fluid
plasma model. Section 2 presents the governing equations of the
plasmamodels in normalized form. The numerical method using
discontinuous Galerkin for the spatial representation and Runge-
Kutta time integration are described in section 3. Validation of
the continuum kinetic plasma model is presented in section 5.
Coupling the plasma models is described in section 4 and results
from numerical testing are presented in sections 6 and 7.

2. PLASMA MODELS

The plasma model with the highest physical fidelity among
continuum models statistically represents the plasma
constituents with continuous probability distribution functions
fα in phase space (r, v) for each species α. The evolution of fα is
described by the Boltzmann transport equation,

∂fα

∂t
+ ∇·

(
vfα
)
+ ∇v·

[
qα

mα
(E+ v× B) fα

]
=
(
∂fα

∂t

)

coll

, (1)

where qα and mα are the charge and mass of species α. Charged
species are accelerated by the Lorentz force generated by the
electric and magnetic fields, E and B. The right hand side of
Equation (1) accounts for collisional effects, which are often
negligible in high temperature plasmas. The resulting Vlasov
equation is expressed in normalized form as

∂fα

∂t
+ ∇·

(
vfα
)
+
(
L

δp

)
∇v·

[
Zα

Aα
(E+ v× B) fα

]
= 0, (2)

where L is the characteristic length, δp is the proton skin depth,
Zα is the ionization state of species α, and Aα is the atomic
mass of species α. Each species is evolved with an instance of
Equation (2). The normalization is described in section 2.1. The
zeroth and firstmoments of the distribution functions fα provides
the charge density and current density

ρc =
∑

α

Zα

∫
fα (r, v) dv, (3)

j =
∑

α

Zα

∫
vfα (r, v) dv, (4)

which couples the Vlasov equations toMaxwell’s equations, given
in normalized form as

∂B

∂t
+ ∇×E = 0, (5)

−
1

(
ωpτ

)2
(
L

δp

)2
∂E

∂t
+ ∇×B =

(
L

δp

)
j, (6)

1
(
ωpτ

)2
L

δp
∇ · E = ρc, (7)

∇ · B = 0, (8)

where ωp is the proton plasma frequency and τ is the
characteristic time. Pressure can also be related by the second
moment of the distribution function

Pα = nαTα =
mα

3

∫
(v − uα)

2 fα(r, v) dv, (9)

where nα and uα are the fluid density and velocity defined by the
zeroth and first moments of the distribution function.

Moments of Equation (1) combined with appropriate closure
relations result in the fluid plasma models, which have reduced
dimensionality from 6D phase space to 3D physical space. The
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5N-moment plasma multi-fluid model is common [12], but
higher moment models, such as the 13N-moment multi-fluid
plasma model [24], are also possible.

The 5N-moment multi-fluid plasma model for a species α is
described by the normalized equation system

∂ρα

∂t
+ ∇· pα = 0, (10)

∂pα
∂t

+ ∇·
(
pα ⊗ pα
ρα

+ Pα
↔
I

)
=
(
L

δp

)(
Zα

Aα

) (
ραE+ pα × B

)
,

(11)

∂eα

∂t
+∇·

(
(eα + Pα)

pα
ρα

)
=
(
L

δp

)(
Zα

Aα

)
pα · E, (12)

where ρα is the mass density, pα is the momentum, Pα is
the scalar pressure, and eα is the total fluid energy. These are
coupled with the electric and magnetic fields E and B, which
are evolved with Maxwell’s equations, Equations (5), (6). Note
this form of the multi-fluid plasma model neglects collisions and
atomic reactions, which can be included [25]. The multi-fluid
plasma model is a significant reduction in the physical fidelity
of the kinetic plasma model and has a corresponding lower
computational cost.

Further reductions in physical fidelity are possible by
restriction to a two-fluid system of ions and electrons [26], i.e.,
α = i, e, and application of the asymptotic approximations
of single-fluid MHD [17]—infinite ion/electron mass ratio and
infinite speed of light. The resulting reduced plasma model is the
two-temperature Hall-MHDmodel, which is given in normalized
form as

∂ρ

∂t
+ ∇· p = 0, (13)

∂p

∂t
+ ∇·

(
p⊗ p

ρ
− B⊗ B+

(
P +

B · B
2

)
↔
I

)
= 0, (14)

∂eα

∂t
+ ∇·

(
(eα + Pα)

pα
ρα

)
=
(
L

δp

)(
Zα

Aα

)
pα · E, (15)

ρE+ p× B =
(
Ai

Zi

)((
δp

L

)
∇Pe + j× B

)
.

(16)

The last expression is the generalized Ohm’s law, which states the
relationship between the electric field and other MHD variables.
The electric field is eliminated by combining the generalized
Ohm’s law with Faraday’s law, Equation (5).

The MHD variables are related to the two-fluid variables
through a center-of-mass formulation to maintain consistency
between the two plasma models, with the definitions

ρ = ρi + ρe, (17)

p = pi + pe, (18)

P = Pi + Pe, (19)

j =
Zi

Ai
pi +

Ze

Ae
pe =

(
δp

L

)
∇×B, (20)

where the last expression is the low-frequency form of Ampère’s
law that results from the infinite speed of light approximation.

The plasma model can be reduced further by assuming a
negligible skin depth, resulting in the ideal MHD equations. The
species temperatures are assumed equal (Ti=Te). This is justified
since the terms which could lead to different temperatures
depend either on non-thermal distribution functions and
collisional effects, or from an appreciable skin depth. The
governing equations for the ideal MHD plasma model can be
written in conservative form as

∂ρ

∂t
+∇· p = 0, (21)

∂p

∂t
+ ∇·

(
p⊗ p

ρ
− B⊗ B+

(
P +

B · B
2

)
↔
I

)
= 0, (22)

∂e

∂t
+ ∇·

((
e+ P +

B · B
2

)
p

ρ
−
(
p · B
ρ

)
B

)
= 0, (23)

ρE+ p× B = 0, (24)

∂B

∂t
+∇·

(
p⊗ B− B⊗ p

ρ

)
= 0, (25)

where the total energy is defined as

e =
P

γ − 1
+

p · p
2ρ

+
B · B
2

,

which contains the internal, kinetic, and magnetic energies.

2.1. Normalized Equation System
The normalization used in the model equations described above
has been chosen such that the transition of Ampere’s Law to
its pre-Maxwell form (loss of displacement current) is well-
behaved under the approximations used to derive the MHD
model. Consider the non-normalized Ampere’s Law

−ǫ0
∂E

∂t
+

1

µ0
∇×B = j. (26)

It can be seen that the displacement term disappears as the
speed of light approaches ∞, which is consistent in the
chosen normalization. Vacuum permittivity and permeability are
eliminated by introducing the reference proton plasma frequency
and reference Alfvén speed through

ǫ0 =
e2n0

m0ω
2
p

(27)

µ0 =
B20

m0n0V
2
A

, (28)

which leads to

−
e2n0

mpω
2
p

E0

τ

∂Ẽ

∂ t̃
+

mpn0V
2
A

B20

B0

L
∇̃ × B̃ = en0v0 j̃, (29)
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where all variables with a tilde are normalized by reference values,
e.g., Ẽ = E/E0. Relating the reference values defines a set of
normalizations of electromagnetic fields and scales,

E0 = v0B0 (30)

v0 =
L

τ
= VA (31)

and introducing proton cyclotron frequency,

ωc =
eB0

mp
, (32)

leads to a normalized equation

− (
ωcτ)

2

(
ωpτ

)2
∂E

∂t
+ ∇ × B = (ωcτ) j, (33)

where tildes have been dropped for clarity. This form of Ampere’s
Law remains consistent since µ0 is related to the Alfvén speed,
ǫ0 → 0 as c → ∞ (c2 = 1

µ0ǫ0
), implying ωp → ∞ eliminating

the displacement current in Equation (33). While maintaining
the desired consistency, this choice of normalization also implies
a magnetized plasma through the cyclotron frequency, which
is not always appropriate. Thus, the normalized cyclotron
frequency is replaced with a normalized proton skin depth by
noticing that

ωcτ =
eB0

mp

L

VA
=

eB0

mp

L
√
µ0mpn0

B0
=

√
e2n0

ǫ0mp

L

c
=
ωpL

c
=

L

δp
.

(34)

Applying this to Equation (33) yields Equation (6). All other
equations are then normalized using the same reference values
and non-dimensional terms.

3. NUMERICAL DISCRETIZATION USING
DISCONTINUOUS GALERKIN

The equations of the various plasma models described in
section 2 can be expressed as a general set of coupled partial
differential equations as

R(q, r, t) = S(q, r, t)+ ∇·
(
↔
F (q, r, t)

)
+

↔
A (q, r, t) · ∇ q = 0,

(35)

where q is the vector of dependent variables. Any of the terms
↔
F ,

↔
A, and S may be a function of temporal derivatives of q, but not
spatial derivatives. A typical PDE of interest might have

S(q, r, t) =
∂q

∂t
+ G(q, r, t) (36)

The general numerical procedure is to discretize all spatial
derivatives to obtain a semi-discrete form containing only
temporal derivatives (if any). Any temporal discretizations are

handled using a method of lines approach and solved using
standard ODE/DAE solvers. For the purposes of discussing
the spatial discretization method these two terms are grouped
together since they are handled in the same fashion by the spatial
discretization. Equation (35) is spatially discretized using the
discontinuous Galerkin (DG) method [13–15]. This type of PDE
contains three primary categories of terms to be handled:

∇·
(
↔
F (q, r, t)

)
=
∂Fij

∂rj
, (37)

↔
A (q, r, t) · ∇ q = Aijk

∂qk

∂rj
, (38)

S(q, r, t) = Si, (39)

which correspond to conservation form, non-conservation form,
and sources, respectively. Note the introduction of index notation
which is used for compact representations of vectors and higher
rank tensors. While it is theoretically possible to construct a
system that mixes conservation form and non-conservation form
fluxes, in practice it is difficult to produce a consistent numerical
method for this case using the DG method. It is preferable to
write the equation set in conservation form; however, it may not
be possible or practical to do so for all systems of interest. As an
alternative, the system can be written in non-conservation form.
The conservation form flux tensor can be converted into a flux

Jacobian and combined with
↔
A
′
such that

∂Fij

∂rj
+ A′

ijk

∂qk

∂rj
=
(
A′
ijk +

∂Fij

∂qk

)
∂qk

∂rj
= Aijk

∂qk

∂rj
. (40)

Thus, the only PDE’s that need to be treated for this research are
of the forms

Si +
∂Fij

∂rj
= 0, (41)

Si + Aijk
∂qk

∂rj
= 0. (42)

The specific details of the spatial discretization of these
two classes of PDE’s are described in sections 3.1 and 3.2,
respectively.

The computation domain� is discretized into a finite element
mesh T , as shown in Figure 1. The elements are grouped into
subdomains corresponding to the plasma model that will be
solved. For example, elements where the MHD model will be
used are denoted as the subdomain TMHD, and the elements
where the two-fluid model will be used are denoted as TTF .
Note that these subdomains do not necessarily have to be
contiguous. Additionally, while normally there is no reason
why these two subdomains cannot overlap with a transition
region, for the present work it is assumed that no elements
overlap.

For an element K, denote its boundary as ∂K, and define the
shared interface between two elements K1 and K2 to be ǫ =
K1 ∩ K2. The set of all shared faces is denoted as E0, the set of
all exterior domain boundary faces is denoted as ∂�, and the set
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FIGURE 1 | Example 2D discretized domain T with blue elements K ∈ TMHD and red elements K ∈ TTF .

of all faces is denoted E = E0 ∪ ∂�. Define the finite element
spaces

WŴ =
{
w ∈ L2(Ŵ) :w|K ∈ Pm(K),∀K ∈ TŴ

}
, (43)

VŴ =
{
v ∈

(
L2(Ŵ)

)d
: v|K ∈

(
Pm(K)

)d
,∀K ∈ TŴ

}
, (44)

where Pm(K) is the set of all polynomials up to degree m
restricted to the element K. A scalar variable of the original
PDE is approximated by a field in WŴ , and vector variables
are approximated by a field in VŴ . For example, mass density
ρ ≈ ρh ∈ WŴ , while momentum p ≈ ph ∈ VŴ . The complete
solution for q is then composed of a tensor product of variables
found in these various spaces, for example q =

[
ρ p e

]
≈ qh ∈

WŴ ⊗ VŴ ⊗WŴ . Define this tensor product finite element space
to be ZŴ .

A general DG method for Equation (35) consisting of a linear
combination of terms given by forms of Equations (37)–(39) then
seeks to find qh ∈ ZŴ such that

∫

Ŵ

Ri(qh, r, t)zidV = 0, ∀z ∈ ZŴ , (45)

which is a general formulation. However, the research presented
here focuses on a global Cartesian space, which is equivalent to
stating that each component imust satisfy

∫

Ŵ

Ri(qh, r, t)wdV = 0, ∀w ∈ WŴ . (46)

A practical implementation would then choose a basis 8Ŵ which
spans the entire space WŴ such that φ(α) ∈ 8Ŵ and φ(β) ∈
8Ŵ are linearly independent for α 6= β . The basis used in
this research are the interpolation basis, producing a nodal DG
scheme. In 1D nodes are co-located with the Gauss-Lobatto
quadrature nodes. In higher dimensions, cube-like elements can
be formed by taking a tensor product of 1D node locations. This
is used to form the 1D-1V basis for Vlasov’s equation. Nodes
for triangular elements are located using the warping function
method described in Hesthaven and Warburton [27].

The treatment for each of the different types of terms
represented by Equations (37)–(39) is discussed in the following

sections. The complete algorithm is a combination of the
individual treatments. After the spatial discretization has been
applied, the system becomes a coupled system of ordinary
differential equations, which are discretized temporally using
explicit or implicit Runge-Kutta methods. These methods are
presented in section 3.5.

3.1. Conservation Form Fluxes
Consider the PDE

Si +
∂Fij

∂rj
= 0. (47)

Integrating over a test function φ(α), each component i must
satisfy

∫
φ(α)

(
Si +

∂Fij

∂rj

)
dV = 0, ∀φ(α) ∈ 8

(48)
∫
φ(α)SidV +

∮
φ(α)

(
Fijnj

)∗
dS−

∫
Fij
∂φ(α)

∂rj
dV = 0, ∀φ(α) ∈ 8

(49)

where
(
Fijnj

)∗
is an appropriately chosen numerical flux.

Expanding terms over the same basis,

Si ≈ S
(β)
i φ(β), (50)

(
Fijnj

)∗ ≈
(
Fijnj

)∗
(β)
φ(β), (51)

Fij ≈ F
(β)
ij φ

(β), (52)

where S
(β)
i ,

(
Fijnj

)∗
(β)

, and F
(β)
ij are not spatially varying. This

allows the PDE to be written in the semi-discrete form

S
(β)
i

∫
φ(α)φ(β)dV +

(
Fijnj

)∗
(β)

∮
φ(α)φ(β)dS

− F
(β)
ij

∫
φ(β)

∂φ(α)

∂rj
dV = 0, ∀φ(α) ∈ 8. (53)

where all spatial variation of the unknowns has been removed,
and only temporal variation remains.

Frontiers in Physics | www.frontiersin.org 5 September 2018 | Volume 6 | Article 105

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Ho et al. Physics-Based-Adaptive Plasma Model

3.2. Non-conservation Form Fluxes
Consider the PDE

Si + Aijk
∂qk

∂rj
= 0, (54)

and introduce
↔
A
−1↔

A=
↔
I , which is purely notational, since

↔
A
−1

may not necessarily exist. Integrating over a test function φ(α),
each component imust satisfy

∫
φ(α)

(
A−1
ijk

Sk + Iik
∂qk

∂rj

)
dV = 0, ∀φ(α) ∈ 8, (55)

∫
φ(α)A−1

ijk
SkdV + Iik

(∮
(qknj)

∗φ(α)dS

+
∫

qk
∂φ(α)

∂rj
dV

)
= 0, ∀φ(α) ∈ 8, (56)

A similar expansion as performed in section 3.1 for spatial
varying unknowns can be performed such that

Si
(
Aijk

)−1 ≈ S
(β)
i

(
Aijk

)−1

(α)
φ(β), (57)

(qknj)
∗ ≈ (qknj)

∗
(β)φ(β), (58)

qk ≈ q
(β)
k
φ(β). (59)

Again this allows the PDE to be written in a semi-discrete
form where all unknowns have no spatial variation. Finally,

multiplication by
↔
A gives

S
(β)
i

∫
φ(α)φ(β)dV +1A

(γ )
ijk

(
(qknj)

∗
(ξ )

∮
φ(α)φ(β)dS

+q
(ξ )
k

∫
φ(β)

∂φ(α)

∂rj
dV
)
= 0, ∀φ(α) ∈ 8, (60)

1 = δ(αγ )δ(βξ ). (61)

A key difference between Equations (60) and (53) is the fact that
Aijk is evaluated at different locations than the locations where
the internal and numerical fluxes are evaluated. Additionally, the
characteristics of Aijk at an interface affect the numerical flux
(qknj)

∗ at that interface. Derivation of an appropriate numerical
flux which is stable and convergent can be done using techniques
demonstrated in Hesthaven and Warburton [27] and Rhebergen
[28].

3.3. Domains for Continuum Kinetic
Plasma Models
Kinetic models are useful for plasmas in regions where fluid
models break down. However, continuum kinetic models can
be computationally expensive, as they solve the kinetic equation
for the distribution function, which exists on up to a six-
dimensional phase space while fluid and field variables exist on
up to only three dimensions. Continuum kinetic models also
require high resolution to resolve small phase-space features that

can be present in collisionless plasmas, though previous work
using higher order elements has shown success in this regard
[2, 29]. A Particle-In-Cell (PIC) approach can readily resolve
these features and is thus a common choice for applications
for collisionless problems. However, PIC models are susceptible
to noise and may not always resolve high energy tails of a
distribution function as well as a continuum model due to
sparsity of particles in low density regions of phase space. The
coupling of a continuum kinetic model to a fluid model is also
simpler and more accurate than between a PIC and fluid model
since the fluid variables are moments which can be directly
converted to a distribution function. The conversion to discrete
particles is more complex and may require a Monte Carlo
procedure.

With this inmind, the continuum kinetic model was chosen in
this work. For this model, the phase space domain is discretized
into a mixed structured/unstructured mesh, where velocity space
is discretized in a structured manner using rectilinear hypercubes
(lines, rectangles, and rectangular prisms), and physical space is
represented using simplexes (lines, triangles, and tetrahedrons)
in an unstructured manner in order to handle potentially
complex physical geometries. The resulting phase space element
is a tensor product of these two constituent elements. Only
distribution functions fα are discretized over the entire phase
space mesh; electric and magnetic fields are expressed only over
the co-located physical space mesh.

Numerical quadrature using Gauss-Lobatto rules in the
interval [0, 1] for each dimension is used to compute moments
of the distribution function to couple the plasma species with
Maxwell’s equations, as expressed in Equations (3) and (4). The
integration is performed over all of velocity space at a physical
space location,

∫∫∫
F(vx, vy, vz) dvxdvydvz ≈

N∑

i= 1

N∑

j= 1

N∑

k= 1

wiwjwkF
(
vx, vy, vz

)

∣∣∣∣
↔
J (ξi, ξj, ξk)

∣∣∣∣ , (62)

where F is any functional to be integrated, N is number
of quadrature locations in each dimension, each with weight
w. Though not a required limitation, the hypercubes are
implemented as subparametric elements with linearly varying
position coordinates and M vertices. Thus, the velocities at
quadrature nodes are determined by the mapping between
the global coordinate system into a canonical local element
space

vx = P(ξi, ξj, ξk) =
M∑

m= 1

vxmψm(ξ1, ξ2, ξ3), (63)

vy = Q(ξi, ξj, ξk) =
M∑

m= 1

vymψm(ξ1, ξ2, ξ3), (64)

vz = R(ξi, ξj, ξk) =
M∑

m= 1

vzmψm(ξ1, ξ2, ξ3). (65)
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The Jacobian defines this mapping

Jij =
∂vi

∂ξj
. (66)

Note that since velocity space is rectilinear,
↔
J is diagonal.

3.4. Numerical Fluxes
The numerical fluxes are necessary for computing the terms
identified with asterisks in Equations (53) and (60). A further
numerical simplification can be found by noting that the lifting
matrix

∮
φ(α)φ(β)dS is only non-zero if nodes α and β are on the

surface ∂K of an element K. Thus, the numerical fluxes (Fijnj)
∗
(β)

and (qknj)
∗
(β)

only need to be evaluated at surface nodes β ⊇
λ. The numerical flux is a function of q both on the interior
and exterior of ∂K, denoted using the notation q(λ) and q(µ)

respectively.
An appropriate upwinding numerical flux [30] for the Vlasov

equation is given by

(Fijnj)
∗
(λ) =

[
1

2

(
F̂
(λ)
ij + F̂

(µ)
ij

)
nj +

∣∣cjnj
∣∣

2

(
f
(λ)
i − f

(µ)
i

)]
, (67)

where on velocity flux faces F̂ij = fivj and cj = vj while
on acceleration flux faces F̂ij = fi (E+ v × B)j and cj =
(E+ v × B)j.

The numerical fluxes for Maxwell’s equations are given [27,
31] by

(Fijnj)
∗
(λ)E

=
[
1

2

(
−ǫijkc2

(
B
(λ)
k

+ B
(µ)
k

))
nj

+
cnj

2
ǫijkǫklm

(
E
(λ)
l

− E
(µ)
l

)
nm

]
, (68)

(Fijnj)
∗
(λ)B

=
[
1

2

(
ǫijk

(
E
(λ)
k

+ E
(µ)
k

))
nj

+
cnj

2
ǫijkǫklm

(
B
(λ)
l

− B
(µ)
l

)
nm

]
, (69)

where c =
(
ωpτ

) ( δp
L

)
is the speed of light. (Fijnj)

∗
(λ)E

refers to

the numerical flux on the evolution of E (Ampère’s Law) where
the analytical flux is Fij = −ǫijkc2Bk. (Fijnj)∗(λ)B refers to the

numerical flux on the evolution of B (Faraday’s Law) where the
analytical flux is Fij = ǫijkEk.

Appropriate forms of numerical fluxes for plasma fluidmodels
[15, 26] have been described previously and are not repeated here.
Rusanov [32], HLL [33], or Roe [34] numerical fluxes are used for
the MHD and five-moment single species Euler fluid systems.

3.5. Temporal Advance
The time integration of the plasma models is accomplished
using implicit and explicit Runge-Kutta methods, including
strong stability-preserving Runge Kutta methods [35, 36]. These
methods are implemented in a form in which each stage is
updated successively over a timestep. Themethods solve ordinary
differential equations of the form

dq

dt
= L(q, t), (70)

where L is the right-hand-side spatial discretization of the
equations as described in sections 3.1 and 3.2. Multiple methods
have been employed, including second and third order strong
stability preserving Runge Kutta methods [37]. The second-order
total variation bounded Runge Kutta method (Huen’s method)
[38] is written as

q∗ = qn +1t · L(qn, tn), (71)

qn+1 =
1

2
q∗ +

1

2
qn +

1

2
1t · L(q∗, tn +1t). (72)

The third-order total variation diminishing Runge Kutta method
is written as

q∗ = qn +1t · L(qn, tn), (73)

q∗∗ =
3

4
qn +

1

4
q∗ +

1

4
1t · L(q∗, tn +1t), (74)

qn+1 =
1

3
qn +

2

3
q∗∗ +

2

3
1t · L(q∗∗, tn +

1

2
1t). (75)

A fourth order method is also used, written as

q∗ = qn +
1

2
1t · L(qn, tn), (76)

q∗∗ = qn +
1

2
1t · L(q∗, tn +

1

2
1t), (77)

q∗∗∗ = qn +1t · L(q∗∗, tn +
1

2
1t), (78)

qn+1 =
1

3

(
−qn + q∗ + 2q∗∗ + q∗∗∗

)
+

1

6
1t · L(q∗∗∗, tn +1t).

(79)

4. MODEL COMPATIBILITY AND
CONSERVATION PROPERTIES

The MHD and two-fluid plasma models are coupled by defining
numerical fluxes at the shared interface. There are several
possible ways to define this numerical flux. The first approach is
to derive coupling variables based on the two-fluid plasma model
using as few assumptions as possible. These coupling variables
can then be used to construct a numerical flux for the two-fluid
plasmamodel, which can then be combined to give a conservative
numerical flux for the MHD model as well. This approach is
examined in section 4.1.

Another approach is to define coupling variables based
on all the local assumptions so that these coupling variables
are consistent with the underlying local plasma model. This
approach complicates the derivation of a numerical flux that
guarantees conservation. However, provided the model interface
is located in a region where the reduced plasma model, e.g.,
MHD, is valid, the lack of conservation is insignificant. This
approach is examined in section 4.2.

A third approach is to define an intermediate overlapping
transition domain where both models influence the plasma
properties. Any coupling impedance mismatches are smoothed
over several elements. However, this overlap region requires
additional computational work since the transition domain must
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reside entirely within a region where both plasma models are
valid. This approach is analyzed in section 4.3.

4.1. Approach 1: Minimize Assumptions
The derivation of the MHD equations provides a clear approach
by which the underlying variables are constructed: the continuity
equation for each species are summed together, then the
momentum equation, etc. TheMHD variables q are then defined,
Equations (17)–(20), such that the governing equations for the
MHDmodel can be written as

∂q

∂t
+ R = 0, (80)

where R contains no temporal derivatives. Simplifying
assumptions are applied to the operator R. However, if
these assumptions are not applied to q, then the definitions of
q can be used as the coupling variables definitions. Rewriting
Equations (17), (18), (20) gives

ρα =
ρ

1− ZαAβ
ZβAα

, (81)

pα =
Aα(Zβp− Aβ j)

AαZβ − AβZα
, (82)

uα = u−
Aβ j

Zβρ
, (83)

where α,β = i, e. In the case of the single temperature MHD
equations, an additional relation is needed to recover the two-
fluid energy. This is given by

eα =
1

1− Zα
Zβ

(
e−

1

2
pβ · uβ −

1

2

Zα

Zβ
pα · uα −

B · B
2

)
. (84)

It is possible to derive a numerical flux which is guaranteed to be
conservative by only computing the numerical flux of the higher
fidelity model (in this case, the two-fluid plasma model) by using
Equations (81)–(83) to apply “boundary” conditions for the two-
fluid plasma model, then the two-temperature MHD numerical
flux can be computed using

(p · n)∗ = (pi · n)∗ + (pe · n)∗, (85)

(H · n)∗ = (Hi · n)∗ + (He · n)∗, (86)

(qα · n)∗MHD = (qα · n)∗two−fluid, (87)

(E · n)∗ = (E · n)∗, (88)

and for the single temperature MHD numerical fluxes, this is
modified slightly to be

(p · n)∗ = (pi · n)∗ + (pe · n)∗, (89)

(
↔
H ·n)∗ = (

↔
Hi ·n)∗ + (

↔
He ·n)∗, (90)

(q · n)∗MHD = B · (
↔
E ·n)∗two−fluid +

∑

α

(qα · n)∗two−fluid, (91)

(
↔
E ·n)∗MHD = (

↔
E ·n)∗two−fluid, (92)

where
↔
H, q, and

↔
E are the terms inside the divergence operators.

Namely,

↔
Hα= pα ⊗ uα + Pα

↔
I , (93)

qα = (eα + Pα)uα , (94)

∇·
↔
E= ∇×E. (95)

Note that the flux of just magnetic field energy cannot be written
in conservation form; it must be implemented using the approach
described in section 3.2.

Extending this concept to coupling the continuum kinetic
plasma model with the 5N-moment multi-fluid plasma model
assumes that the distribution function is well approximated by
a Maxwellian distribution function

fα,two−fluid = nα

(
Aα

2πTα

) 3
2

exp

(
−Aα(v − uα) · (v − uα)

2Tα

)
.

(96)

Once the numerical fluxes for the continuum kinetic plasma
model are computed, these can be integrated over the faces
in velocity space to construct conservative fluxes for the 5N-
moment multi-fluid plasma model.

4.2. Approach 2: Consistent Assumptions
Another approach for coupling the numerical fluxes is to define
the coupling variables using consistent assumptions in each
region. For the MHD model, the asymptotic approximations are
applied to the definitions of the variables.

ρ = ρi, (97)

p = pi, (98)

u =
p

ρ
, (99)

e =
Pi + Pe

γ − 1
+

p · u
2

+
B · B
2

, (100)

ρe = −
AeZi

AiZe
ρ, (101)

pe =
Ae

AiZe

(
Aij− Zip

)
, (102)

Ti = Te =
e− p·u

2 − B·B
2

ni + ne
(103)

While this form is consistent with the definitions of the MHD
variables, it complicates formulating a conservative numerical
flux due to the definition of e that omits the electron kinetic
energy, which must then be absorbed into the ion kinetic energy.

The extension of this procedure for coupling the continuum
plasma model the 5N-moment multi-fluid model is again to
assume a Maxwellian distribution at the model interface but
to apply Equation (96) using the 5N-moment variables on the
fluid side to the construct the distribution function while taking
moments of the distribution function on the kinetic side, yielding
number density, velocity, and temperature for the fluid side. As
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with MHD to 5N-moment coupling, this provides consistency
but does not necessarily provide a conservative flux. This method
is referred to as a direct variable translation.

4.3. Approach 3: Transition Region
Conservation Properties
For a sharp model interface, the conservation properties are tied
directly to the jump of the numerical flux across the shared
interface. An interesting question is how does this extend to an
overlapping transition region. Suppose the coupling variable set
associated with Equations (81)–(83) are used to couple the two
systems. The plasma properties can then be defined as a mixture
of the two constituent model properties as

ρi = ζ ρ̃i + (1− ζ )
ρ̃

1− ZiAe
ZeAi

, (104)

ρe = ζ ρ̃e + (1− ζ )
ρ̃

1− ZeAi
ZiAe

, (105)

pi = ζ p̃i + (1− ζ )
(
Ai(Zep̃− Ae j̃)

AiZe − AeZi

)
, (106)

pe = ζ p̃e + (1− ζ )
(
Ae(Zip̃− Ai j̃)

AeZi − AiZe

)
, (107)

ei = ζ ẽi + (1− ζ )ǫ̃i, (108)

ee = ζ ẽe + (1− ζ )ǫ̃e, (109)

B = ζ B̃+ (1− ζ )B̃, (110)

E = ζ Ẽ+ (1− ζ )Ẽ , (111)

where ζ ∈ [0, 1] is a mixing parameter, and the tilde quantities
are the plasma parameters predicted by the respective models
(note: Ẽ and B̃ are the electric and magnetic fields predicted
by the MHD model). The relations in Equations (104)–(111)
are guaranteed to be locally instantaneously compatible and
conservative. Additionally, it is assumed that evolving each
individual model is conservative. However, the resulting scheme
is not necessarily conservative. Consider a scenario where no
mass enters or leaves the transition domain. Then

∫
ρ̃
(n)
i dV =

∫
ρ
(n)
i dV , (112)

∫
ρ̃(n+1)

1− ZiAe
ZeAi

dV =
∫
ρ
(n)
i dV , (113)

∫
ρ
(n+1)
i dV =

∫
ζ ρ̃

(n)
i + (1− ζ )

ρ̃(n+1)

1− ZiAe
ZeAi

dV ,

=
∫
ζ

(
ρ̃
(n)
i −

ρ̃(n+1)

1− ZiAe
ZeAi

)
+

ρ̃(n+1)

1− ZiAe
ZeAi

dV ,

=
∫
ζ

(
ρ̃
(n)
i −

ρ̃(n+1)

1− ZiAe
ZeAi

)
dV +

∫
ρ
(n)
i dV .

(114)

However, if no mass enters or leaves the transition region then

0 =
∫
ζ

(
ρ̃
(n)
i −

ρ̃(n+1)

1− ZiAe
ZeAi

)
dV . (115)

Consider ζ = x for a transition domain x ∈ [0, 1] and the
initial/ending density distributions are

ρ
(n)
i = 1, (116)

ρ̃
(n+1)
i = 1+

sin(2πx)

4
,

ρ̃(n+1) =
(
1+

cos(2πx)

4

)(
1−

ZiAe

ZeAi

)
.

(117)

Clearly these quantities satisfy the single model conservation
properties. However, the integral of Equation (115) is

∫ 1

0
x

(
1+

sin(2πx)

4
−
(
1+

cos(2πx)

4

))
dV =

3

8
−

1

8π
6= 0

(118)

Thus, the hypothetical scenario does not conserve ion mass.
By similar analyses, it can be shown that the other quantities
(momentum, energy, etc.) are also not necessarily conserved.
This can also be extended to apply different functions ζ .
There is only one obvious general function ζ which guarantees
conservation inside the transition domain: ζ is spatially constant
in the entire transition domain.

If the two-fluidmodel andMHDmodel predict the exact same
flow behavior then presumably the MHD model is equally valid
to use as the two-fluid plasma model for the entire transition
region. The deviation from this ideal point, as described by
Equation (115), governs the degree to which the resulting model
will conserve mass. Similar deviation equations can be derived
for the other important conserved quantities momentum and
energy. This lack of guaranteed conservation holds regardless of
the definition of the coupling variables chosen. However, this
property does not appear to be significant since the integral in
Equation (115) may be negligibly small in practice. Furthermore,
since the lack of conservation can be locally determined, the
coupling can be modified to account for any deficit or surplus
and correct any lack of conservation.

5. CONTINUUM KINETIC PLASMA MODEL
VALIDATION

As described in section 3.3, implementation of the continuum
kinetic multi-species plasma model into the DG method and the
computational framework in a mixed structured/unstructured
formulation requires special considerations. Previous work by
Reddell [2] implemented a continuum kinetic plasma model in
a fully structured phase-space mesh with the DG implementation
without coupling to any fluid model. This work incorporates
the mixed phase-space formulation that allows coupling to the
unstructured finite element spatial mesh used for the fluid
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plasma models. The implementation is validated with standard
kinetic plasma problems of Landau damping and the two-stream
instability.

5.1. Landau Damping
Landau damping in the weak (linear) and strong (nonlinear)
regime is validated for the 1D1V case by setting a Maxwellian
distribution of f in velocity space with sinusoidal variation in
position space, given by the form

f (x, vx) =
n0

(2π)
1
2 vth

exp

(
−

v2x
2v2

th

)
(
1+ α cos

(
kx
))
, (119)

where vth =
√
T/A. The simulation is performed on a domain

of x ∈ [−2π , 2π] and v ∈ [−5, 5] subject to periodic
boundary conditions in x and a no flux condition on the velocity
boundaries. A consistent electric field is initialized by solving the
Poisson equation subject to the periodic boundary condition

−
1

(
ωpτ

)2
(
L

δp

)
∂2φ

∂x2
= Zin− Zin0

= Zin0
(
1+ α cos

(
kx
))

− Zin0, (120)

where a uniformly distributed oppositely charged distribution is
set to enforce net charge neutrality. Solving for the electrostatic
potential and using the electric field definition gives

Ex(x) =+ Zin0
(
ωpτ

)2
(
δp

L

)
α

k
sin
(
kx
)

(121)

With these initial conditions the Vlasov-Maxwell system is
solved using the described DG method. The parameters for
this simulation are n0 = 1, vth = 1 α = 0.01, k = 0.5,
ωpτ = 1, δp/L = 1, which is run for 80 plasma periods
using 40 × 40 elements with second order polynomials for the
spatial and velocity domains, using the 4th order explicit Runge-
Kutta timestepping scheme as written in Equations (76) – (79).

The damping rate is measured by plotting an integral of the
electric field energy over time until recurrence occurs, as shown
in Figure 2. The calculated rate of −0.3106 is compared to the
theoretical result of −0.3066 [2, 39]. Increasing the resolution of
the simulation leads to the calculated damping rate converging to
the theoretical value.

For strong Landau damping, the perturbation is increased to
α = 0.5. The damping rate of−0.5634 and growth rate of 0.1742
shown in Figure 2 match well with values from the published
literature of−0.562 and 0.168, respectively [39].

5.2. Two-Stream Instability
The two-stream instability is another electrostatic 1D1V test
problem with a theoretical growth rate that can be used to
validate the implementation of the continuum kinetic plasma
model. Two counter-streaming plasma beams are initialized as

f (x, vx) =
1

2

n0

(2π)
1
2 vth

[
exp

(
−
1

2

(
vx − v′

)2

v2
th

)

+ exp

(
−
1

2

(
vx + v′

)2

v2
th

)]
(
1+ α cos

(
kx
))
. (122)

With this form of f , the same initial electric field is used,
Equation (121). The separation of each beam from the axis is
v′ = π/2 with a perturbation α = 0.01. The beams have
vth = 0.1. The simulation is run using 80 × 160 elements with
second order polynomials and 4th order explicit Runge-Kutta
timestepping using Equations (76)–(79), on x ∈

[
−2π , 2π/k

]

and v ∈ [−10, 10] with n0 = 1, α = 0.01, k = 0.5, ωpτ = 1,
δp/L = 1. With these parameters, kv′/ωp = 0.7854, yielding a
theoretical growth rate of 0.4952. The calculated growth rate of
this simulation, as shown in Figure 3 is 0.4879. Figure 4 shows
the evolution of the distribution function in phase space. Growth
of the instability occurs until a characteristic time of 20 after
which there is the expected saturation.

FIGURE 2 | Evaluation of electric field energy for the weak (Left) and strong (Right) Landau damping problem. For the weak damping problem, a damping rate of

−0.3106 is measured, compared with a theoretical rate of −0.3066. For the strong damping problem, a damping and growth rate of −0.5634 and 0.1742 are

measured, compared with −0.562 and 0.168, respectively from published results.
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FIGURE 3 | Evaluation of electric field energy for the two-stream instability

problem. A growth rate of 0.4879 is measured, compared with the theoretical

rate of 0.4952.

6. NUMERICAL TESTS WITH DIRECT
VARIABLE TRANSLATION

6.1. 5N-Moment to MHD
A 2D planar plasma opening switch is implemented to test
the direct variable translation method for coupling two-
fluid and MHD. Five different domain subdivisions are
tested:

(a) Uniform MHD: A single MHD plasma model is used in the
entire domain.

(b) Uniform two-fluid: A two-fluid plasma model is used in the
entire domain.

(c) Mixed.25: A two-fluid model is used in the region x ∈
[0, 0.25], and an MHD model is used in the region x ∈
[0.25, 1].

(d) Mixed.5: A two-fluid model plasma model is used in the
region x ∈ [0, 0.5], and an MHD model is used in the region
x ∈ [0.5, 1].

(e) Adaptive: Uses the subdivisionMixed.25 for t ∈ [0, 0.8], then
switches to Mixed.5 for t ≥ 0.8.

The temporal domain is discretized using Heun’s method [38].
A high density slab of plasma is initialized with a notch
perturbation in the middle. This configuration is shown in
Figure 5. The plasma is accelerated to the right by imposing
Bz = 1 on the left boundary. This drives a current in the
plasma, producing a Lorentz force. The testing parameters used
are:

ωpτ = 2000 (123)

δp

L
= 10−2 (124)

Zi = −Ze = 1 (125)

Ai = 100Ae = 1 (126)

γ =
5

3
(127)

Pi = Pe =
1

2
(128)

Figure 6 shows the plasma density at t = 1, shortly after
the adaptive method has remapped the domain. An instability
begins developing around where the initial perturbation was in
all cases except for the uniform MHD case. At t = 2, Figure 7
shows that the adaptive case is capable of matching the fine-
scale instability structure of the Uniform two-fluid and Mixed.5
cases. However, the instabilities which developed on the two-
fluid side of the Mixed.25 case balloons on the MHD side and
loses the fine-scale structure. This is especially prevalent at t =
2.5 in Figure 8. At this point the adaptive case is still capable
of maintaining fine-scale instability structures on the trailing
edge of the bulk plasma; however, the leading edge does not
have similar instability structures as the Uniform two-fluid and
Mixed.5 cases. It is suspected that this is due to the leading edge
being on the MHD side initially before the adaptive method
moves the model interface ahead of the leading edge.

The test cases have been run with a few different fixed
timesteps using identical initial conditions. No new numerical
instabilities which result from coupling the models when the
coupling assumptions are well matched was noticed. Stability
appears to be limited by the limits of the constituent models used.
Additional stabilization mechanisms such as artificial viscosity or
limiters were not needed for this particular problem.

6.2. Continuum Kinetic to 5N-Moment
6.2.1. Double Rarefaction Waves

Exploration of the direct variable translationmethod for coupling
described in section 4.2 between a neutral fluid with no heat flux
or viscosity in 1D and the kinetic model in 1D1V is performed.
A Riemann problem producing double rarefaction waves is
initialized where

(
ρ, vx, p

)
=
{
(1.0,−0.2, 0.4) for x < 0.5

(1.0,+0.2, 0.4) for x ≥ 0.5
(129)

on a domain for x ∈ [0, 1] up to t = 0.15 with the ratio of
specific heats, γ = 3. A problem is run in which the domain
is split with the 5N-moment model on the left and the kinetic
model on the right, with v ∈ [−10, 10]. No limiter is used in this
coupling problem, but may be necessary for larger jumps and the
resulting stronger waves. On the kinetic side, these fluid variables
are converted to a Maxwellian distribution. Dirichlet conditions
are imposed on fluid variables while copy-out is imposed on the
distribution function in phase space, acceptable up to this time
since waves do not reach the boundary. Two cases are run, one
where the model interface is at the jump (x = 0.5) and another
where the interface is at x = 2/3, allowing for the waves to
propagate in the fluid region for some time before coming into
contact with the kinetic region. In each case, a mesh of 128
× 320 elements (64 physical elements on either side in both
cases) are used with first order polynomials on the physical and
phase space with second order Runge-Kutta timestepping using
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FIGURE 4 | Distribution function f ∈ [0, 2] for the two-stream instability problem for vth with separation v′ = π/2 at different times. x ∈ [0, 4π ] is the bottom axis while

vx ∈ [−5, 5] is the left axis, though the simulation was performed for vx ∈ [−10, 10]. Growth of the instability occurs at the expected rate until saturation at(
ωpτ

)
τ̃ = 20. See Figure 3.
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Equations (71) – (72). Also n0 = 1, ωpτ = 1, and δp/L = 1.
Rusanov numerical fluxes are used for the fluid side of the
domain.

FIGURE 5 | Planar plasma switch domain and initial plasma density. Dashed

lines denote the various decomposition points used. Mesh consists of 400 ×
100 rectangles subdivided into two triangle elements.

To drive the distribution function toward a Maxwellian to
be consistent with the fluid model , a BGK collision operator is
introduced for the collision term in the kinetic equation,

(
∂fα

∂t

)

coll

=−
(
νpτ

)
(f − fM) (130)

where fM is the Maxwellian distribution calculated from the
zeroth, first, and second moments of f . The normalized
collisional relaxation time is set to νpτ = 1000. Results are given
in Figure 9. The solution is shown on the physical-space domain
with fluid variables (ρ,vx,p) shown directly on the left. The same
variables are shown in the right, which are the result of moments
taken of the distribution function as given in Equations (3), (4),
and (9).

6.2.2. 1D1V Sheath

The direct variable translation method for coupling is tested
on a non-neutral plasma using a simulation of a sheath. The
Vlasov-Maxwell system is used to solve this problem as described
in Cagas et al. [41] with a domain of x ∈ [−128λD, 128λD]
with 256 elements. The outer 32 elements from both left and
right are solved using the Vlasov-Maxwell system for ion and
electron distributions while the interior elements are solved
with the 5N-moment model for fluid ions and electrons. A
realistic mass ratio is used, such that Ai = 1, Ae = 1/1836,
with charges Zi = +1, Ze = −1. Phase space is spans

FIGURE 6 | Planar plasma switch density at t = 1. The adaptive method has re-partitioned the domain variables. An instability at the density perturbation starts

developing in all models except for the Uniform MHD case.

FIGURE 7 | Planar plasma switch density at t = 2. The bulk plasma has transitioned past x = 0.25 for all models. Some instabilities which have developed in the

two-fluid region of the Mixed.25 case balloon on the MHD side, unlike the Uniform two-fluid or Mixed.5 cases. The adaptive method maintains similar instability

structures as the Uniform two-fluid and Mixed.5 cases.
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FIGURE 8 | Planar plasma switch density at t = 2.5. Ballooning of the instability in the Mixed.25 case is significant. The adaptive case maintains most of the fine-scale

structure found in the Uniform two-fluid and Mixed.5 cases on the trailing edge, however the leading edge has noticeable differences.

FIGURE 9 | Double rarefaction waves problem with 5N-moment model on left of model interface and continuum kinetic model with BGK operator on right of model

interface at t = 0.15 on x ∈ [0, 1] subject to direct variable translation matching. The top case has the model interface at x = 0.5 while the bottom case has the model

interface at x = 0.667. Black dashed lines are the analytic solution to the fluid Riemann problem [40].

vi ∈ [−6vthi ,+6vthi ] and vi ∈ [−6vthe ,+6vthe ] for ions and
electrons, respectively, using 48 square elements for each physical
element and as with the double rarefaction waves problem,
first order polynomials and second order timestepping is
used.

The normalization is set by defining a reference length (L),
reference number density (n0), and reference temperature (T0),
fromwhich δp/L andωpτ are calculated. The choice is of a typical
number density (n0 = 1019 m−3), T0 = 1 eV, and L = LD =
(
ǫ0T0
n0e2

) 1
2 = 2.35 µm. From these parameters, using the pressure

normalization, p0 = n0T0 = B20
µ0

leads to v0 = vA = B0√
µ0mpn0

=

n
√

T0
mp

= 9.79× 103 m/s where reference mp = 1.67× 10−27 kg

(proton mass). Then τ = L
v0

= 2.4 × 10−10 s leading to the

normalization constants

ωpτ =

√
e2n0

ǫ0mp
τ = 1 (131)

δp

L
=

1

ωcτ
=

mp

eB0

1

τ
= 3.265× 10−5 (132)

using fundamental constants ǫ0 = 8.85 × 10−12 F/m, µ0 =
4π × 10−7 H/m, and e = 1.602× 10−19 C.

The initial conditions for ions and electrons are for
normalized ni = ne = 1, vxi = vxe = 0, Ti = Te = 10.
In the fluid domains, these variables are set directly, while in
the kinetic domain they are converted to equivalent Maxwellian
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FIGURE 10 | Ion sheath density, velocity, and pressure moments at

t = 20/ωpe with direct variable translation. The middle domain is solved using

the 5N-moment two-fluid plasma model while the left and right domains are

solved using the continuum kinetic two-species plasma model. Simulation

results from applying the continuum kinetic model for the entire domain are

plotted in black dashed lines for comparison.

distributions, using γ = 3, appropriate for one spatial degree of
freedom. The simulations are run to t = 20/ωpe. The boundary
condition of the sheath in physical space is that of a conducting
wall on Maxwell’s equations and are set as outflow conditions on
the distribution function in phase space. Additionally, locally-
dependent BGK operators are applied on both ion and electron
species to replenish electron tails to achieve steady-state, as
shown in Cagas et al. [41], where the form of the BGK operator is

(
∂fα

∂t

)

coll

=−
(
νpτ

)
να(f − fM) (133)

with

να =
nα

A
1
2
αT

3
2
α

ln3. (134)

For this problem, νpτ was chosen to be 2, with
ln3 = 10.

Results comparing fluid moments are shown in Figure 10

(ions) and Figure 11 (electrons). For comparison, a full kinetic
simulation is also performed (dashed black lines). The phase
space for both ions and electrons, respectively, are shown in
Figures 12, 13. The solutions for the domain-hybridized plasma
model and for the full kinetic model match closely until the
electrons deviate significantly from a Maxwellian distribution
at model boundaries. However, as long as the 5N-moment
plasma model is physically valid at the model interface, i.e.,
the distribution functions remain Maxwellian, the domain-
hybridized plasma model produces accurate results with reduced
computational effort. To simulate this particular problem longer
in time, one might choose to move the model boundary farther
into the middle portion of the domain where the electron
distribution remains closer to a Maxwellian, or to solve the

FIGURE 11 | Electron sheath density, velocity, and pressure moments at

t = 20/ωpe with direct variable translation. The middle domain is solved using

the 5N-moment two-fluid plasma model while the left and right domains are

solved using the continuum kinetic two-species plasma model. Simulation

results from applying the continuum kinetic model for the entire domain are

plotted in black dashed lines for comparison. Some solution mismatch is seen

due to departure of the electron distribution function away from a Maxwellian

where the model interface assumes validity of the fluid approximation.

electrons with a full kinetic model while solving the ions with
the hybrid approach, which would still reduce the computational
effort. The boundary may also be moved dynamically during
a simulation using a metric determining the departure of the
distribution from a Maxwellian. An example is given by Reddell
[2], by defining a spatially local parameter

χα =
∫
v

∣∣fα − fMα

∣∣ dv
nα

(135)

where fMα is the Maxwellian determined by moments of fα .

7. COMPARISON OF CONSERVATIVE
NUMERICAL FLUXES AND DIRECT
VARIABLE TRANSLATION

One question of interest is how different are the numerical fluxes
of different models assuming both models are individually valid
locally. Computing independent numerical fluxes at an interface
is the simplest method, and if it is sufficient then there may not
be any reason to use coupling numerical fluxes which guarantee
conservation.

To investigate this issue, a 1% jump discontinuity centered
about x = 0 in density is initialized in an isothermal plasma. The
subdomain is subdivided such that − 1

5 < x < 1
5 is simulated

using two-fluid, while the remainder of the domain is simulated
using MHD.

Two different test regimes are initialized: one where
the MHD assumptions are reasonable, and the second
where the MHD assumption of quasi-neutrality breaks
down. In the latter case, Langmuir waves propagate out
from the jump discontinuity, and comparisons are made
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FIGURE 12 | Contours of the ion distribution function at t = 20/ωpe solved using the domain-hybridized plasma model. The left and right subdomains

x ∈ [−128,−96] and x ∈ [96, 128] are modeled with the continuum kinetic two-species plasma model, and the middle subdomain x ∈ [−96, 96] is modeled with the

5N-moment two-fluid plasma model.

FIGURE 13 | Contours of the electron distribution function at t = 20/ωpe solved using the domain-hybridized plasma model. The left and right subdomains

x ∈ [−128,−96] and x ∈ [96, 128] are modeled with the continuum kinetic two-species plasma model, and the middle subdomain x ∈ [−96, 96] is modeled with the

5N-moment two-fluid plasma model.

on the plasma behavior as this wave interacts with the
transition boundaries. Heun’s method is used for the temporal
discretization.

The testing parameters for “good” matching are

Ai = 100 (136)

Ae = 1 (137)

δp

L
=

1

10
(138)

ωpτ = 1000 (139)

The testing parameters for “poor” matching are

Ai = 100 (140)
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FIGURE 14 | Conservation of mass and energy testing. (Top Left) Mass conservation when MHD assumptions somewhat valid. (Top Right) Mass conservation

when MHD assumptions invalid. (Bottom Left) Energy conservation when MHD assumptions somewhat valid. (Bottom Right) Energy conservation when MHD

assumptions invalid. Validity of the MHD assumption produces an improvement in the conservation properties for direct variable translation.

Ae = 1 (141)

δp

L
= 1 (142)

ωpτ = 100 (143)

Figure 14 demonstrate that when the MHD assumptions
are valid, the direct variable translation method conserves
mass and energy. The conservative numerical flux is able
to preserve mass and energy several orders of magnitude
better.

For the small magnitude electrostatic shock test problem,
Figure 15 shows that the parameter mismatch results in
oscillations at the model interface. Using the direct variable
translation approach eliminates the oscillations. Both methods
couple across the domain boundary between the models without
generating deleterious effects.

As the parameter regime better satisfies the MHD
assumptions, both approaches produce similar results. In the
context of a practical adaptive method, this needs to be satisfied
anyways in order to accurately capture the correct physics. This
implies that the direct variable translation method should work
better in practice on the account that it is significantly simpler to
implement.

FIGURE 15 | Total plasma mass density of the small electrostatic shock test at

t = 1.5 with invalid MHD assumptions. Both the conservative numerical flux

coupling and direct variable translation methods are able to maintain

reasonable coupling behavior, and the impedance mismatch shows up as

oscillations at the model interface. The direct variable translation method

seems to average over some of these oscillations to produce a visually

smoother coupling.
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8. CONCLUSION

Spatial coupling of different plasma models is facilitated
by derivations of the governing equations that use a
consistent formulation and normalization, which allows
direct translation between models of higher and lower physical
fidelity. The DG method provides a uniform structure for
spatial discretization to represent the continuum plasma
models used for this development. Using the same spatial
discretization simplifies coupling the plasma models. Care
must be exercised when treating the fluxes in conservative
and non-conservative forms that appear in the governing
equations.

The continuum kinetic plasma model is also implemented
with the DG method by exploiting the rectilinear hypercubes
used to represent velocity space. Validation test cases for the
continuum kinetic plasma model in 1D1V agree with theoretical
and published numerical results for weak and strong Landau
damping and for the two-stream instability. Moments of the
distribution function provide a means to couple the continuum
kinetic plasma model to fluid plasma models, such as the multi-
fluid plasma model.

The spatial coupling of different plasma fluid models
has been implemented and successfully tested on 1D
and 2D test problems. Model coupling accuracies are
investigated for different approaches. Devising a consistent
normalization for all of the plasma models used facilitates
more accurate coupling and does not require modification
of the plasma models. The coupling method does not appear
to introduce any stricter stability requirements than are
already required for the constituent models. It is demonstrated
that direct coupling of model variables does not guarantee
conservation of key physical properties, but the lack of exact
conservation produces no significant detrimental effect.
Conservation improves as the models approach their regions
of validity, which indicates that an adaptive plasma model
that smoothly transitions between levels of physical fidelity
can produce accurate simulations at lower computational
costs.

Initial work on adaptively changing the domain model
partitioning is demonstrated on a 2D planar plasma switch,
and demonstrates that the variable translation method can be
used to remap the domain, and the resulting simulations can
maintain better physical fidelity. Future work on conditions for
automatically determining where re-mapping should take place
is being investigated.
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