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We show that via the Grassmann-Plücker relations, the various apparent unrelated

concepts, such as duality, matroids, qubits, twistors, and surreal numbers are, in fact,

deeply connected. Moreover, we conjecture the possibility that these concepts may be

considered as underlying mathematical structures in quantum gravity.
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It is a fact that the duality concept is everywhere in both mathematics and physics. Of course, since
the list of examples of this fact is very large and since we are concern with quantum gravity let us
just briefly mention, as examples in which the duality concept plays a fundamental role, matroid
theory [1, 2] [see also [3–9] and references therein] and surreal numbers [10–12] in mathematics
and string theory [13] and loop quantum gravity [14] in physics. The origin of matroid theory
can be traced back to graph theory were according to the Kuratowski theorem a graph has a dual
if does not contain the complete graphs K5 and K3,3 (see [15]). A matroid is a generalization of
the graph concept in which every matroid has a dual. One may understand why matroid theory
is a generalization of graph theory by associating with every graph G a matroid M(G). So one
must haveM(K5) andM(K3,3), but according to matroid theory one must have the corresponding
duals M∗(K5) andM∗(K3,3) which turns out to be non-graphic. A surreal number x = {XL,XR} is
written in terms of the dual sets XL left set and XR the right set which satisfies two main axioms
(see below). Surprisingly these dual numbers contains the structure of real numbers among other
numerical structures. On the other hand it is known that the origin ofM-theory [16] was inspired
by trying to make sense of a number of dualities between string theory and p-branes. For instance,
in eleven dimensions the 1-brane is dual to the 5-brane (see [16]). Finally, it is known that loop
quantum gravity emerges from the discovery of the Ashtekar variables which in turn arises by the
requirement of the canonical formalism applied to the self-dual Ricci curvature tensor [see [14] and
references therein].

Of course, the duality concepts refereed above may be at first sight quite different for each
example. So the first step it is to introduce a formal definition of the concept of duality. It turns out
that at least in matroid theory one finds such a formal definition [17]. Let M denote the family of
all matroidsM which corresponding to the ground set E. The matroid duality is a map ∗

:M → M

satisfying the two main axioms:

(a)∗∗M = M (∀M ∈ M).

(b) E(∗M) = E(M) (∀M ∈ M).

Inspired by this definition of duality in oriented matroid theory let us propose a general tensor
definition of duality structure. Consider a familyA of all completely antisymmetric tensors A (p-
forms), which correspond to space of dimension d, together with an operation+ which can be any
well-defined tensorial sum operation. The pair (A,+) determines a dual structure through the map
∗
:A → A if satisfies the following axioms:
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(I) ∗∗A = A (∀A ∈ A).
(II) d(∗A) = d(A) (∀A ∈ A).

Note that (II) plays the role of (b) in matroid theory.

Assuming the particular case that A corresponds to family of
zero-rank tensors one may add two additional axioms, namely

(III) There exist in A a self dual element ∗0 = 0 such that
A+ 0 = 0+ A = A, (∀A ∈ A).

(IV) For ∀A ∈ A one has A+ ∗A = ∗A+ A = 0.

One can prove that the element 0 in (III) is unique as follows:
Assume that (A,+) is a dual structure with two self-dual elements
0 and 0′. Then 0 = 0+0′ = 0′. Moreover, according to the axiom
(IV) the element ∗A can be considered as the inverse of A. In
order to show that the inverse ∗A is unique one takes recourse of
the axiom (I) instead of the associativity axiom in group theory.
In fact, assume that an arbitrary element A inA has two inverses
∗A and ∗B. Thus, one has (i) A+ ∗A = 0 and (ii) A+ ∗B = 0.
Applying the axioms (I) and (III) to (ii) one obtains ∗A+ B = 0
and therefore according (i) one gets ∗A+ B = ∗A + A which
means that B = A. The two axioms (III) and (IV) are similar
to the definition of a field in number theory. For these reasons
one it is straightforward to verify that the integer Z and the real
numbers R are in fact dual structures.

The main goal of the present work is to comment about the
possibility that the various concepts such as oriented matroids,
qubits, twistors, and surreal numbers are linked by the duality
symmetry. Moreover we shall argue that such a dual concept may
be considered as an underlying mathematical tool in quantum
gravity.

It turns out that the completely antisymmetric ε-symbol
becomes the underlying mathematical object in all these
connections. Specifically, the ε-symbol can be defined as

εa1...ad ∈ {−1, 0, 1}. (1)

Here, the indices a1, ..., ad run from 1 to d. This is a d-rank density
tensor which values are +1 or −1 depending on even or odd
permutations of ε12...d, respectively. Moreover, εa1 ...ad takes the
value 0 unless the values of a1...ad are all different. Lowering and
rising the indices with a Kronecker delta δab one finds that

εa1...adεb1 ...bd = δ
a1 ...ad
b1 ...bd

, (2)

where δ
a1 ...ad
b1 ...bd

is a generalized Kronecker delta. A contraction in

(2) of the last n-indices of the type ai with the last n-indices of the
type bi leads to

εa1...ak−1ak ...adεb1 ...bk−1ak...ad = n!δ
a1 ...ak−1

b1 ...bk−1
, (3)

with n = d − k+ 1. In particular one has

εa1 ...adεa1 ...ad = d!. (4)

Let via be any d × nmatrix over some field F, where the index
i takes values in the ordinal set E = {1, ..., n}. Consider the object

6i1 ...id = εa1 ...advi1a1 ...v
id
ad . (5)

Using the ε-symbol property

εa1 ...[adεb1 ...bd] = 0, (6)

it is not difficult to prove that 6i1 ...id satisfies the Grassmann-
Plücker relations [see [18] and references therein], namely

6i1 ...[id6j1 ...jd] = 0. (7)

Here, the brackets in the indices of (6) and (7) mean completely
antisymmetric.

Through (5) one can define the object

6 =
1

d!
6i1 ...idei1 ∧ ei2 ∧ ... ∧ eid , (8)

where ei1 , ei2 , ..., eid are 1-form bases associated with the (n
d
)-

dimensional real vector space of alternating d-forms on Rn. It
turns out that (8) can also be written as

6 = v1 ∧ v2 ∧ ... ∧ vd, (9)

for some v1, v2, ..., .vd ∈ Rn. This means that 6i1 ...id corresponds
to an alternating decomposable d-form [19].

A realizable chirotope χ is defined as

χ i1 ...id = sign6i1 ...id . (10)

In order to define non-realizable chirotopes it is convenient to
write the expression (7) in the alternative form

d+1
∑

k=1

sk = 0, (11)

where

sk = (−1)k6i1 ...id−1jk6j1 ...̂k ...jd+1 . (12)

Here, jd+1 = id and ̂k establish the notation for omitting
this index. Thus, for a general definition, one defines a d-rank
chirotope χ :Ed → {−1, 0, 1} if there exist r1, ..., rd+1 ∈ R+ such
that

d+1
∑

k=1

rksk = 0, (13)

with

sk = (−1)kχ i1 ...id−1jkχ j1 ...̂k ...jd+1 , (14)
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and k = 1, ..., d + 1. It is evident that (11) is a particular case of
(13). Therefore, there are chirotopes that may be non-realizable.
Moreover, this definition of a chirotope admits a straightforward
generalization to the complex structure setting. In this case the
complex chirotopes are called phirotopes [20–22].

Given a chirotope (or phirotope) χ i1 ...id its dual is defined as

∗χid+1 ...ip=εi1 ...idid+1 ...ipχ
i1 ...id . (15)

Here D = d + p is the total dimension of the ground state E.
Observe that due to the relations (3) one gets

∗∗χ = χ , (16)

which means that χ satisfies the axiom (I). It turns out that (16)
is true for a general completely antisymmetric object F (d-form)
when its dual is defined in terms of the ε-symbol. In fact, when D
is even one can write D = d + d = 2d and in this case one can
define the self-dual (antiself-dual) tensor as

±F = F ±∗ F (17)

One observe that ±F satisfies

∗±F = ±±F (18)

Thus, one sees that for D even the ±F tensor is another self-dual
(antiself-dual) notion other than the 0 element in the axioms (III)
and (IV).

Let us now explain how the Grassmann-Plücker relation (7)
is connected with qubit theory [see [23] and references therein].

For this purpose consider the general complex state | ψ >∈ C2N

| ψ >=

1
∑

A1 ,A2 ,...,AN=0

QA1A2 ...AN | A1A2...AN >, (19)

where the states | A1A2...AN >=| A1 > ⊗ | A2 > ...⊗ | AN >

correspond to a standard basis of the N-qubit. For a 3-qubit (19)
becomes

| ψ >=

1
∑

A1 ,A2 ,A3=0

QA1A2A3 | A1A2A3 >, (20)

while for 4-qubit one has

| ψ >=

1
∑

A1 ,A2 ,A3 ,A4=0

QA1A2A3A4 | A1A2A3A4 > . (21)

It turns out that, in a particular subclass ofN-qubit entanglement,

the Hilbert space can be broken into the form C2N = CL ⊗ Cl,
with L = 2N−n and l = 2n. Such a partition allows a geometric
interpretation in terms of the complex Grassmannian variety

Gr(L, l) of l-planes in CL via the Plücker embedding. It turns
out that in this scenario the complex 3-qubit, 4-qubit admit a
geometric interpretation in terms of the complex Grassmannian
varieties Gr(4, 2), Gr(8, 2), respectively [see [23] for details]. The
idea is to associate the first N − n and the last n indices of
QA1A2...AN with a L× l matrix ωi1

a1 . This can be interpreted as the
coordinates of the Grassmannian Gr(L, l) of l-planes in CL. Using

the matrix ωi1
p1 one can define the Plücker coordinates

Q
i1 ...id = εa1...adωi1

a1
...ω

id
ad , (22)

which one recognizes as the complex version of the
decomposable tensor 6i1 ...id defined in (5). Moreover, one
verifies that under the transformation ω→ Sω with S ∈ GL(l,C)
the Plücker coordinates transform asQi1 ...id → Det(S)Qi1...id and
of course±i1 ...id satisfies the Grassmann-Plücker relations

Q
i1 ...[idQ

j1 ...jd] = 0. (23)

Now, consider the quantity σµ = (σ0, σı̂
), where the σ

ı̂

denotes Pauli matrices and σ0 is the identity matrix. By using σµ
the linear momentum in 4-dimensions pµ can be written as

pAḂ = σAḂ
µ pµ. (24)

This is the spinorial representation of pµ. An interesting aspect

emerges if one sets Det(pAḂ) = 0, corresponding to a null
momentum pµpµ = 0. This means that

1

2!
εACεḂḊp

AḂpCḊ = 0. (25)

A solution to this equation is given by pAḂ = ξAηḂ. Since pµ is

real vector one verifies that pAḂ = p̄ḂA and therefore

ξAηḂ = ξ̄ Ḃη̄A. (26)

One finds that this last expression means that ηḂ = aξ̄ Ḃ,
where due to (26) one sees that a is real number which can be
normalized in the form a = ±. So one has found that, in the
case of null momentum, one can write pAḂ in terms of a more
fundamental complex quantity ξA, namely

pAḂ = ±ξAξ̄ Ḃ. (27)

Similar analysis applies to the total angular momentum Mµν =

xµpν−xνpµ+Sµν , where Sµν is the internal angular momentum
satisfying the Tulczyjew second class constraint [24];

Sµνpν = 0. (28)

Observe that due to (28) and since pµ is a null vector one
has Mµνpν = −(xνpν)p

µ This means that δ
τµν
αβγ p

αMβγ pν =

0. In turn this leads to εσαβγ ε
στµνpαMβγ pν = 0 or
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εσαβγ ε
στµνpαSβγ pν = 0. Therefore, if one defines the 4-

vector Sσ = 1
2εσαβγ p

αSβγ one obtains εστµνSσ pν = 0 and
consequently one discovers that

Sµ = spµ, (29)

for some non-vanishing constant s which is identified with the
helicity of the system. This means that the spin Sµ is parallel or
anti-parallel to pµ depending of the sign of s. So, determining

pAḂ in terms of ξA via (27) is equivalent to determine SAḂ in the

form SAḂ = sξAξ̄ Ḃ. Thus, considering (28) one sees that the left
relevant part ofMµν is

Lµν = xµpν − xνpµ, (30)

but again since pµ is a null vector one has Lµνpν = −(xνpν)p
µ

which means that out of the six true degrees of freedom of
Lµν = −Lνµ three are already determined by pµ. Therefore, the

corresponding spinor representation of Lµν , namely LAḂCḊ =

σAḂ
µ σCḊ

ν Lµν , can be written as

LAḂCḊ = µACǫḂḊ + ǫACµḂḊ. (31)

Here, µAC = µCA is a symmetric matrix and therefore has
only three independent complex degrees of freedom. In order to
reduce µAC to only three real components which of course are
related to the true three degrees of freedom of Lµν one further
writesµAC in the formµAC = ξAπC+ξCπA. If to the coordinates
ξȦ one adds the the spinor πA one is lead to the twistor structure
Pα = (πA, ξȦ) [25] [see [26] and references therein] which can
be identified with a point in C4. This analysis revel that in the
case of a null system the eight coordinates (xµ, pν) in R8 may
in principle be associated with the coordinates (πA, ξȦ) in the
twistor complex space C4.

Consider the 2-index twistor

Pαβ = P
α
1 P

β
2 − P

α
2 P

β
1 , (32)

which can also be written as

P
αβ = εabPαa P

β

b
. (33)

If one defines p
µ
1 = xµ and p

µ
2 = pµ one sees that Lµν can be

written as

Lµν = εabpµa p
ν
b (34)

and therefore one concludes that Pαβ can be understood as the
complexification of Lµν . Of course, Pαβ satisfies the Grassmann-
Plücker relations

P
µ[ν

P
αβ] = 0. (35)

It turns out that Pαβ can be used to associate points in C4

with points in the complexified Minkowski space (see [25]).

From the perspective of oriented complex matroids, Pαβ is just
a representable phirotope. One is tempted to assume that a
generalization of twistor theory may be also be associated with
the phirotope theory.

Is it possible that twistors or qubits can be related to surreal
number theory [10–12]? Consider the set

x = {XL | XR} (36)

and call XL and XR the left and right sets of x, respectively.
Conway develops the surreal numbers structure S from two
axioms:

Axiom 1. Every surreal number corresponds to two sets XL

and XR of previously created numbers, such that no member of
the left set xL ∈ XL is greater or equal to any member xR of the
right set XR.

Let us denote by the symbol � the notion of no greater or
equal to. So the axiom establishes that if x is a surreal number
then for each xL ∈ XL and xR ∈ XR one has xL � xR. This is
denoted by XL � XR.

Axiom 2. One number x = {XL | XR} is less than or equal to
another number y = {YL | YR} if and only the two conditions
XL � y and x � YR are satisfied.

This can be simplified by saying that x ≤ y if and only if
XL � y and x � YR.

Observe that Conway definition relies in an inductive method;
before a surreal number x is introduced one needs to know the
two sets XL and XR of surreal numbers. Using Conway algorithm
one finds that at the j-day one obtains 2j+1 − 1 numbers all of
which are of form

x =
m

2n
, (37)

wherem is an integer and n is a natural number, n > 0. Of course,
the numbers (37) are dyadic rationals which are dense in the reals
R.

The sum and product of surreal numbers are defined as

x+ y = {XL + y, x+ YL | XR + y, x+ YR} (38)

and

xy = {XLy+ xYL − XLYL,XRy+ xYR − XRYR | XLy+ xYR

−XLYR,XRy+ xYL − XRYL},
(39)

respectively. The importance of (38) and (39) is that allow us to
prove that the surreal number structure is algebraically a closed
field. Moreover, through (38) and (39) it is also possible to show
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that the real numbers R are contained in the surreals S [see [10–
12] for details]. Of course, in some sense the prove relies on the
fact that the dyadic numbers (37) are dense in the reals R.

In 1986, Gonshor [12] introduced a different but equivalent
definition of surreal numbers.

Definition 1. A surreal number is a function f from initial
segment of the ordinals into the set {+,−}.

For instance, if f is the function so that f (1) = +, f (2) = +,
f (3) = −, f (4) = + then f is the surreal number (+ + −+). In
the Gonshor approach one obtains the sequence: 1-day

− 1 = (−), (+) = +1, (40)

in the 2-day

− 2 = (−−), −
1

2
= (−+), (+−) = +

1

2
, (++) = +2,

(41)
and 3-day

−3 = (−−−), −
3

2
= (−−+), −

3

4
= (−+−),

−
1

4
= (−++), (+−−) = +

1

4
, (+−+) = +

3

4
,

(++−) = +
3

2
, (+++) = +3, (42)

respectively. Moreover, in Gonshor approach one finds the
different numbers through the formula

J = l | ε0 | −
| ε1 |

2
+

s
∑

i=2

| εi |

2i
, (43)

where ε0, ε1, ε2, ..., εq ∈ {+,−} and ε0 6= ε1. Furthermore, one
has | + |= + and | − |= −. As in the case of Conway definition,
through (43) one gets the dyadic rationals. Just for clarity, let us
consider the additional example:

(++−+−+) = 2−
1

2
+

1

4
−

1

8
+

1

16
=

27

16
. (44)

By defining the order x < y if x(α) < y(α), where α is the first
place where x and y differ and the convention − < 0 < +, it
is possible to show that the Conway and Gonshor definitions of
surreal numbers are equivalent [see [12] for details].

Suppose that instead of qubits we consider a rebit (real bits)
which can be thought as j-tensor [4],

tA1A2...Aj , (45)

where the indices A1,A2, ...,Aj run from 0 to 1. Of course j
indicates the rank of tA1A2 ...Aj . In tensorial analysis, (45) is a
familiar object. One arrives to a link with surreal numbers by

making the indices identification 0 → + and 1 → −. For
instance, the tensor t0010 in the Gonshor notation becomes

t0010 → t++−+ → (++−+). (46)

In terms of tA1A2 ...Aj , the expressions (40), (41) and (42) read

− 1 = t1, t0 = +1, (47)

in the 2-day

− 2 = t11, −
1

2
= t10, t01 =

1

2
, t00 = 2, (48)

and 3-day

−3 = t111, − 3
2 = t110, − 3

4 = t101, − 1
4 = t100,

t011 = + 1
4 , t010 = + 3

4 , t001 = + 3
2 , t000 = +3,

(49)

respectively.

Note that there is a duality symmetry between positive and
negative labels in surreal numbers. In fact, one can prove that
this is general for any j-day. This could be anticipated because
according to Conway definition a surreal number can be written
in terms of the dual pair left and right sets XL and XR. Further,
the concept of duality it is even clearer in the Gonshor definition
of surreal numbers since in such a case one has a functions f with
the image in the dual set {+,−}. In terms of the tensor tA1A2 ...Ap

such a duality can be written in the form

tA1A2 ...Ap + (−1)pεA1B1εA2B2 ...εApBp t
B1B2 ...Bp = 0, (50)

where

εAB =

(

0 1
−1 0

)

. (51)

The identification of surreal numbers with rebits means that its
complexification must be related to qubit theory and therefore
with twistor theory. So one has discovered that the use of the
completely antisymmetric object epsilon εa1 ...ad allows to define
the Plucker coordinates which must to satisfy the Grassmann-
Plücker relation. In turn, we have proved that this relation is a
commonmathematical central notion in orientedmatroids, qubit
theoy, twistor theory and surreal number theory.

Moreover, it has been proved in Mosseri and Dandoloff [27],
Mosseri [28], and Bernevig and Chen [29] that for normalized
qubits the complex 1-qubit, 2-qubit, and 3-qubit are deeply

related to division algebras via the Hopf maps, S3
S1

−→ S2, S7
S3

−→

S4, and S15
S7

−→ S8, respectively. It seems that there does not exist
a Hopf map for higher N-qubit states. So, from the perspective
of Hopf maps, and therefore of division algebras, one arrives
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to the conclusion that 1-qubit, 2-qubit, and 3-qubit are more
special than higher dimensional qubits [see [27–29] for details].
Again one wonders whether surreal numbers can contribute in
this qubits theory framework.

The original idea of Penrose was to replace the continuity
of the Minkowski space for new geometric framework which
may allow for a discrete structure and in this way unify
general relativity and quantum mechanics. In fact, one of the
original motivation to introduce twistors was be able to have
mathematical arena in which the discretization of the spacetime
was possible. The hope was that the complex structure of twistors
may be connected with quantum mechanics. In a sense the idea
was to replace R4 by C4 and in this way, since the object in
C4 are complex, one may be able to connect with quantum
mechanics which intrinsically is a complex structure. Ironically,
according to the discussion in this work, it seems to us that
the combinatorial structure searched by Penrose in connection
with quantum gravity is not the twistors itself but the underlying
oriented matroid theory. But ground set in oriented matroids can
be constructed by strings of the set {+−} which are the main
tool in qubit theory and surreal numbers. All these comments
suggested that the concepts such as chirotopes (phirotopes),
qubits, twistors, and surreals must be considered mathematical
tools underlying quantum gravity.

Let us analysis deeply the connection between surreal
numbers and qubits. For this purpose we shall assume that one
may be able to write a surreal complex numbers Z in the form

Z = J1 + iJ2, (52)

where J1 and J2 are two surreal numbers according to the
formula (43). This complexification of surreal numbers must
establish a complete connection with theN-qubit structure if one
assume the existence of a complex operator ẐA1A2 ...AN such that

ẐA1A2 ...AN | A1A2...AN > =

1
∑

A1 ,A2 ,...,AN=0

QA1A2 ...AN | A1A2...AN > = J | A1A2...AN > . (53)

This is inspired in the observation thatJ in (43) can be associated
with the eigenvalues of a z-component Ĵz of the total angular
momentum Ĵ in quantum mechanics. Of course in such case one
has Jz = l± 1

2 , with the identification of
1
2 -spin of the system. The

surprise with surreal numbers is that predicts that besides 1
2 -spin

system there must exist infinite number of J -spins, according
to the formula (43). Thus, for instance one must include particles
with 1

4 -spin (see [30, 31]) and
1
8 -spin and in general particles with

dyadic rational m
2n -spin.

Traditionally, quantum mechanics enter in the above twistor
formalism when one writes all possible gauge fields (and their
associated field equations) in twistor language and proceed to
quantize in the usual way. In the case of qubit theory things
are different because, even from the begining, qubits refers to
quantum states. Thus, concepts of quantum mechanics such as
the density of states are constructed from the corresponding
entanglement monotones [23]. Here, we would like to propose

an alternative possible route to connect further our formalism
with quantummechanics. The central idea is to continue looking
the surreal numbers as a quantities associated with different
dyadic spins ( m2n -spin). Let us explain in some detail this idea.
As we mentioned J in (43) seems to play the analog of the
eigenvalues of the z-component Ĵz of the angular momentum
operator, namely Jz = l ± 1

2 . Roughly speaking, from the point
of view of number theory, the quantization of a physical system
means to go from the real numbers (continuum) R to natural
numbers N (discrete). In the case of surreal numbers things are
different because one starts with the 0-day, 1-day, 2-day, and so
on and in the ω-day (this is the way mathematitians called) one
obtains the real numbers R. In other words one starts with a
discrete structure and finds the continuum scenario. Moreover,
if in addition to (43) one uses the identity

2n+1 = 2+ 2+ 4+ 8+ ...+ 2n, (54)

it is not difficult to show that J in (43) satisfies the expression

− l < J < l. (55)

Since l < j one also has

− j < J < j. (56)

Here, one assumes that from (43) one has j = l + s. Of
course, (56) is the analoguos inequality of the eigenvalue of the
total angular momentum. Following this route of thoughts one
first note that surreal numbers of the type (+ + ... + +) (or
the corresponding negative part) can be associated with higher
integer-spins, 1, 2, 3, ..., while surreal numbers of the type (+ +

... + −) can be associated with half-inter spins, 1/2, 3/2, 5/2, ....
This means that in principle bosons and fermions are part
of the surreal structure and therefore supersymmetry must be
present. Thus one must expect that a generalized supersymmetry
can be obtained if one includes other surreal numbers such as
1/4, 3/4, 1/8, 3/8, and so on. Since, as we mentioned, the dyadic
rational m/2n are dense in the reals R one should expect that
eventually, in the ω-day, the anyons may emerge. What about
the graviton? This corresponds to the surreal number 2 or 2-
spin. Thus, just as in string theory the graviton is just one
resonance out of many or even infinity resonances, in our case
the graviton is just a physical system with particular value 2-spin,
but in principle one has all kind of dyadic-spin particles. Thus,
according to these observations it seems that quantum gravity
should not be seen as an isolated problem but as part of a much
larger system in which all types of dyadic-spins are present.

Another source of interesting developments it may emerge
from the analysis of singularities, both in balck-holes and
cosmology. In fact, from the point of view of surreal numbers
theory the black-hole singularity 2MG/c2r → ∞, when r → 0,
and the Big-Bang singularity (of the radiation energy density)
ρr = ρ0/a

4 → ∞, when a → 0 are not a real problem because in
such a mathematical theory all kind of infinite large and infinite
small are present.
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It is worth mentioning that in Atiyah [32], the twistor
space and the Plücker coordinates are used to determine
the geometry of the instantons solutions of Yang-Mills
theory. It may interesting for further research to find the
connection between instantons formalism and surreal number
theory.

Finally, let us just mention that using fiber bundle concept
in oriented matroid theory [33, 34] a connection with p-branes
and phirotopes was established [6]. Thus according to the present
development one may expect that eventually a link between p-
branes and surreal numbers must be route to follow in the quest
of quantum gravity.
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