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Optimal random foraging strategy has gained increasing concentrations. It is shown

that Lévy flight is more efficient compared with the Brownian motion when the targets

are sparse. However, standard Lévy flight generally cannot be followed in practice. In

this paper, we assume that each flight of the forager is possibly interrupted by some

uncertain factors, such as obstacles on the flight direction, natural enemies within the

vision distance, and restrictions in the energy storage for each flight, and introduce the

tempered Lévy distribution p(l) ∼ e−ρ l l−µ. It is validated by both theoretical analyses and

simulation results that a higher searching efficiency can be derived when a smaller ρ or

µ is chosen. Moreover, by taking the flight time as the waiting time, the master equation

of the random searching procedure can be obtained. Interestingly, we build two different

types of master equations: one is the standard diffusion equation and the other one is

the tempered fractional diffusion equation.

Keywords: optimal random search, foraging, tempered Lévy distribution, master equation, tempered fractional

derivative

1. INTRODUCTION

One common approach to the animal movement patterns is to use the scheme of optimizing
random search [1–3]. In a random search model, single or multiple individuals search a landscape
to find targets whose locations are not known a priori, which is usually adopted to describe the
scenario of animals foraging for food, prey or resources. The locomotion of the individual has a
certain degree of freedom which is characterized by a specific search strategy such as a type of
randomwalk and is also subject to other external or internal constraints, such as the environmental
context of the landscape or the physical and psychological conditions of the individual. It is
assumed that a strategy that optimizes the search efficiency can evolve in response to such
constraints on a random search, and themovement is a consequence of the optimization on random
search.

Many researchers have concentrated on the study of different animals’ foraging movements. It
is shown that when the environment contains a high density of food items, foragers tend to adopt
Brownian walks, characterized by a great number of short step lengths in random directions that
maintain foragers in a small portion of the available space [4, 5]. In contrast, when the density of
food items is low, individuals tend to exhibit Lévy flights, where larger step lengths occasionally
occur and relocate the foragers in the environment. Due to the fact that the density of food items is
often low, many animals behave a Lévy flight when foraging and their movements have been found
to fit closely to a Lévy distribution (power law distribution) with an exponent close to 2 [6, 7]. For
instance, the foraging behavior of the wandering albatross on the ocean surface was found to obey
a power law distribution [8]; the foraging patterns of a free-ranging spider monkey in the forests
was also found to be a power law tailed distribution of steps consistent with Lévy walks [9, 10].
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On this basis, researchers mainly consider two issues: one
is to model the foraging behavior as a Lévy flight and the
other one is to study the searching efficiency theoretically or
experimentally. It is assumed that the forager takes a random
walk according to the distribution p(l) ∼ l−µ, 1 < µ < 3.
Then it is proven that the highest searching efficiency can be
obtained when µ is close to 2 for the non-destructive case (the
same target site can be visited many times). While the searching
efficiency is higher when µ tends to 1 for the destructive case
(the target site found by the forager becomes undetectable in
subsequent flights). Later, many more complex situations are
considered. Due to the fact that foragers are always searching
in a bounded area, Dybiec et al. [11] and Zhao et al. [12]
studied the searching efficiency of Lévy flight in a bounded
area. Kerster et al. [5] took the spatial memory of foragers
into consideration and concluded that the spatial information
influenced the foraging behavior significantly according to the
experimental results. Interestingly, it was claimed that the
Lévy flight foraging behavior can also be interpreted by a
composite search model [13, 14]. The model consists of an
intensive search phase, followed by an extensive phase, if no
food is found in the intensive phase. Particularly, Zeng and
Chen [15] considered the waiting time between two successive
flights and formulated the master equation for such foraging
behavior.

Though many studies have proven that it is usually more
efficient to utilize Lévy flight foraging strategy, standard Lévy
flight cannot be followed in practice because of many uncertain
factors. For instance, the forager may encounter obstacles or
natural enemies and extremely large flight distance cannot be
reasonable due to the restriction of the forager’s flight ability.
In this paper, we take these conditions into consideration and
temper the Lévy distribution with an exponential decaying
function, which results in a tempered Lévy distribution p(l) ∼

e−ρll−µ. It is then shown that a higher searching efficiency will
be derived when a smaller ρ or µ is chosen, both by simulation
and theoretical analyses. Further, two different types of master
equations are derived: one is the standard diffusion equation and
the other one is the tempered fractional diffusion equation. Since
the first and second order moments exist, the foraging movement
will finally result in a Gaussian motion, which indicates that
the tempered fractional diffusion equation is in fact another
expression for the standard diffusion.

The remainder of the paper is organized as follows. Section 2
provides the basic foraging model and some basic results are
also given. In section 3, we study the searching efficiency when
a tempered Lévy distribution is considered. Two different types
of master equations are derived in section 4 after treating the
flight time as the waiting time. The paper is concluded in
section 5.

2. BASIC DEFINITIONS AND MODEL
DESCRIPTION

In this section, we mainly recall the original model and basic
results of Lévy flight optimal random search. Assume that

target sites are uniformly distributed and the forager behaves as
follows

(1) If a target site lies within a “direct vision” distance rv, then the
forager moves on a straight line to the nearest site. A finite
value of rv, no matter how large, models the constraint that
no forager can detect a target site located an arbitrarily large
distance away.

(2) If there is no target site within a distance rv, then the
forager chooses a direction uniformly and a distance lj from
a probability distribution. It then incrementally moves to the
new point, constantly looking for a target within a radius
rv along its way. If it does not detect a target, it stops after
traversing the distance lj and chooses a new direction and
a new distance lj+1; otherwise, it proceeds to the target as
rule (1).

In the case of non-destructive foraging, the forager can visit
the same target site many times. In the case of destructive
foraging, the target site found by the forager becomes
undetectable in subsequent flights. Let λ be the mean free
path of the forager between two successive target sites [for
two dimensions λ = (2rvφ)

−1 where φ is the target-site area
density].

On the basis of above behaviors, assume that the flight distance
is distributed as the Lévy distribution

p
(

l
)

∼ l−µ, l ≥ rv, 1 < µ < 3. (1)

As shown in Figure 1 where η is the searching efficiency defined
as (7), researchers find that µ ≈ 2 and µ → 1 will result in
an optimal searching efficiency for the non-destructive case and
destructive case, respectively. For more details about the model
and existing results, one may refer to the works of Viswanathan
et al. [6, 7] and references therein.

FIGURE 1 | Searching efficiency of standard Lévy flight for different mean free

path λ: (A) the destructive case, (B) the nondestructive case.
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3. SEARCHING EFFICIENCY WITH A
TEMPERED LÉVY FLIGHT

In almost all the existing literatures about Lévy flight foraging, it
is assumed that the flight distance at each step is independently
distributed as (1). Distribution (1) is power-law decaying, which
indicates that a large jump length will appear more frequently
compared with the traditional Gaussian distribution. In practical
foraging, after the forager determines the flight distance at some
step, the flight will be interrupted by some unknown reasons,
such as obstacles on the flight direction, natural enemies in the
vision distance, and restrictions in the energy storage for each
flight. Because of these reasons, we can assume that the flight
distance is distributed as

p
(

l
)

∼ e−ρll−µ, rv ≤ l, ρ > 0, µ ≥ 1, (2)

which indicates that the forager can keep the flight direction
with the probability of an exponential distribution. Figures 2, 3
show the probability density function (pdf) of a tempered Lévy
distribution for different µ and ρ respectively. One can find that
the density decreases slower with a smaller µ or a smaller ρ,
which means that a larger jump length is more likely to happen.
Particularly, the µ = 0 case in Figure 2 is included to show that
the tempered Lévy distribution always has a shorter tail than the
pure µ = 0 Lévy distribution. The ρ = 0 case in Figure 3 is the
Lévy distribution which has a heavier tail compared with other
cases.

Remark 1:The difference between (1) and (2) is that the power
law distribution is tempered by an exponential decaying e−ρl.
The exponential part e−ρl can be viewed as the probability density
that the forager can keep its flight direction before he completes
one flight in the existence of some unknown factors and ρ is
determined by the environment. Because Lévy distribution is
now tempered by e−ρl, the first and second order moments of

FIGURE 2 | Probability density for tempered Lévy distribution with ρ = 0.5 for

different µ.

distribution (2) exist for arbitrary µ ∈ R. In the paper, we will
discuss the problem in a wider rangeµ ∈ [1,∞) rather than (1, 3)
for the Lévy distribution.

3.1. The Non-destructive Case
In this part, we will borrow the idea from Viswanathan et al. [6]
to optimize the searching efficiency. Given the pdf of the flight
distance as (2), the mean flight distance can be calculated as

〈

l
〉

=

∫ λ
rv
e−ρ|x||x|−µ+1dx+λ

∫ ∞

λ
e−ρ|x||x|−µdx

∫ ∞

rv
e−ρ|x||x|−µdx

=
Ŵup(ρrv ,2−µ)−Ŵup(ρλ,2−µ)+λρŴup(ρλ,1−µ)

ρŴup(ρrv ,1−µ)

(3)

where, the incomplete gamma function Ŵup is defined as

Ŵup (x, u) =

∫ ∞

x
tu−1e−tdt. (4)

Remark 2: In Viswanathan et al. [6], the Lévy distribution
is truncated by the mean free path λ because it is assumed
that the forager must find a target after flight for distance
λ. Different from the idea in Viswanathan et al. [6], we
assume that the flight distance may be truncated according
to an exponential distribution which is used to describe the
probability of encountering some uncertain factors. In this
paper, the truncation is also considered when calculating the
mean flight distance since the jump length may be larger
than the mean free path. We have also to declare that the
mean free path is generally very large since the targets are
sparse and the decaying speed of tempered Lévy distribution
is much faster. Thus, the integral of λ

∫ ∞

λ
e−ρ|x||x|−µdx is very

small such that it almost has no influence on the searching
efficiency.

Let N be the mean number of flights taken by a Lévy forager
while traveling between two successive target sites. Since the first

FIGURE 3 | Probability density for tempered Lévy distribution with µ = 1 for

different ρ.
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and second order moments of tempered Lévy distribution exist,

the trajectory of the forager will result in a Brownian motion.

According to the existing results by Viswanathan et al. [6], for
the non-destructive case, it follows that the mean flight number

between two successive targets can be estimated as

Nn ≈

(

λ2

2D

)

1
2

(5)

where, D is the diffusion constant. According to the standard
diffusion equation in section 4, it is found that the diffusion
constant D = a

2b
, where a is the second order moment of flight

distance and b is the mean of the waiting time. Since we do not
take the time into consideration, one can conclude that Nn is

proportional to
(

λ2

a

)
1
2
. Here, a can be calculated as

a =

∫ ∞

rv

e−ρll2−µdl = ρµ−3Ŵup (ρrv, 3− µ) . (6)

Based on the above analyses, we can then calculate the searching
efficiency which is defined as

η =
1

N
〈

l
〉 . (7)

Take rv as 1 when simulating and the results for different mean
free path λ are shown in Figure 4. Following observations can be
drawn

(1) For fixed mean free path λ and ρ, a smaller µ will result in a
higher searching efficiency.

(2) For fixed mean free path λ and µ, a smaller ρ will result in a
higher searching efficiency.

FIGURE 4 | Searching efficiency ηλ for different order µ and ρ: the

non-destructive case with different λ.

(3) The mean free path λ almost has no influence on the choice
of µ and ρ to derive the highest searching efficiency.

As interpreted in the existing papers, the Lévy distribution
can lead to a higher efficiency in a sparse area due to the higher
probability of large jump lengths. For this issue, a smaller µ

or ρ will both decrease the decaying speed of the probability
density, which means that the large jump lengths are more likely
to appear. Hence, observations (1) and (2) can be explained since
frequently large jump lengths can help covering a wider range
where it is more likely to find a target in a sparse area. Generally,
the density of target site is sparse in practice whichmeans that λ is
usually large. Due to the exponential decaying of tempered Lévy
distribution, the value of λ

∫ ∞

λ
e−ρ|x||x|−µdx is quite small and

almost has no influence on the searching efficiency. It can then
explain why the results of Figure 4 with different λ are similar.

One can also interpret the observations from the practical
perspective. As discussed before, the tempered item e−ρl can be
viewed as the probability density that the forager can keep its
flight direction before he completes one flight in the existence
of some unknown factors. Thus, a smaller ρ means that the
probability of a forager to encounter some uncertain factors is
lower and the foraging efficiency should be higher.

3.2. The Destructive Case
For the destructive case, the mean number N can be expressed as

Nd ≈
λ2

2D
. (8)

Similar to the non-destructive case, one can then calculate the
searching efficiency using (7). The results are shown in Figure 5,
which is very similar to the non-destructive case. It is found that
a smaller µ or ρ will both result in a higher search efficiency.

FIGURE 5 | Searching efficiency ηλ for different order µ and ρ: the destructive

case with different λ.
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The mean free path λ almost has no influence on the optimal
choice of parameters µ and ρ. We have shown that for the Lévy
distribution, µ → 1, where a large jump length appears more
likely, will lead to a higher searching efficiency. Thus, a smaller ρ

andµwill also result in a larger searching efficiency because large
jump lengths are more likely to happen.

Remark 3: According to the results in Figure 6 where we
obtain the mean flight number after averaging 100 independent
runs, one can find that a larger variance will lead to a smaller
mean flight number. Moreover, it is shown that there is a linear
property between them with a correlation coefficient −0.9781,
which indicates that the estimation of mean flight number is fine.

3.3. Numerical Results
We also implement an experiment for validate the theoretical
analyses. Consider a 200× 200 area and 50 targets are uniformly
distributed in this area. The vision distance is rv = 1 and the
total flight distance is no longer than 10, 000 which can be viewed
as the flight capability of the forager. The searching efficiency is
estimated as Nnum

Ltotal
where Nnum is the number of found targets

and Ltotal is the total flight distance. From Figure 7 where the
searching efficiency is derived by averaging 100 independent
runs, one can find that a smaller ρ andµwill both lead to a higher
searching efficiency, which is consistent with the theoretical
analyses. Because a larger µ will make the density function
decrease quickly, the range of jump lengths is then very tight.
Thus, the searching efficiency is very close for a large µ where
the jump lengths are all around the vision distance rv. Figures 8–
10 give some typical foraging procedures for different parameters
and one can find that all of them perform a Brownian motion
which can be verified by the statistic results of averaging 100
independent generated jump lengths in Figure 11. Additionally,
larger jump lengths frequently appear in Figure 8 compared with
the other two figures, for which the searching efficiency is the
highest. It is also shown in Figure 11, where larger jump lengths
are most likely to appear for the λ = 0.5 and µ = 1 case.

FIGURE 6 | The relation between the mean flight number and the variance of

the tempered Lévy distribution.

Remark 4: In this paper, we numerically generate the jump
lengths distributed as a tempered Lévy distribution and Figure 12
shows the actual density function and the statistic result of
generated jump lengths. It is found that the statistic result is
very close to the actual density function. We have to declare here
that all the foraging procedures in Figures 8–10 will result in a
Brownian motion because of the Central Limit Theorem.

Remark 5: Some conclusive remarks can be drawn as
follows

1) Tempered Lévy model is to assume the uncertain factors
during the foraging procedure may happen according to
an exponential distribution. Whenever such uncertain factor
happens, the forager has to stop its flight, which seems like
that the flight distance is truncated.

2) If we take ρ = 0, the tempered Lévy fight will reduce to the
standard Lévy flight.

FIGURE 7 | Experimental results of searching efficiency for different λ and µ.

FIGURE 8 | A typical example of foraging procedure with λ = 0.5 and µ = 1.
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FIGURE 9 | A typical example of foraging procedure with λ = 1 and µ = 1.

FIGURE 10 | A typical example of foraging procedure with λ = 0.5 and µ = 3.

3) According to the results in Figure 5, it is found that a
smaller ρ leads to a higher searching efficiency. In fact,
the searching efficiency with standard Lévy distribution is
higher than the truncated Lévy distribution. It is easy to
understand since the forager will have a higher searching
efficiency if there is no interruption during the foraging
procedure.

4. MASTER EQUATIONS

In the previous, we have not taken the flight time into
consideration. Assume that the flight speed v is constant during
the foraging process and treat the flight time between two flights
as the waiting time. Then, the pdf of waiting time is the same
as the flight distance with a scaling parameter v, which can be

FIGURE 11 | The statistic property of jump length with different λ and µ.

FIGURE 12 | The actual tempered Lévy density function with ρ = 0.5 and

µ = 1 and the statistic results of generated jump lengths.

expressed as

p (t) ∼ e−
ρ
v tt−µ, t ≥

rv

v
. (9)

Let us introduce the Laplace transform for the waiting time as

9 (s) =

∫ ∞

rv/v
e−stp (t) dt. (10)

The famous Montroll-Weiss Equation [16] in Fourier-Laplace
space is in the following form

P
(

k, s
)

=
1− 9 (s)

s

1

1−W
(

k
)

9 (s)
, (11)
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where W(k) is the Fourier transform for the flight distance in
two dimensions which will be discussed later. Now consider the
extreme distribution of 9(s) with s → 0. It is followed that

9 (s) =
∫ ∞

rv/v e
−stp (t) dt

=
∫ ∞

rv/v (1− st + o (s)) p (t) dt

= 1− bs+ o (s) ,

(12)

where, b is the mean of flight time t and o(·) means the higher
order infinitesimal. In the following, we will present two different
types of master equations for this foraging procedure via different
treatments to the extreme distribution ofW(k) with k → 0.

4.1. The Standard Diffusion Equation Case
Assume that the searching direction θ is uniformly distributed
in the interval [0, 2π). If the waiting time and the flight distance
are independent, then the flight distance of the forager in two
dimensions can be formulated as (x, y) = (l cos θ , l sin θ) and the
following Fourier transform holds

W
(

k
)

= 1
2π

∫ 2π
0

∫ ∞

rv
eil(k1 cos θ+k2 sin θ)p

(

l
)

dldθ

= 1
2π

∫ 2π
0

∫ ∞

rv

(

1+ il2 +
(

il2
)2

+ o
(

22
)

)

p
(

l
)

dldθ

= 1+ 1
2π

∫ 2π
0

∫ ∞

rv

(

il2
)2
p
(

l
)

dldθ + o
(

22
)

= 1+ a
2

(

(

ik1
)2

+
(

ik2
)2

)

+ o
(

22
)

(13)

where, k1 and k2 are the Fourier variables, k = (k1, k2), 2 =

k1 cos θ + k2 sin θ and a is the second order moment of the flight
distance.

Substitute (12) and (13) into theMontroll-Weiss equation and
ignore the higher order infinitesimal, yielding,

P
(

k, s
)

= b
bs− a

2 (ik1)
2− a

2 (ik2)
2

= 1
s− a

2b ((ik1)
2+(ik2)2)

.
(14)

Perform inverse Fourier-Laplace transform and one can derive
the master equation

∂

∂t
p
(

x, y, t
)

=
a

2b

∂2

∂x2
p
(

x, y, t
)

+
a

2b

∂2

∂y2
p
(

x, y, t
)

. (15)

Remark 6: Unlike the master equation derived by Zeng and
Chen [15], the master equation in this study is a normal diffusion
equation since the first and second order moments exist. We
have to mention that the master equation proposed by Zeng
and Chen [15] should also be standard diffusion equation rather
than fractional diffusion differential equation since the Lévy
distribution is truncated by the mean free path λ. Moreover,
the master equation should be two-dimensional rather than one-
dimensional.

4.2. The Tempered Fractional Diffusion
Equation Case
In this subsection, our purpose is to express the master equation
as a tempered fractional diffusion equation and we have restrict
µ varies from 1 to 2 to derive the tempered fractional derivative
expression. The vector jump length can be described as l2,

where 2 = (cos θ , sin θ). From Equation (7.9) in the book of
Meerschaert and Sikorskii [17], it shows that

W
(

k
)

=
∫

‖2‖=1

∫ ∞

rv
eik·l2p

(

l
)

dlM
(

d2
)

= 1+
∫

‖2‖=1

∫ ∞

rv

(

eik·l2 − 1
)

p
(

l
)

dlM
(

d2
)

= 1+ C
∫

‖2‖=1

[

(

λ − ik · 2
)µ−1

− λµ−1
]

M
(

d2
)

,

(16)

where k·2 = k1 cos θ+k2 sin θ ,M(d2) is a uniform distribution
on a unit circle, and C is a constant relevant to coefficients ρ

and µ.
Substitute (12) and (16) into the Montroll-Weiss Equation

(11) and ignore the higher order infinitesimal, yielding,

P
(

k, s
)

=
1

s− C
b

∫

‖2‖=1

(

λ − ik · 2
)µ−1

− λµ−1M
(

d2
)

. (17)

Define

λ∇α
Mf (x) =

∫

‖2‖=1

λDα
Mf (x)M

(

d2
)

(18)

where,

λDα
2f (x) =

α

Ŵ (1− α)

∫ ∞

0

[

g (t) − g (t − r)
]

e−λrr−α−1dr (19)

with g (t) = f (x+ t2) is the generator form for vector tempered
fractional derivative.

Inverse (17) to derive the master equation

∂p (L, t)

∂t
=

C

b
λ∇

µ−1
M p (L, t) , (20)

where, L is a vector (x, y).
Remark 7: Since the first order and second order moments

of tempered Lévy distribution exist, the resulting standard
diffusion equation (15) makes sense. Interestingly, we borrow
the idea from Meerschaert and Sikorskii [17] and give another
expression of the master equation, where vector tempered
fractional derivative is used. In this paper, we do not give detailed
proof for the derivation of vector tempered fractional derivative
and one can refer to Chapter 6 and 7 in the book of Meerschaert
and Sikorskii [17]. All these indicate that tempered fractional
diffusion equation is in fact a different expression of the standard
diffusion.

5. CONCLUSION

In this paper, we consider the optimal random foraging whose
flight distance is distributed according to a tempered Lévy
distribution p(l) ∼ e−ρll−µ. It is found that a higher searching
efficiency can be derived when we choose a smaller ρ or µ, which
results in a slower decaying speed. Furthermore, we obtain the
master equation of the random foraging. A standard diffusion
equation is derived since the first and second order moments
of the distribution for flight distance exist. Using the definition
of tempered fractional derivative, a vector tempered fractional
diffusion equation is then derived, which can be viewed as
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a special expression for the standard diffusion. A promising
research topic can be directed to finding the optimal searching
strategy for other types of flight distance distributions.
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