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Sinc-Fractional Operator on Shannon
Wavelet Space

Carlo Cattani*
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In this paper the sinc-fractional derivative is extended to the Hilbert space based on

Shannon wavelets. Some new fractional operators based on wavelets are defined. One

of the main task is to investigate the localization and compression properties of wavelets

when dealing with the non-integer order of a differential operator.

Keywords: fractional calculus, shannon wavelet, sinc-function, operational matrix, connection coefficients

1. INTRODUCTION

In recent years, fractional calculus has been growing fast both in theory and applications to many
different fields. Several classical and fundamental problems have been revised by using fractional
methods, thus showing unexpected new results [1–3], while more and more new problems were
shaped to fit the theoretical models of fractional calculus [4–7].

In fractional calculus is based on two universally accepted principles: the first one is that the
definition of fractional derivative is not unique, thus giving raise to a neverending controversial
debate on the best fractional operator. The second principle is that, although the missing
uniqueness of the fractional operator, fractional calculus is an essential tool for a deeper and more
comprehensive investigation of complex , non-linear , local, or non-local problems.

Therefore according to the suitable choice of the fractional differential operator, there follows
a corresponding model of analysis so that the physical model and the corresponding physical
interpretation of the results it strongly depends on the chosen fractional operator.

In some recent papers [8–15] the classical Lie symmetry analysis has been combined with
the Riemman-Liouville fractional derivative to solve time fractional partial differential equations.
In these papers, Lie point symmetries have been used to convert a fractional partial differential
equation into a non-linear ordinary differential equation, that can be solved by suitable methods.
Some fractional operators have been used also to study non-differentiable functions [see e.g., [16]
some of them are more suitable for the analysis of non-differentiable sets, or fractal sets like the
Cantor fractal set [4–7] Some fractional operators have been specially defined to analyze complex
functions [17–19]. For instance the chaotic decay to zero of the complex ζ -Riemann function was
easily shown by using a suitable fractional derivative [19].

Among the many interesting definitions of fractional operators, some Authors have recenlty
proposed a fractional differential operator based on the sinc-function [20]. This function is very
popular in the signal analysis, also because it is a localized function with slow decay. Moreover, it is
the fundamental basic function for the definition of the so-called Shannon wavelet theory, i.e., the
multiscale analysis on Shannon wavelets [21–26].

This paper will focus on the definition of a fractional derivative by the Shannon wavelets.
These functions belong to a special family of wavelets which have a sharp compact support in the
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frequency space, so that their Fourier transform are box-
functions in frequencies. This is a great advantage because, the
frequency domain of a signal can be easily decomposed in terms
of scaled box-functions.

Wavelet theory has been growing very fast so that there
has been also a wide spreading of wavelets for the solution
of theoretical and applied problems. However, alike the
various definition of fractional operators there exist also many
different families of wavelets and this missing uniqueness
it might be considered as a drawback because of the
arbitrary choice. Nevertheless all families of wavelets enjoy
two fundamental properties their localization in time (or
frequency) and the multiscale decomposition. Due to their
localization they can be used to detect, and single out,
localized singularities and/or peaks, while the multiscale
property enable to decompose the approximation space into
separate scales [27]. Thanks to these properties wavelets have
been used to solve non-linear problems and moreover they
are the most suitable tool for the analysis of multiscale
problems.

The sinc-fractional operator will be generalized in order
to compute the fractional derivative of the L2(R)-functions
belonging to the Hilbert space defined by the Shannon wavelet.
In doing so, we will be able to compute the fractional
derivative of these functions by knowing only their wavelet
coefficients. Moreover, with this approach we will be able to
decompose the fractional derivative at different scales, thus
showing the influence of a given scale in multiscale physical
problems.

The organization of this paper is as follows: Preliminary
remarks on fractional operators are given in section 2. In section
3 the sinc fractional derivative, as given by Yang et al. [20] is
described. Section 4 gives the basic properties on the multiscale
approximation defined on Shannon wavelet. The differential
properties of the functions belonging to the Hilbert space based
on Shannon wavelet are given in section 5, together with the
explicit form of the integer order derivatives (see also [24, 26]).
Section 6 deals with the sinc-fractional derivative on the Hilbert
space based on Shannon wavelets , i.e., sinc-fractional derivative
of functions which can be represented as Shannon wavelet
series.

2. PRELIMINARY REMARKS

In this section some of the most popular definition of fractional
derivatives [28–30] are given.

Let us start with the Riemann-Liouville derivative.

Definition 1. The Riemann-Liouville integral of fractional order
ν ≥ 0 of a function f (x), is defined as

(
Jν f

)
(t) =





1

Ŵ(ν)

∫ t

0
(t − τ )ν−1f (τ )dτ , ν > 0,

f (t), ν = 0.

The Riemann-Liouville fractional operator Jα has the following
properties:

(a) Jα
(
Jβ f (t)

)
= Jβ

(
Jα f (t)

)
,

(b) Jα
(
Jβ f (t)

)
= Jα+β f (t),

(c) Jαtν =
Ŵ (ν + 1)

Ŵ (α + ν + 1)
tν+α , α,β ≥ 0, ν > −1

(d) Jνeλt =
1

νŴ(ν)
eλttν , ν > 0 ,

(e) Jνc =
c

νŴ(ν)
tν , ν > 0 .

From this definition there follows the corresponding derivative
according to the following:

Definition 2. Riemann-Liouville fractional derivative of order
α > 0 is defined as

DαRLf (t) =
dn

dtn
Jn−α f (t), n ∈ N, n− 1 < α ≤ n. (2.1)

The main problem with this derivative is the unvanishing value
for a constant function, therefore it was proposed by Caputo the
following [28, 29].

Let f (x) ∈ C
n be a n-differentiable function, α a positive value,

then

Definition 3. The α-order Caputo fractional derivative is defined
as

DαCf (x) =





dnf (x)

dxn
, 0 < α ∈ N,

1

Ŵ(n− α)

∫ x

0

f (n)(τ )

(x− τ )α−n+1
dτ , t > 0, 0 ≤ n− 1

< α < n.

where n is an integer, x > 0, and f ∈ C
n.

It can be easily shown that:

(a) JαDαCf (x) = f (x)−
n−1∑

k=0

f (k)(0+)
xk

k!
, t > 0.

(b) DαCJ
α f (x) = f (x).

(c) DαCt
n =





0, for n ∈ N0 and α < n,

Ŵ(n+ 1)

Ŵ(n− α + 1)
tn−α , otherwise.

(d) DαCD
β
Cf (x) = D

β
CD

α
Cf (x) .
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3. SINC-FRACTIONAL DERIVATIVE

Riemann-Liouville (RL) and Caputo (C) derivatives are the most
popular derivatives and have been used in many applications
(see e.g., [2, 3, 16, 18, 25, 26, 29, 31–41]), nevertheless they
both suffer for some unavoidable drawbacks. In particular, the
RL-derivative is unvanishing when f (x) 6= constant while the
C-derivative is defined on a singular kernel. Because of that,
in recent years many efforts were devoted to find some more
flexible non-singular derivatives. Moreover, due to the fact that
the fractional derivative is not univocally defined, there have been
proposed many alternative interesting new definitions.

Indeed the more general fractional derivative with a given
kernel K(x,α), which generalizes the C-derivative is:

Dα f (x) =





dnf (x)

dxn
, 0 < α ∈ N,

∫ x

0
f (n)(τ )K(x− τ ,α)dτ , x > 0, 0 ≤ n− 1 < α < n.

(3.1)
The kernel should be defined in a such a way that at least the two
conditions

lim
α→0

K(x−τ ,α) = 1, lim
α→1

K(x−τ ,α) = δ(x−τ ) (3.2)

hold true, moreover, in order to be a non-singular kernel, it
should be also

lim
x→τ

K(x− τ ,α) 6= 0, ∀α . (3.3)

Although there are several definitions of derivatives they all
depend on a kernel. In particular, it can be easily seen that the
C-derivative [42], the Caputo-Fabrizio (CF) derivative [34], and
the Atangana-Baleanu (AB) derivative [43] are some special cases
of (3.1) corresponding respectively to the kernels:

(C) K(x− τ ,α) =
1

Ŵ(n− α)
(x− τ )n−α−1

(CF) K(x− τ ,α) =
M(α)

1− α
e−

α
1−α (x−τ )

(AB) K(x− τ ,α) =
B(α)

1− α
Eα

(
−

α

1− α
(x− τ )

)
,

(3.4)

where the Mittag-Leffler function is taken as

Eα(x)
def=

∞∑

k=0

xαk

Ŵ(αk+ 1)
.

It can be easily shown that all kernels (3.4) fulfill (3.2) while only
(CF) and (AB) fulfill also the condition (3.3).

3.1. The Yang-Gao-Terneiro

Machado-Baleanu Fractional Derivative

[20]
With respect to the integration variable τ all kernels (3.4) have a
decay to zero, in a such way that for a bounded f (n)(x) the integral
(3.1)2 converges.

Among the non-singular kernels with decay to zero a
fractional derivative based on a sinc-function kernel was recently
defined by Yang, Gao, TerneiroMachado, and Baleanu (YGTMB)
[20].

The sinc-function, defined as Yang et al.[20]

sinc x
def=

sinπx

πx
, (3.5)

owns a quite large amount of nice properties, so that it became
a fundamental tools in applied science and signal analysis. In
particular, it was shown (see e.g., [20]) that, for a given x

lim
α→0

1

α
sinc

( x

α

)
= δ(x) (3.6)

being δ(x) the Dirac-delta function

δ(x) =





0, x 6= 0

1, x = 0 .

More in general from (3.6) it is

lim
α→0

1

α
sinc

(
x− τ
α

)
= δ(x− τ ) . (3.7)

By using the sinc-function, we have the following definition of
the sinc fractional derivative [20].

Definition 4 (Yang-Gao-Tenreiro Machado-Baleanu). The
YGTMB fractional derivative is defined as Yang et al. [20]

DαYGTMBf (x)
def=
αP(α)

1− α

∫ x

a
sinc

α(x− τ )
1− α

f (n)(x)dτ , 0 ≤ n− 1

< α < n .

(3.8)

We can see that also this kernel

(S) K(x− τ ,α) =
αP(α)

1− α
sinc

α(x− τ )
1− α

(3.9)

belongs to the class of kernels (3.1). It can be also shown that this
kernel fulfills the conditions (3.2),(3.3) (see [20]) being

lim
α→0

αP(α)

1− α
sinc

α(x− τ )
1− α

= 1, lim
α→1

αP(α)

1− α
sinc

α(x− τ )
1− α

= δ(x− τ ) ,

and the normalization constant factor P(α) is such that

lim
α→0

[K(x,α)P(α)] = lim
α→1

[K(x,α)P(α)] = 1
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In particular, there follows from (3.8)

DαYGTMBf
(n)(x) =





f (n−1)(x)− f (n−1)(0), α = 0

f (n)(x) , α = 1
(0 ≤ n− 1 < α < n).

3.1.1. Polynomial Approximation of the Kernel
The sinc kernel (3.9) can be written also as an infinite product as
follows. Starting from the known product:

sin x = x

∞∏

k=1

(
1−

x2

k2π2

)

by taking into account (3.5) it is

sinc x =
sin(πx)

πx
=

1

��πx
�

�(πx)

∞∏

k=1

(
1−

(πx)2

k2π2

)

so that

sinc x =
∞∏

k=1

(
1−

x2

k2

)

It should be noticed that in the interval [−1, 1] the sinc-function
can be approximated by

sinc x ∼=
n∏

k=1

(
1−

x2

k2

)

so that if we define as the error of approximation

ε(n) =

∣∣∣∣∣sinc x−
n∏

k=1

(
1−

x2

k2

)∣∣∣∣∣

we have
max ε(1) ≤ 0.14, max ε(2) ≤ 0.08, max ε(3) ≤

0.055, max ε(4) ≤ 0.04,
so that already with n = 1:

sinc x ∼=
(
1− x2

)

the error of approximation in [−1, 1] is less that 15%.
It should be noticed that with this approximation the

YGTMB-derivative (3.8) becomes

DαYGTMB∗ f (x) =
αP(α)

1− α

∫ x

a

[
1−

α2

(1− α)2
(x− τ )2

]
f (n)(x)dτ ,

≤ n− 1 < α < n

that is

DαYGTMB∗ f (x) =
αP(α)

1− α

[
f (n−1)(x)− f (n−1)(0)

]
−
α3P(α)

(1− α)3∫ x

a
(x− τ )2f (n)(x)dτ , 0 ≤ n− 1 < α < n

By assuming as a normalization factor

P(α) =
(1− α)3

α

we get

DαYGTMB∗f (x) = (1− α)2
[
f (n−1)(x)− f (n−1)(0)

]
− α3

∫ x

a
(x− τ )2f (n)(x)dτ , 0 ≤ n− 1 < α < n

so that the fractional derivative can be seen as the interpolation
between the function and its derivative (as shown e.g., in Cattani
[25, 26]).

3.2. Sinc Fractional Derivative With

Unbounded Domain
Let us consider the integral of sinc function over the unbounded
domain [−∞, ∞]. By a direct computation it can be shown that

∫ ∞

−∞

sinπx

πx
dx = 1,

∫ 1

−1

sinπx

πx
dx ∼= 1.17

so that the sinc-function is a function mainly localized around
the origin. In fact, the sinc function is known as a function with
a decay to zero, therefore we can extend the definition (3.8)
over the unbounded domain R so that we can define the sinc
fractional derivative as the YGTMB fractional derivative on the
unbounded domain R, that is

Definition 5 (sinc fractional derivative). The sinc fractional
derivative DαS of a function f (x) is defined as

DαS f (x)
def=
αP(α)

1− α

∫ ∞

−∞
sinc

α(x− τ )
1− α

f (n)(x)dτ , 0 ≤ n−1<α<n

(3.10)
where the normalization factor P(α) is chosen to fulfill conditions
(3.2), (3.3) and the kernel is

K(x− τ ,α) =
αP(α)

1− α
sinc

α(x− τ )
1− α

.

In particular, we can also assume

α

1− α
= 2β

so that

α =
2β

1− 2β
, β = log2

α

1− α

and the derivative (3.10) can be written as

D
β
S f (x)

def= −2β
∫ ∞

−∞
sinc (2βτ − 2βx)f (n)(τ )dτ , 2β ≤

n

n+ 1
.

(3.11)
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4. SHANNON WAVELETS

The sinc-function plays a fundamental role also in wavelet theory.
In fact, the basic functions (scaling and wavelet) of the so-called
Shannon wavelets (see e.g., [21–26]) can be defined by the sinc
(3.5). In this section, some remarks on Shannon wavelets and
connection coefficients are shortly summarized.

4.1. Preliminary Remarks
Shannon wavelet theory (see e.g., [21–24]) is based on the scaling
function ϕ(x), also known as sinc function, and the wavelet
function ψ(x) respectively defined as





ϕ(x) = sinc x
def=

sinπx

πx
=

eπ ix − e−π ix

2π ix
.

ψ(x) =
sin 2π(x− 1

2 )− sinπ(x− 1
2 )

π(x− 1
2 )

=
e−2 iπ x

(
−i+ eiπ x + e3 iπ x + i e4 iπ x

)

2π
(
x− 1

2

) .

(4.1)

The second function can be expressed in terms of the first, as

ψ(x) = 2ϕ(2x− 1)− ϕ(x−
1

2
) (4.2)

The families of translated and dilated Shannon scaling functions
[21–24], are

ϕn
k
(x) = 2n/2ϕ(2nx− k) = 2n/2

sinπ
(
2nx− k

)

π
(
2nx− k

)

= 2n/2
eπ i(2

nx−k) − e−π i(2
nx−k)

2π i
(
2nx− k

) ,

=
2n/2

2π i
(
2nx− k

)
∞∑

s=0

π sis

s!

[
1− (−1)s

] (
2nx− k

)s

=
2n/2

2π i
(
2nx− k

)
∞∑

s=0

π sis

s!
(1− eπs)

(
2nx− k

)s

= 2n/2−1
∞∑

s=1

π s−1is−1

s!

[
1− (−1)s

] (
2nx− k

)s−1
.

(4.3)
By a direct computation it can be easily shown that this series can
be also written as

ϕnk (x) = 2n/2
∞∑

s=0

(−1)s
π2s

(2s+ 1)!

(
2nx− k

)2s
(4.4)

that is

ϕnk (x) = 2n/2
∞∑

s=0

(−1)s
π2s

(2s+ 1)!

2s∑

j=0

(
2s

j

)
(2nx)j(−k)2s−j (4.5)

In the special case when k = 0, from (4.4) we have

ϕn0 (x) = 2n/2
∞∑

s=0

(−1)s
π2s

(2s+ 1)!
22nsx2s (4.6)

while for the translated instances at the zero scale n = 0 we obtain
from (4.4)

ϕk(x)
def= ϕ(x− k) =

∞∑

s=0

(−1)s
π2s

(2s+ 1)!

(
x− k

)2s
(4.7)

Analogously, the translated and dilated instances of the Shannon
wavelets are

ψn
k
(x) = 2n/2

sin 2π(2nx− k− 1
2 )− sinπ(2nx− k− 1

2 )

π(2nx− k− 1
2 )

,

=
2n/2

2π(2nx− k− 1
2 )

2∑

r=1

i1+rerπ i(2
nx−k) − i1−re−rπ i(2nx−k) .

(4.8)
or, by taking into account (4.2)

ψn
k (x) = 2ϕn+1

k
(x)− ϕnk (x−

1

2
) (4.9)

and Equation (4.3), it is

ψn
k
(x) = 2n/2

∞∑

s=1

π s−1is−1

s!

[
1− (−1)s

] (
2nx− k

)s−1

− 2n/2−1
∞∑

s=1

π s−1is−1

s!

[
1− (−1)s

] (
2n(x−

1

2
)− k

)s−1

.

From (4.9), by taking into account (4.4), it is

ψn
k (x) = 2n/2

∞∑

s=0

(−1)s
π2s

(2s+ 1)!

{
23/2

(
2n+1x− k

)2s

−
[(
2nx− k

)
− 2n−1

]2s}
(4.10)

so that at the zero scale n = 0 it is

ψk(x)
def= ψ0

k (x) = ψ(x− k) =
∞∑

s=0

(−1)s
π2s

(2s+ 1)!

{
23/2

(
2x− k

)2s −
[(
x− k

)2s − 1

2

]2s}

and, at the origin k = 0

ψn(x)
def= ψn

0 (x) = 2n/2
∞∑

s=0

(−1)s
π2s

(2s+ 1)!

{
23/2

(
2n+1x

)2s

−
(
2nx− 2n−1

)2s}
.
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By assuming,

ϕ00(x) = ϕ(x) , ψ0
0 (x) = ψ(x) , ϕ0k (x) = ϕk(x) = ϕ(x− k),

ψ0
k (x) = ψk(x) = ψ(x− k),

and taking into account (4.4),(4.10) the fundamental functions
ϕ(x), ψ(x), can be expressed as the power series





ϕ(x) =
∞∑

s=0

(−1)s
π2s

(2s+ 1)!
x2s

ψ(x) =
∞∑

s=0

(−1)s
π2s

(2s+ 1)!

[
22s+3/2x2s −

(
x−

1

2

)2s
]

.

(4.11)

4.2. Properties of the Shannon Wavelet
Shannon wavelets enjoy some interesting properties. In
particular, when they are evaluated at some special points they
assume some very simple expressions. For instance, according to
(4.3), it is

ϕk(h) = ϕh(k) = ϕ(h− k) = ϕ(k− h) = δkh, (h, k ∈ Z),
(4.12)

so that

ϕk(h) = δkh =





0, h 6= k, (h, k ∈ Z)

1, h = k, (h, k ∈ Z)

Analogously we have [24]

ψn
k
(h) = (−1)2

nh−k 21+n/2

(2n+1h− 2k− 1)π
, (2n+1h− 2k− 1 6= 0)

ψn
k
(x) = 0, x = 2−n

(
k+

1

2
±

1

3

)
, (n ∈ N, k ∈ Z)

lim
x→2−n(h+ 1

2 )
ψn
k (x) = −2n/2δhk,

(4.13)
being,

ψ0
k (0) = (−1)k+1 2

(2k+ 1)π

and since k ∈ Z, 2k+ 1 6= 0.
It can be shown (see e.g., [25]) that both scaling and wavelet

functions are bounded, being:

max[ϕk(xM)] = 1, xM = k, (4.14)

max[ψn
k (xM)] = 2n/2

3
√
3

π
, xM =





−2−n

(
k+

1

6

)

2−n−1

3
(18k+ 7),

(4.15)

and

lim
x→±∞

ϕnk (x) = 0, lim
x→±∞

ψn
k (x) = 0.

4.3. Shannon Wavelets in Fourier Domain
In order to define the multiscale analysis, based on Shannon
wavelets, we need to define the Hilbert space of functions that
can be reconstructed by them. The Shannon scaling function
owns a very simple expression in the Fourier domain, therefore
it would be easier to define the scalar product in Fourier domain.
To this purpose we define the Fourier transform of the function
f (x) ∈ L2(R), and its inverse transform as

f̂ (ω) = f̂ (x)
def=

1

2π

∫ ∞

−∞
f (x)e−iωxdx, f (x) =

∫ ∞

−∞
f̂ (ω)eiωxdω .

The Fourier transform of (4.1) give us [23]





ϕ̂(ω) =
1

2π
χ(ω + 3π) =

{
1/(2π), −π ≤ ω < π

0, elsewhere

ψ̂(ω) =
1

2π
eiω/2

[
χ(2ω)+ χ(−2ω)

]

(4.16)
with

χ(ω) =
{
1, 2π ≤ ω < 4π
0, elsewhere .

The Fourier transform fulfills many interesting properties and
among them the following:

f̂ (ax) =
1

a
f̂ (
ω

a
), ̂f (x− b) = e−ibω̂f (ω),

d̂n

dxn
f (x) = (iω)n̂f (ω).

(4.17)

So that for the dilated and translated instances of scaling/wavelet
function, in the frequency domain, are





ϕ̂n
k
(ω) =

2−n/2

2π
eiωk/2

n
χ(ω/2n + 3π)

ψ̂n
k
(ω) =

2−n/2

2π
eiω(k+1/2)/2n

[
χ(ω/2n−1)+ χ(−ω/2n−1)

]
.

(4.18)
For the integer order derivatives of scaling and wavelet, according
to (4.17), it is

d̂ℓ

dxℓ
ϕnk (x) = (iω)ℓϕ̂nk (ω),

̂dℓ

dxℓ
ψn
k (x) = (iω)ℓψ̂n

k (ω) (4.19)

and, thanks to (4.18), we get





d̂ℓ

dxℓ
ϕnk(x) = (iω)ℓ

2−n/2

2π
eiωk/2

n
χ(ω/2n + 3π),

̂dℓ

dxℓ
ψn

k(x) = (iω)ℓ
2−n/2

2π
eiω(k+1/2)/2n

[
χ(ω/2n−1)

+χ(−ω/2n−1)
]
.

(4.20)
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The simple form of these derivative will help us to easily define
also the fractional derivatives of these functions. Moreover, as
we will see in the next section they form a basis for the L2(R)-
functions.

4.4. Wavelet Analysis and Synthesis
Both families of Shannon scaling and wavelet are L2(R)-
functions, therefore for each f (x) ∈ L2(R) and g(x) ∈ L2(R),
the inner product is defined as

〈
f , g

〉 def=
∫ ∞

−∞
f (x) g (x)dx , (4.21)

where the bar stands for the complex conjugate. By taking into
account the Parseval theorem

∫ ∞

−∞
f (x) g (x)dx = 2π

∫ ∞

−∞
f̂ (ω) ĝ (ω)dω,

it is

〈
f , g

〉 def=
∫ ∞

−∞
f (x) g (x)dx = 2π

∫ ∞

−∞
f̂ (ω) ĝ (ω)dω = 2π

〈
f̂ , ĝ

〉
,

(4.22)
Shannon wavelets fulfill the following orthogonality properties
(for the proof see e.g., [23, 24])

〈
ψn
k (x) ,ψ

m
h (x)

〉
= δnmδhk ,

〈
ϕ0k (x) ,ϕ

0
h (x)

〉
= δkh ,〈

ϕ0k (x) ,ψ
m
h (x)

〉
= 0, m ≥ 0 , (4.23)

δnm, δhk being the Kroenecker symbols.
Let B ⊂ L2(R) the set of functions f (x) in L2(R) such that the

integrals





αk
def= 〈f (x),ϕk(x)〉

(4.22)=
∫ ∞

−∞
f (x)ϕ0

k
(x)dx

βn
k

def= 〈f (x),ψn
k (x)〉

(4.22)=
∫ ∞

−∞
f (x)ψn

k
(x)dx ,

(4.24)

exist with finite values, then it can be shown [23, 24, 27, 44], that
the series

f (x) =
∞∑

h=−∞

αh ϕh(x)+
∞∑

n=0

∞∑

k=−∞

βnkψ
n
k (x) , (4.25)

converges to f (x). So that each function f (x) ∈ B ⊂ L2(R) can be
expressed as the wavelet series (4.25), and it is fully characterized
by the wavelet coefficient αh ,β

n
k
.

According to (4.22) the coefficients can be also computed in
the Fourier domain [24] so that, together with (4.24) we can

alternatively use the integrals





αk =
∫ π

−π
f̂ (ω)eiωkdω ,

βn
k
= 2−n/2

[∫ 2n+1π

2nπ
f̂ (ω)eiω(k+1/2)/2ndω

+
∫ −2nπ

−2n+1π

f̂ (ω)eiω(k+1/2)/2ndω

]
.

(4.26)

In the frequency domain, Equation (4.25) gives [24]

f̂ (ω) =
1

2π
χ(ω + 3π)

∞∑

h=−∞

αhe
iωh

+
1

2π
χ(ω/2n−1)

∞∑

n=0

∞∑

k=−∞

2−n/2βnk e
iω(k+1/2)/2n

+
1

2π
χ(−ω/2n−1)

∞∑

n=0

∞∑

k=−∞

2−n/2βnk e
iω(k+1/2)/2n .

When the upper bound for the series of (4.25), is finite, then we
have the approximation

f (x) ∼=
K∑

h=−K

αh ϕh(x)+
N∑

n=0

S∑

k=−S

βnkψ
n
k (x) . (4.27)

The error of the approximation has been estimated in Cattani
[24, 26].

5. CONNECTION COEFFICIENTS AND

DERIVATIVES

Let us assume that a function f (x) ∈ B, so that f (x) is a function
belonging to the Hilbert space based on Shannon wavelets and
thus being represented in the form of (4.25). In this section
we will give the explicit form of the n-order integer derivative
f (n)(x) and the sinc fractional order derivative DαS f (x). In order
to get these derivatives we need to compute the ℓ-th integer order
derivatives of the Shannon family (scaling and wavelet functions)
ϕh(x),ψ

n
k
(x) and the sinc-fractional derivative. The Equations

(4.20) already give us the expression of the ℓ-order derivative in
the Fourier domain. In the following sections we will give the
explict form of these derivatives also in the space domain.

5.1. Integer Order Derivatives of the

Shannon Wavelets
It can be shown that the integer order derivatives of the Shannon
family can be expressed as orthogonal wavelet series [23, 24, 26]
as follows:
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Definition 6. The integer n-order derivative of the Shannon
scaling and wavelet functions are





dℓ

dxℓ
ϕh(x) =

∞∑

k=−∞

λ
(ℓ)
hk
ϕk(x) ,

dℓ

dxℓ
ψm
h (x) =

∞∑

n=0

∞∑

k=−∞

γ (ℓ)mn
hk ψ

n
k (x) ,

(5.1)

being

λ
(ℓ)
kh

≡
〈
dℓ

dxℓ
ϕ0k (x) ,ϕ

0
h (x)

〉
, γ (ℓ)nm

kh ≡
〈
dℓ

dxℓ
ψn
k (x) ,ψ

m
h (x)

〉
,

(5.2)
the connection coefficients [21, 23, 45–50].

It should be noticed that the connection coefficients are not
symmetric. In fact it is

〈
dℓ

dxℓ
ϕ0k (x),ϕ

0
h(x)

〉
=

dℓ

dxℓ

〈
ϕ0k (x),ϕ

0
h(x)

〉
−

〈
ϕ0k (x),

dℓ

dxℓ
ϕ0h(x)

〉
,

and by taking into account (4.23), there follows that

λ
(ℓ)
kh

= −λ(ℓ)
hk

h 6= k

Analogously we have for the coefficients

γ (ℓ)nm
kh = −γ (ℓ)nm

hk

The connection coefficients can be easily computed so that it can
be shown [21, 23, 24]

Theorem 1. The connection coefficients (5.2)1 of the Shannon
scaling functions ϕk(x) are

λ
(ℓ)
kh

=





(−1)k−h+ℓ iℓ

2π

ℓ∑

s=1

ℓ!π s

s![i(k− h)]ℓ−s+1

[
(−1)s − 1

]
, k 6= h

iℓπℓ+1

2π(ℓ+ 1)

[
1+ (−1)ℓ

]
, k = h ,

(5.3)
when ℓ ≥ 1. When ℓ = 0, it is

λ
(0)
kh

= δkh .

For the proof see e.g., [23].
Analogously, by defining the sign-function µ(x) = sign(x), it

can be shown that

Theorem 2. The connection coefficients (5.2)2 of the Shannon
wavelets ψn

k
(x) are





γ (ℓ)nm
kh

= µ(h− k)δnm

{
ℓ+1∑

s=1

(−1)[1+µ(h−k)](2ℓ−s+1)/2 ℓ!iℓ−s πℓ−s

(ℓ− s+ 1)! |h− k|s
(−1)−s−2(h+k)2nℓ−s−1

×
{
2ℓ+1

[
(−1)4h+s + (−1)4k+ℓ

]
− 2s

[
(−1)3k+h+ℓ + (−1)3h+k+s

] }}
, k 6= h

γ (ℓ)nm
kh

= δnm

[
iℓ
πℓ2nℓ−1

ℓ+ 1
(2ℓ+1 − 1)(1+ (−1)ℓ)

]
, k = h

(5.4)

for ℓ ≥ 1, and

γ (0)nm
kh = δkhδ

nm (5.5)

ℓ = 0 respectively.

For the proof see [23].
As a consequence of Equations (5.3),(5.8) the ℓ-order

derivative of the basic functions (4.11) are





dℓ

dxℓ
ϕ(x) =

∞∑

k=−∞

λ
(ℓ)
0k
ϕk(x),

dℓ

dxℓ
ψ(x) =

∞∑

n=0

∞∑

k=−∞

γ (ℓ)0n
0hψ

n
h (x)

=
∞∑

h=−∞

γ (ℓ)00
0hψ

0
h (x),

(5.6)

with

λ
(ℓ)
0k

=





(−1)k+ℓ
iℓ

2π

ℓ∑

s=1

ℓ!π s

s!(ik)ℓ−s+1

[
(−1)s − 1

]
, k 6= 0

iℓπℓ+1

2π(ℓ+ 1)

[
1+ (−1)ℓ

]
, k = 0 ,

(5.7)
and



γ (ℓ)00
0h

= µ(h)

{
ℓ+1∑

s=1

(−1)[1+µ(h)](2ℓ−s+1)/2

× ℓ!iℓ−s πℓ−s

(ℓ−s+1)! |h|s (−1)−s−2h2−s−1 ×
{
2ℓ+1

[
(−1)4h+s

+(−1)ℓ
]
− 2s

[
(−1)h+ℓ + (−1)3h+s

] }}
, h 6= 0

γ (ℓ)00
0h

=

[
iℓ
πℓ2−1

ℓ+ 1
(2ℓ+1 − 1)(1+ (−1)ℓ)

]
, h = 0

(5.8)

In particular it is

λ(ℓ)
def= λ

(ℓ)
00 =

iℓπℓ+1

2π(ℓ+ 1)

[
1+ (−1)ℓ

]
(5.9)

It can be easily shown that λ(ℓ) = 0 for odd ℓ so that we have

λ(ℓ) =





(−1)s
π2s

2s+ 1
, ℓ = 2s

0 , ℓ = 2s+ 1
(s = 1, 2, . . .) (5.10)
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For instance according to (5.6), (5.7) a good approximation of the
2nd order derivative of ϕ(x) is

d2

dx2
ϕ(x) ∼=

2∑

k=−2

λ
(ℓ)
0k
ϕk(x) = −

1

2
ϕ−2(x)+ 2ϕ−1(x)−

1

3
π2ϕ(x)

+2ϕ1(x)−
1

2
ϕ2(x) .

Also for higher derivatives with high amplitude, the
approximation is quite good. For instance according to (5.6),
(5.7) for the 7-th derivative of ϕ(x) a quite good approximation
is obtained with 15 terms

dℓ

dxℓ
ϕ(x) ∼=

7∑

k=−7

λ
(ℓ)
0k
ϕk(x)

5.2. Properties of Connection Coefficients
The connection coefficients own many interesting properties like
e.g., the following for the scaling functions

Theorem 3. The connection coefficients (5.3) are defined
recursively by

λ
(ℓ+1)
kh

=





ℓ+ 1

k− h
λ
(ℓ)
kh

− (−1)k−h i
ℓπℓ+1

k− h
[(−1)ℓ + 1], k 6= h

iπ
ℓ+ 1

ℓ+ 2
λ
(ℓ)
kh

+
(−i)ℓ+1πℓ+1

ℓ+ 2
, k = h ,

(5.11)

Proof: see [26].
Analogously for the coefficients γ .

Theorem 4. The connection coefficients (5.8) are recursively given
by the matrix at the lowest scale level:

γ (ℓ)nn
kh = 2ℓ(n−1)γ (ℓ)11

kh . (5.12)

Proof : see [26].
Moreover we can easily check that

γ (2ℓ+1)nn
kh = −γ (2ℓ+1)nn

hk , γ (2ℓ)nn
kh = γ (2ℓ)nn

hk .

5.3. Taylor Series
By using the connection coefficients, and taking into account that
the basic functions, according to (5.1), are C∞-functions, it is easy
to show the following theorem:

Theorem 5. Let f (x) ∈ B ⊂ L2(R) the ℓ ≥ 1 order derivative is
given by

f (ℓ)(x) =
∞∑

h,k=−∞

αh λ
(ℓ)
hk
ϕk(x)+

∞∑

n,m=0

∞∑

k,s=−∞

βnk γ
(ℓ)mn

sk ψ
m
s (x)

(5.13)
where the coefficients αh, β

n
k
are given by (4.24) (or (4.26)) and the

connection coefficients are given by (5.3), (5.8).

Proof : The proof easily follows from Equations (4.25), (5.1).
2

Theorem 6. If f (x) ∈ Bψ ⊂ L2(R) and f (x) ∈ C
S the Taylor series

of f (x) in x0 is

f (x) = f (x0)+
∞∑

r=1




∞∑

h, k=−∞

αh λ
(r)
hk
ϕk(x0)

+
∞∑

n=0

∞∑

k, s=−∞

2r(n−1)βnk γ
(r)11

skψ
n
s (x0)


 (x− x0)

r

r!

(5.14)

being αh and β
n
k
given by (4.24), (4.26).

Proof: From (4.25), the ℓ-order derivative (ℓ ≤ S) is

f (ℓ)(x) =
∞∑

h=−∞

αh
dℓ

dxℓ
ϕh(x)+

∞∑

n=0

∞∑

k=−∞

βnk
dℓ

dxℓ
ψn
k (x) ,

(5.1)=
∞∑

h=−∞

αh

∞∑

k=−∞

λ
(ℓ)
hk
ϕk(x)+

∞∑

n=0

∞∑

k=−∞

βnk

∞∑

m=−∞
∞∑

s=−∞
γ (ℓ)mn

sk ψ
m
s (x) ,

=
∞∑

h, k=−∞

αh λ
(ℓ)
hk
ϕk(x)+

∞∑

n,m=0

∞∑

k, s=−∞

βnk γ
(ℓ)mn

sk ψ
m
s (x) ,

so that by taking into account (5.12) the proof follows.
2

By a suitable choice of the initial point x0 Equation (5.14) can
be simplified. For instance, at the integers, x0 = j, (j ∈ Z),
according to Equations (4.12), (5.12) it is

f (x) ∼= f (j)+
S∑

r=1




∞∑

h=−∞

αh λ
(r)
hj

+
∞∑

n=0

∞∑

k,s=−∞

2r(n−1)+1+n/2

(2n+1h− 2s− 1)π
βnk γ

(r)11
skψ

n
s (h)


 (x− j)r

r!

In particular, for x0 = j = 0, Equation (5.14) gives

f (x) = f (0)+
∞∑

r=1




∞∑

h,k=−∞

αh λ
(r)
hk
ϕk(0)+

∞∑

n=0

∞∑

k, s=−∞

2r(n−1)βnk γ
(r)11

skψ
n
s (0)


 xr

r!

= f (0)+
∞∑

r=1




∞∑

h=−∞

αh λ
(r)
h0

+
∞∑

n=0

∞∑

k, s=−∞

2r(n−1)βnk γ
(r)11

skψ
n
s (0)


 xr

r!

(5.15)
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and since

ψn
s (0) = (−1)s

21+n/2

(−2s− 1)π
, (−2k− 1 6= 0)

we get

f (x) = f (0)+
∞∑

r=1

[ ∞∑

h=−∞

αh λ
(r)
h0

+
∞∑

n=0

∞∑

k,s=−∞
(−1)s+12n(r+1/2)+1−r

(2s+ 1)π
βn
k
γ (r)11

sk

]
xr

r!

(5.16)

with λ
(r)
h0

given by (5.7) and γ (r)11
sk

by (5.8) respectively. So that
each function f (x) ∈ B ⊂ L2(R), can be easily expressed as a
power series, when the finite values of the wavelet coefficients αh,
βn
k
are given, according to (4.24),(4.26).
There follows, in particular, the Taylor power series for the

basic functions ϕ(x), ψ(x):





ϕ(x) = 1+
∞∑

r=1




∞∑

h=−∞

λ
(r)
h0


 xr

r!

ψ(x) = −
2

π
+

∞∑

r=1




∞∑

n=0

∞∑

k,s=−∞

(−1)s+12n(r+1/2)+1−r

(2s+ 1)π
δnkγ

(r)11
sk


 xr

r!

(5.17)

being ψ(0) = −
2

π
, according to (4.1).

For a fixed r the series

3r def=
∞∑

h=−∞

λ
(r)
h0
, r ≥ 1, h 6== 0

is converging, as can be easily shown by using Equation (5.7). In
particular it is

λ
(1)
h0

= −
(−1)h

h
, λ

(2)
h0

= −2
(−1)h

h2
, λ

(3)
h0

= (−1)h
(
π2

h
−

6

h3

)
,

λ
(4)
h0

= (−1)h
(
4π2

h2
−

24

h4

)
, λ

(5)
h0

= (−1)h
(
π4

h
−

20π2

h3
+

120

h5

)

λ
(6)
h0

= −(−1)h
(
6π4

h2
−

120π2

h4
+

720

h6

)
, . . .

Moreover, since for odd r it is3(r) = 0 while for even r it is

32r = 2

∞∑

h=0

λ
(r)
h0
, r ≥ 1, h 6== 0

so that ϕ(x) can be written as the power series

ϕ(x) =
∞∑

r=0

3r

r!
xr , (30 def= 1)

The first (approximated) values of the coefficients3 are:

30 = 1, ,31 = 0.69, ,32 = 1.64, ,33 = −1.43, ,

34 = −9.74, ,35 = 6.19

In particular, the Taylor series for the wavelet function ψ(x) can
be also easily computed as follows:

ψ(x) = ψ(0)+
∞∑

ℓ=1

(
dℓψ(x)

dxℓ

)

x=0

xℓ

ℓ!

(5.1),(5.6)= −
2

π
+

∞∑

ℓ=1




∞∑

k=−∞

γ (ℓ)00
0kψ

0
k (0)


 xℓ

ℓ!

(4.13)= −
2

π
+

∞∑

ℓ=1




∞∑

k=−∞

γ (ℓ)00
0k(−1)k+1 2

(2k+ 1)π


 xℓ

ℓ!

that is

ψ(x) = −
2

π
+

∞∑

ℓ=1




∞∑

k=−∞

(−1)k+1 2

(2k+ 1)π
γ (ℓ)00

0k


 xℓ

ℓ!

(5.18)

6. SINC-FRACTIONAL DERIVATIVES FOR

THE FUNCTIONS F(X) ∈ B ⊂ L2(R)

The sinc fractional derivative (3.10) is defined by a sinc kernel
over an infinite domain. Although the sinc-function is the basic
function for Shannon wavelet, this kernel is not a Shannon
scaling function for the reason that the sinc function depends
on the fractional (non-integer) order of derivative. On the other
hand as shown by the Equation (5.13) the n-integer order
derivative can be written as a linear combination of ϕk(x), ψ

m
k
(x).

Therefore, in order to give an explicit form to (3.10) as a function
of Shannon wavelet and connection coefficients, we need to
compute the scalar products of Shannon scaling and wavelet with
sinc-function.

6.1. Scalar Products of the Shannon

Scaling and Wavelet Functions With

Sinc-Function
In this section we consider the scalar product of the sinc
function with the Shannon scaling and wavelet functions and
corresponding derivatives. We need these products to compute
the sinc fractional derivatives.

6.1.1. Scalar Product of the Shannon Scaling

Function With Sinc-Function
Let us assume a, b ∈ R and show the following theorem:

Theorem 7. The scalar product ot the scaling functions ϕk(τ )with
the sinc-function is

〈sinc (aτ − b),ϕk(τ )〉 =





2π

a
sinc (b+ k), a ≥ 1

2π

a2
sinc

(b+ k)

a
, a < 1 .

(6.1)
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Proof: It is by definition

〈sinc (aτ − b),ϕk(τ )〉 =
∫ ∞

−∞
sinc (aτ − b)ϕk(τ )dτ .

According to (4.22) this product can be easily done in the Fourier
domain,

〈sinc (aτ − b),ϕk(τ )〉 = 2π〈 ̂sinc (aτ − b), ϕ̂k(τ )〉

from where by using the properties (4.17) it is

̂sinc (aτ − b) =
1

a
ŝinc (

ω

a
)e−ibω , ŝinc (

ω

a
)
(4.16)=

1

2π
χ(
ω

a
+ 3π)

so that by taking into account (4.18)1

〈sinc (aτ − b),ϕk(τ )〉 = 2π
1

a

1

2π
〈e−ibωχ(

ω

a
+ 3π), e−ikωχ(ω + 3π)〉 .

The integral can be easily computed, being

〈e−ibωχ(
ω

a
+ 3π), e−ikωχ(ω + 3π)〉

=
∫ ∞

−∞
e−i(b+k)ωχ(

ω

a
+ 3π)χ(ω + 3π)dω〉 .

There follows that, if
1

a
≤ 1 it is

∫ ∞

−∞
e−i(b+k)ωχ(

ω

a
+ 3π)χ(ω + 3π)dω =

∫ ∞

−∞
e−i(b+k)ωχ(ω + 3π)dω

=
∫ π

−π
e−i(b+k)ωdω = 2πsinc (b+ k) .

While for
1

a
> 1 it is

∫ ∞

−∞
e−i(b+k)ωχ(

ω

a
+ 3π)χ(ω + 3π)dω =

∫ ∞

−∞
e−i(b+k)ωχ(

ω

a
+ 3π)dω

=
∫ π

a

− π
a

e−i(b+k)ωdω =
2π

a
sinc

(b+ k)

a
.

From where there easily follows the result (6.1).
2

In particular, according to (4.17), it is

̂
sinc

α(x− τ )
1− α

=
̂

sinc
α

α − 1
(τ − x)

(4.17)= e−i α
α−1 xω

̂
sinc

(
α

α − 1
τ

)

that is

̂
sinc

α(x− τ )
1− α

=
α − 1

α
e−i α

α−1 xω ŝinc

(
α − 1

α
ω

)
.

Since we have

̂sinc (τ )
(4.16)=

1

2π
χ(ω + 3π)

there follows

̂
sinc

α(x− τ )
1− α

=
1

2π

α − 1

α
e−i α

α−1 xωχ

(
α − 1

α
ω + 3π

)

so that, by taking

a =
α

α − 1
, b =

α

α − 1
x

from (6.1) we get

〈
sinc

(
α

α − 1
τ −

α

α − 1
x

)
,ϕk(τ )

〉

=





2π(α − 1)

α
sinc

(
α

α − 1
x+ k

)
, α ≥ 1

2π(α − 1)2

α2
sinc

(
x+ k

α − 1

α

)
, α < 1 .

(6.2)

Analogously we can give an explicit form to the scalar product of
the integer n-order derivative.

Theorem 8. The scalar product of the n-th order derivative

ϕ
(n)
k

(τ ) with the sinc-function is

〈sinc (aτ − b),ϕ
(n)
k

(τ )〉 =





∫ π

−π
(iω)ne−i(b+k)ωdω, a ≥ 1

∫ π
a

− π
a

(iω)ne−i(b+k)ωdω, a < 1

(6.3)

Proof: It is

〈sinc (aτ − b),ϕ
(n)
k

(τ )〉 =
∫ ∞

−∞
sinc (aτ − b)ϕ

(n)
k

(τ )dτ .

According to (4.22) this product can be easily done in the Fourier
domain,

〈sinc (aτ − b),ϕ
(n)
k

(τ )〉 = 2π〈 ̂sinc (aτ − b),
̂
ϕ
(n)
k

(τ )〉

from where by using the properties (4.17) it is

̂sinc (aτ − b) =
1

2πa
e−ibωχ(

ω

a
+ 3π) ,

̂
ϕ
(n)
k

(τ ) = (iω)nϕ̂k(τ ) = (iω)ne−ikωχ(ω + 3π)

so that by taking into account (4.18)1

〈sinc (aτ − b),ϕ
(n)
k

(τ )〉

= 2π
1

a

1

2π
〈e−ibωχ(

ω

a
+ 3π), (iω)ne−ikωχ(ω + 3π)〉 .

The integral can be easily computed, being

〈e−ibωχ(
ω

a
+ 3π), e−ikωχ(ω + 3π)〉
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=
∫ ∞

−∞
(iω)ne−i(b+k)ωχ(

ω

a
+ 3π)χ(ω + 3π)dω〉 .

There follows that, if
1

a
≤ 1 it is

∫ ∞

−∞
(iω)ne−i(b+k)ωχ(

ω

a
+ 3π)χ(ω + 3π)dω

=
∫ ∞

−∞
(iω)ne−i(b+k)ωχ(ω + 3π)dω

=
∫ π

−π
(iω)ne−i(b+k)ωdω .

While for
1

a
> 1 it is

∫ ∞

−∞
(iω)ne−i(b+k)ωχ(

ω

a
+ 3π)χ(ω + 3π)dω

=
∫ ∞

−∞
(iω)ne−i(b+k)ωχ(

ω

a
+ 3π)dω

=
∫ π

a

− π
a

(iω)ne−i(b+k)ωdω .

From where there easily follows the result (6.1).
2

In particular, for the first derivative it is

∫ π

−π
(iω)e−i(b+k)ωdω =

2π

b+ k

[
sinc (b+ k)− cos(b+ k)π

]

and

∫ π
a

− π
a

(iω)ne−i(b+k)ωdω =
2π

a(b+ k)

[
sinc

b+ k

a
− a cos

b+ k

a
π

]

so that

〈sinc (aτ − b),ϕ′k(τ )〉

=





2π

b+ k

[
sinc (b+ k)− cos(b+ k)π

]
, a ≥ 1

2π

a(b+ k)

[
sinc

b+ k

a
− a cos

b+ k

a
π

]
, a < 1 .

(6.4)

In general the scalar product of the n-order derivative (with n >
1) is given by the lengthly computation of the integrals (6.3). In
the next section we will see that this computation can be avoided
by using the connection coefficients.

6.1.2. Scalar Product of the Shannon Wavelets With

Sinc Function
Analogously, for the derivative of the wavelet function it can be
easily shown that

Theorem 9. Let a, b ∈ R, the scalar product ot the wavelet
functions ψn

k
(τ ) with the sinc-function is

〈sinc (aτ − b),ψn
k (τ )〉 = Ŵn

k (τ , a, b)
def=

2n/2+1

aπ(2n+1b− 2k− 1)
×

×





0 , a < 1

sin

(
1

2
a(2b− 2−n(1+ 2k))

)
π + cos(−2nb+ k)π , 2n < a < 2n+1

sin
(
−2n+1b+ 2k

)
π + cos(−2nb+ k)π , 2n+1 ≥ a .

(6.5)

Proof: It is

〈sinc (aτ − b),ψn
k (τ )〉 =

∫ ∞

−∞
sinc (aτ − b)ψn

k (τ )dτ .

According to (4.22) this product can be easily done in the Fourier
domain,

〈sinc (aτ − b),ψn
k (τ )〉 = 2π〈 ̂sinc (aτ − b), ψ̂n

k
〉

from where by using the properties (4.17), it is

̂sinc (aτ − b) =
1

a

1

2π
χ(
ω

a
+ 3π)e−ibω

so that by taking into account (4.18)2

〈sinc (aτ − b),ψn
k (τ )〉 =

2−n/2

2aπ

〈
e−ibωχ(

ω

a
+ 3π), eiω(k+1/2)/2n

[
χ(ω/2n−1)+ χ(−ω/2n−1)

]〉

that is

〈sinc (aτ − b),ψn
k (τ )〉 =

2−n/2

2aπ

〈
eiω(k+1/2−2nb)/2nχ(

ω

a
+ 3π),

[
χ(ω/2n−1)+ χ(−ω/2n−1)

]〉
.

Let us notice that the value of the scalar product (and then
of the integral) depends on the non-vanishing values of the
characteristic function. On the other hands the characteristic
function χ depends on the values a, n , k. In fact the non-
vanishing values of the characteristic functions are

χ(
ω

a
+ 3π) = 1, if −aπ < ω < aπ

χ(ω/2n−1) = 1, if 2nπ < ω < 2n(2π)

χ(−ω/2n−1) = 1, if −2n(2π) < ω < −2nπ .

There follow three cases:

1. aπ < π . In this case a < 1, the characteristic functions have
some disjoint intervals and the scalar product vanishes

〈
eiω(k+1/2−2nb)/2nχ(

ω

a
+ 3π),

[
χ(ω/2n−1)+ χ(−ω/2n−1)

]〉
= 0 .
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2. 2nπ < aπ < 2n(2π). Here we have 2n < a < 2n+1 the
integral becomes

〈
eiω(k+1/2−2nb)/2nχ(

ω

a
+ 3π),

[
χ(ω/2n−1)+ χ(−ω/2n−1)

]〉
=

=
∫ −2nπ

−aπ
eiω(k+1/2−2nb)/2ndω +

∫ aπ

2nπ
eiω(k+1/2−2nb)/2ndω

=
2n+2

2n+1b− 2k− 1

[
sin

(
1

2
a(2b− 2−n(1+ 2k))

)
π + cos(−2nb+ k)π

]
.

3. 2n(2π) ≤ aπ . We have 2n+1 ≤ a so that the integral is

〈
eiω(k+1/2−2nb)/2nχ(

ω

a
+ 3π),

[
χ(ω/2n−1)+ χ(−ω/2n−1)

]〉
=

=
∫ −2nπ

−2n+1π

eiω(k+1/2−2nb)/2ndω +
∫ 2n+1π

2nπ
eiω(k+1/2−2nb)/2ndω

=
2n+2

2n+1b− 2k− 1

[
sin

(
−2n+1b+ 2k

)
π + cos(−2nb+ k)π

]
.

From where we obtain (6.5). 2

6.2. Sinc-Fractional Derivative of Functions

f(x) ∈ B ⊂ L2(R)
In order to define the sinc-fractional derivative for the functions
f (x) ∈ B, according to the reconstruction formula (4.25) we
need to compute the sinc-fractional derivative of the scaling and
wavelet functions. These derivatives are given by the following
theorems.

Theorem 10. The sinc-fractional derivative (3.10) of the scaling
function ϕk(x) is

DαSϕh(x) = −2πP(α)

∞∑

k=−∞

λ
(n)
hk

×





sinc

(
α

α − 1
x+ k

)
, α ≥ 1

α − 1

α
sinc

(
x+

α

1− α
k

)
, α < 1

(6.6)

Proof : Starting from the definition (3.10) of the sinc-derivative
it is

DαSϕh(x)
(3.10)=

αP(α)

1− α

∫ ∞

−∞
sinc

α(x− τ )
1− α

dn

dτn
ϕh(τ )dτ , (6.7)

According to (4.22), the derivatives (6.7), can be written also as
scalar product,

DαSϕh(x) =
αP(α)

1− α

〈
sinc

α(x− τ )
1− α

,
dn

dτn
ϕh(τ )

〉
, (6.8)

From here by using the integer order derivatives (5.1) we

DαSϕh(x) =
αP(α)

1− α

∞∑

k=−∞

λ
(n)
hk

〈
sinc

α(x− τ )
1− α

, ϕk(τ )

〉
, (6.9)

So that the computation of the sinc-fractional derivative of a
function, that can be expressed as wavelet series, is reduced to
the computation of the scalar product:

〈
sinc

α(x− τ )
1− α

, ϕk(τ )

〉
, 0 ≤ n− 1 < α < n (6.10)

which is given by (6.1) with

a =
α

α − 1
, b =

α

α − 1
x .

It can be easily seen that these inequalities imply

a ≥ 1 H⇒ α ≥ 1, a < 1 H⇒ α < 1 .

From these inequalities, by taking into account (6.1),(6.9), there
easily follows (6.6).

2

Analogously, we have for the Shannon wavelet fractional
derivatives the following

Theorem 11. The sinc-fractional derivative (3.10) of the Shannon
wavelets ψm

h
(x) is

DαSψ
m
h (x) =

αP(α)

1− α

∞∑

s=0
∞∑

k=−∞

γ (n)ms
hk

2s/2+1(α − 1)

απ(2s+1 α
α−1 − 2k− 1)

×

×





0, a < 1

sin

(
1

2

α

α − 1
(2

α

α − 1
x− 2−s(1+ 2k))

)
π

+ cos(−2s α
α−1x+ k)π , 2s < a < 2s+1

sin
(
−2s+1b+ 2k

)
π + cos(−2sb+ k)π , 2s+1 ≥ a

(6.11)

Proof : From the definition (3.10) it is

DαSψ
m
h (x)

(3.10)=
αP(α)

1− α

∫ ∞

−∞
sinc

α(x− τ )
1− α

dn

dτn
ψm
h (τ )dτ , (6.12)

According to (4.22), this derivative can be written also as scalar
product,

DαSψ
m
h (x) =

αP(α)

1− α

〈
sinc

α(x− τ )
1− α

,
dn

dτn
ψm
h (τ )

〉
, (6.13)

so that by taking into account (5.1) which gives the integer order
derivatives it is

DαSψ
m
h (x) =

αP(α)

1− α

∞∑

s=0

∞∑

k=−∞

γ (n)ms
hk

〈
sinc

α(x− τ )
1− α

, ψ s
k(τ )

〉
, (6.14)

and using (6.5) we get (6.11).
2
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Equations (6.6) and (6.11) enable us to compute explicitly the
sinc-fractional derivative of any function belonging to the Hilbert
space B ⊂ L2(R). In fact, let f (x) ∈ B a function such that it
can be represented as the wavelet series (4.25). Its sinc-fractional
derivative can be computed according to

Theorem 12. The sinc-fractional derivative of the wavelet
representation (4.25) of function f (x) ∈ B ⊂ L2(R), is given by

DνS f (x) = −2πP(ν)

∞∑

h=−∞

αh

∞∑

k=−∞

λ
(n)
hk

×





sinc

(
ν

ν − 1
x+ k

)
, ν ≥ 1

ν − 1

ν
sinc

(
x+

ν

1− ν
k

)
, ν < 1

+
νP(ν)

1− ν

∞∑

m=0

∞∑

k=−∞

βmh

∞∑

s=0
∞∑

k=−∞

γ (n)ms
hk

2s/2+1(ν − 1)

νπ(2s+1 ν
ν−1 − 2k− 1)

×

×





0 , ν < 1

sin

(
1

2

ν

ν − 1
(2

ν

ν − 1
x− 2−s(1+ 2k))

)
π

+ cos(−2s
ν

ν − 1
x+ k)π , 2s < ν < 2s+1

sin

(
−2s+1 ν

ν − 1
x

+2k

)
π + cos(−2s ν

ν−1x+ k)π , 2s+1 ≥ ν

(6.15)

with 0 ≤ n− 1 < ν < n.

Proof : Let us start from Equation (3.10), and the
representation (4.25), because of the linearity of the operator we
have

DνS f (x) =
∞∑

h=−∞

αh D
ν
Sϕh(x)+

∞∑

m=0

∞∑

k=−∞

βmh DνSψ
m
h (x)

where the wavelet coefficients αh, β
m
h

are given by (4.24) [or
(4.26)]. From here, by using (6.6) and (6.11), we get (6.15).

2

In particular, with n = 1 we have

Theorem 13. The sinc-fractional derivative of the wavelet
representation (4.25) of function f (x) ∈ B ⊂ L2(R), with order
0 < ν < 1, is

DνS f (x) = 2πP(ν)
1− ν
ν

∞∑

h=−∞

αh

∞∑

k=−∞

λ
(1)
hk
sinc

(
x+

ν

1− ν
k

)
,

0 < ν < 1

(6.16)

Proof : Follows directly from Equation (6.15).

6.3. Example: Fractional Derivative of the

Gaussian Function
In order to show the efficiency of the proposed method for
the computation of a fractional derivative, let us consider the

function e−x2 . A good approximation of this function, in terms
of Shannon wavelet expansion (4.25), can be obtained as

e−x2 ∼=
1∑

h=−1

αhϕh(x)+
0∑

n=0

1∑

h=−1

βnhψ
n
h (x)

∼= α−1ϕ−1(x)+ α0ϕ(x)+ α1ϕ1(x)+

+ β0−1ψ
0
−1(x)+ β

0
0ψ

0
0 (x)+ β

0
1ψ

0
1 (x)

where

α−1 = α1 = 0.123, α0 = 0.30, ψ0
−1 = ψ0

1 = 0.004, ψ0
0 = 0.001 .

If we neglect also the detailed coefficients βn
k
the approximate

Shannon wavelet representation is

e−x2 ∼= 0.123 ϕ−1(x)+ 0.30 ϕ(x)+ 0.123 ϕ1(x) .

From (6.16) we have

DνSe
−x2 ∼= 2πP(ν)

1− ν
ν

1∑

h=−1

αh

1∑

k=−1

λ
(1)
hk
sinc

(
x+

ν

1− ν
k

)
,

0 < ν < 1 .

The matrix λ
(1)
hk
, according to (5.3) is

λ
(1)
−1−1 = λ

(1)
00 = λ

(1)
11 = 0 , λ

(1)
0−1 = −λ(1)−10 = λ

(1)
10 = −λ(1)01 = 1 ,

λ
(1)
−11 = −λ(1)1−1 =

1

2

so that by simplifying we get

DνSe
−x2 ∼= 2πP(ν)

1− ν
ν

(α0 −
1

2
α1)

[
sinc

(
x−

ν

1− ν

)

−sinc

(
x+

ν

1− ν

)]
, 0 < ν < 1

that is

DνSe
−x2 ∼= 0.47πP(ν)

1− ν
ν

[
sinc

(
x−

ν

1− ν

)

−sinc

(
x+

ν

1− ν

)]
, 0 < ν < 1 .

CONCLUSION

Sinc function is playing a fundamental role in mathematics and
physics. Due to the many properties of this function it deserves a
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special role in applications. In recent years some Authors have
proposed [20] a fractional derivative based on this function.
Moreover a wavelet theory based on the sinc function has been
settled thus extending themany features of the Sinc. In this paper
the sinc-fractional derivative has been extended to the Shannon
wavelet space, in order to give the explicit analytical form of the
fractional derivatives of functions belonging to the wavelet space.
It has been shown that the sinc-fractional derivative is the most

natural and suitable choice of fractional operator when dealing
with functions that can be represented as Shannon wavelet
series.
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