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Groenewold-Van Hove theorem suggest that is not always possible to transform

classical observables into quantum observables (a process known as quantization) in

a way that, for all Hamiltonians, the constants of motion are preserved. The latter is a

strong shortcoming for the ultimate goal of quantization, as one would expect that the

notion of “constants of motion” is independent of the chosen physical scheme. It has

been recently developed an approach to quantization that instead of mapping every

classical observable into a quantum observable, it focuses on mapping the constants

of motion themselves. In this article we will discuss the relations between classical and

quantum theory under the light of this new form of quantization. In particular, we will

examine the mapping of a class of operators that generalizes angular momentum where

quantization satisfies the usual desirable properties.
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1. INTRODUCTION

One of the deepest problems in the description of microscopic systems is the relation between
their classical and quantum descriptions. Although there is no doubt in that quantum and classical
descriptions perform well in their own scales of application, one would expect that a smooth
transition between these two descriptions, at least at a theoretical level, is possible. However, it
is well-known that this is not a trivial matter [1]. An area known as quantization has been intensely
developed to understand such transition [2, 3]. Quantization is thus a process that converts the
mathematical description of a classical physical system into a description of a quantum system
which resembles the classical system at a structural level. The aim of quantization goes beyond pure
description of the transition between classical and quantum. Indeed, the process of quantization is
not only the fundamental method used to develop important theories in physics such as particle
and nuclear physics, quantum optics, among others [4], but also it is of fundamental importance in
the philosophy of physics [5] .

Formally, a (canonical) quantization of a Poisson algebra P on a Hilbert space H is a family of
linear and injective mapsOpP

h̄
that associate to certain elements of P selfadjoint operators onH in

a way that the quantum objects associated with the quantum observables (operators) correspond
to the classical objects that represent the initial classical observable (elements of P) in the limit
h̄ → 0. Weyl Calculus, which we shall denote by Oph̄, is the main example of a quantization. It

quantizes the canonical phase space T∗
R
n = R

2n. So in this case, P = C∞(R2n) andH = L2(Rn).
Weyl quantization was constructed so it additionally satisfies the identities Oph̄(xj) = Qj and
Oph̄(ξj) = Pj, where xj, ξj are the position and momentum coordinates respectively, and Qj, Pj are
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position and momentum operators respectively. Moreover,
it settles their ordering by imposing selfadjointness of the
operators corresponding to real valued functions on phase
space (Weyl Calculus is the only Shubin’s τ -quantization
satisfying that property). We must mention though, that there
are various other frameworks developed to do quantization,
such as strict deformation quantization [6], formal deformation
quantization [7–9], or geometric quantization [3, 10]. In this
article we are not going to consider them.

When Weyl ideas about quantization were first introduced, it
was expected that quantization should hold the additional
property of intertwining the Poisson bracket with the
commutator, that is

OpPh̄ ({f , g}) =
1

h̄
[OpPh̄ (f ),OpPh̄ (g)];

we call the latter a Dirac quantization. There is a famous result in
the theory of quantization, first shown by Groenewold and later
by van Howe, proving that there is no Dirac quantization for the
canonical phase space satisfying the conditionOpP

h̄
(xj) = Qj and

OpP
h̄
(ξj) = Pj; this result is known as Groenewold-van Howe

no-go theorem (see [1, 11] or [12]). Although one would expect
that Groenewold-van Howe no-go theorem is a unsurmountable
problem for the theory of quantization, the existence of Dirac
quantization would actually imply that, at least heuristically,
classical mechanics is enough to describe quantum mechanics,
and this would contradict fundamental results in quantum theory
such as the Bell inequalities [13]. Along the latter line, it was
shown that Weyl Calculus under general conditions satisfies that

Oph̄({f , g})−
1

h̄
[Oph̄(f ),Oph̄(g)] = O(h̄).

This is an example of a semiclassical result.
For general phase spaces, the problem of finding a

quantization is in general quite difficult. However, for the
purposes of this article, we only need to consider the case when
the phase space is the cotangent bundle of some Riemannian
manifold M. In the latter case, different solutions can be found
in the literature; we are going to work with the solution given
by N. Landsman in his book [2], which satisfies many interesting
properties. For instance, Landsman solution is equivalent toWeyl
Calculus whenM = R

n.
In particular, we will focus on the relation between classical

and quantum constants of motion (COM) in the quantization
process. A constant of motion of a classical physical system is
a quantity that is preserved during the system’s evolution [14].
Although some COM correspond to intuitive properties of the
system (e.g. energy), in many cases the COM of a system are
not trivial [15]. A quantity f of a classical physical system with
a Hamiltonian h0 is a COM if and only if {f , h0} = 0, where {·, ·}
denotes the Poisson bracket. In order to establish the analogous
definition of a COM for a quantum system, one considers a
Hamiltonian H0 and an observable F, and define F to be a COM
if and only if [H0, F] = 0, where [·, ·] is the quantum counterpart
of the Poisson operator, known as commutator.

Groenwold-van Howe no-go theorem suggests that in general
Weyl calculus does not preserves constants of motion for every
h0. Indeed, we can only conclude that

{f , h0} = 0 ⇒ [Oph̄(f ),H0] = O(h̄2). (1)

Considering the analogies between the mathematical
descriptions of classical and quantum COM, it seems natural
that there should be a quantization process that preserves COM.
In Belmonte [16], a solution for this problem was given. We
shall recall its construction in section 2. We call this novel
quantization a decomposable Weyl Calculus and we denote
it by Opd

h̄
. Intuitively, one should think that the difference

between the new (decomposable) and traditional Weyl calculus
is that, instead of mapping position-momentum coordinates into
position-momentum operators, decomposable Weyl Calculus
satisfies a new constraint: mapping classical COM into quantum
COM.

It is important to note that in some cases the right hand of (1)
might be zero, in other words, it can happen that Weyl Calculus
does preserve COM for some Hamiltonian h0. The following
theorem, proved in Belmonte [16], provides interesting examples
when the equality holds.

THEOREM 1. Weyl calculus preserves constants of motion when
h0 is a function of the free Hamiltonian composed with a linear
canonical transformation.

More precisely, if {h0, f } = 0 then [H0,Oph̄(f )] = 0, whenever

h0 = ϕ ◦ h̃0 ◦ S, where h̃0(x, ξ ) = ||ξ ||2, ϕ is a smooth regular
function on (0,∞), and S is a linear canonical transformation (i.e.
a linear symplectomorphism). This result can be proved as well if
we replace h0 for the classical harmonic oscillator Hamiltonian,
but we will not consider that case here.

As we will explain in section 2, every quantum COM admits
a decomposition through the spectral diagonalization of H0. In
other words, if [H0,Oph̄(f )] = 0, there is a field of operators
{sp(H) ∋ λ → [Oph̄(f )]λ} that decomposes Oph̄(f ). The latter
motivates our work from the operator theory perspective, as it is
important to compute explicitly [Oph̄(f )]λ.

The construction of the decomposable Weyl calculus,
essentially, conjectures that [Oph̄(f )]λ = Opλ

h̄
(fλ), where fλ is

the decomposition of f in the reduced phase space at λ, and Opλ
h̄

is a quantization for that space. This conjecture is equivalent to
identity Oph̄(f ) = Opd

h̄
(f ); if this holds true we say that we have

commutation of quantization and reduction on f , CQR for short.
An important COM in physics is angular momentum.

Angular momentum is a constant of motion in any system where
no external torque is acting. The conservation of momentum has
been proven to correspond the rotational invariance by Noether’s
theorem [14]. In Belmonte [16], it was shown that every function
on angular momenta is a constant of motion for h0(x, ξ ) =
||x||2 or h0(x, ξ ) = ||ξ ||2. Among those COM, an important
role is played by the angular momenta coordinates themselves,
i.e. the functions given by lij(x, ξ ) = xjξi − xiξj. In particular,
we have CQR on each lij. Thus, after quantizing, we obtain the
operators Lij = ih̄(xj∂i−xi∂j). Another important quantumCOM
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is the operator L2 : =
∑

i<j L
2
ij. Even though the importance

in quantum mechanics of L2 is well known, the relation via
quantization, of L2 as a COM, with its classical counterpart has
not been clarified. In this article we will study such relation, and
thus our analysis adds up a novel example of CQR (using the
well known quantum decomposition of L2) to the already known
cases [16]. Interestingly, the technique used to prove the main
result (theorem 4) suggests that we should expect that we can
obtain CQR for a broad class of COM.

It is well known that the spectral analysis of L2 is based on
the fact that we can restrict such analysis to one sphere, instead
of working with the whole R

n. The latter happens because the
operators acting on each sphere obtained after decomposing L2

through the diagonalization of −1 are all unitarily equivalent.
Wewill show that exactly the same can be done if we replace L2 by
any operator of the form Oph̄(f ), where f is a COM on which we

have CQR and satisfying the additional condition f (tx, t−1ξ ) =
f (x, ξ ), for any t > 0. In particular, this result applies to any
function of angular momenta on which we have CQR. The
additional condition seems artificial, but we will explain later why
it emerges naturally.

This last result is an application of the decomposable Weyl
calculus that provides an advantage over traditional Weyl
calculus as one is able to calculate, even when CQR is not
possible, the spectrum of the quantized operator directly from the
quantization process.

The paper is organized as follows. In section 2 we will
review the mathematical structure of COM in classical and
quantum physics and introduce the decomposableWeyl calculus.
In section 3 we provide examples of the decomposable Weyl
calculus considering the free Hamiltonian and various functions
of angularmomenta. In section 4, we develop the spectral analysis
of Opd

h̄
for the class of COM f that satisfy f (tx, t−1ξ ) = f (x, ξ ).

We conclude with a discussion of our results and future lines of
work in section 5.

2. QUANTIZING THE CONSTANTS OF

MOTION

2.1. Classical Constants of Motion
In classical mechanics the phase space is described by a
symplectic manifold 62n (in our case 6 = T∗

R
n = R

2n),
and observables are smooth functions in it. Denote by {·, ·} the
corresponding Poisson bracket on C∞(6). Fix a Hamiltonian
h0 ∈ C∞(6) and denote by 8 its flow. Then, for each regular
λ ∈ h0(6), the energy level submanifold 6̂λ : = h−1

0 (λ) ⊆ 6

is invariant under 8t . It turns out that the orbits space 6λ : =
6̂λ/8 forms a symplectic manifold of dimension 2n− 2 (this is a
particular case of Marsden-Weinstein reduction or of the Jacobi-
Liouville theorem, see [17]). We denote by πλ : 6̂λ → 6λ the
canonical quotient map.

For example, in the case h0(x, ξ ) = ||ξ ||2, it is easy to check
that 8t(x, ξ ) = (x − 2tξ , ξ ) and cleary 6̂λ = R

n × S
n−1√
λ
.

Moreover, 6λ = T∗
S
n−1√
λ

and the quotient map is given by

πλ(x, ξ ) = (ξ , x − 〈x,ξ〉
λ
ξ ), where we are identifying T∗

ξ S
n−1√
λ

with

the plane tangent to ξ (literally). See Belmonte [16] for the proof
of the last claim.

A classical observable f ∈ C∞(6) is a constant of motion if
{f , h0} = 0. Leibniz’s rule and Jacobi identity show that the set A
of all constants of motion form a Poisson subalgebra of C∞(6).
It is easy to show that f ∈ A if and only if f ◦ 8t = f , for each
t ∈ R. Thus, for each f ∈ A, we can consider the field of functions
fλ ∈ C∞(6λ) given by

fλ(πλ(σ )) = f (σ ),

where σ ∈ 6̂λ. In particular, we can consider the flow8λt [f ] of fλ
in 6λ. It is not difficult to show that 8λt [f ] ◦ πλ = πλ ◦ 8t[f ],
where 8t[f ] is the flow of f in 6. This is a particular case of
theorem 4.3.5 in [17]. For example, h itself is a constant of motion
and we have

hλ ≡ λ (2)

and

8λt [h] = Id.

2.2. Quantum Constants of Motion
In quantummechanics the phase space is the projective space PH
of a Hilbert space H (in our case H = L2(Rn)), and observables
are selfadjoint operators acting onH.

Let H0 be a quantum Hamiltonian and sp(H0) its spectrum.
Then, there is a unique Borel measure η (up to equivalence) on
sp(H0), a unique η-measurable field of Hilbert spaces {sp(H0) ∋
λ → H(λ)} (up to η), and a unique unitary operator T :H →
∫ ⊕
sp(H0)

H(λ)dη(λ) such that

[TH0u](λ) = λ(Tu)(λ) ∀u ∈ Dom(H). (3)

and

[TeitH0u](λ) = eitλ(Tu)(λ) ∀u ∈ H, t ∈ R.

T is called the diagonalization of H0. See [18] or [19] for details.
For example, in order to compute T when H0 = 1, we

introduce first

T0 : L
2(Rn) →

⊕

∫

[0,∞)

L2(Sn−1√
λ
)dλ,

given by

T0u(λ) = 2−
1
2 λ−

1
4 u|

S
n−1√
λ

,

where Sn−1√
λ

is endowed with its canonical measure given by the

metric induced from R
n.

Note that co-area formula implies that T0 is unitary. T0

diagonalizes the operator Q2, therefore T = T0F diagonalizes
−1, where F is the Fourier transform.
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In the literature, T0 (and therefore T) is usually presented in a
slightly different way ([20], section 2). First consider the unitary
operators Sλ : L

2(Sn−1√
λ
) → L2(Sn−1) given by

Sλu(z) = λ
n−1
4 u(

√
λz) (4)

This unitary operators allow us to replace H(λ) = L2(Sn−1√
λ
) on

the direct integral above by H(λ) = L2(Sn−1). In this way, we

obtain T0 : L
2(Rn) →

∫

⊕

[0,∞)
L2(Sn−1)dλ and

T0u(λ, z) = 2−
1
2 λ

n−2
4 u(

√
λz),

This form of T0 is usually obtained using spherical coordinates
directly. However, our version of T0 is somehow more natural,
because Q2 restricted to L2(Sn−1√

λ
) coincides by definition with

the constant scalar operator λ, which is exactly what we want
to happen on H(λ). Therefore, the use of the unitary operators
Sλ to relate the two ways to obtain T0 explained above play an
important role in our construction, as we shall explain in detail
in the remaining of the article.

A quantum observable, i.e. a selfadjoint operator F, is a
quantum COM if F strongly commutes with H0. Notice that this
is equivalent to eitH0F ⊆ FeitH0 [18].

F is a constant of motion if and only if it admits a
decomposition through T [18, 19], i.e. there is a measurable
field of selfadjoint operators {sp(H0) ∋ λ → Fλ} such that
[TFu](λ) = Fλ[Tu(λ)]. Such field of operators are the quantum
counterpart of the field of classical observables fλ. Just as in the
classical context, we also have decomposition of the dynamics:
clearly eitF commutes with H0 and we have that [eitF]λ = eitFλ .

Analogously to the classical case, the set A of bounded
quantum constants of motion is also an algebra (in fact, a von
Neumann algebra). We also know that, if F ∈ A then

||F|| = sup
λ

||Fλ|| (5)

From the spectral theory point of view, it is important to find
the field of operators decomposing a given quantum constant of
motion F, since we know that

sp(F) = ∪λ sp(Fλ) (6)

2.3. The Decomposable Weyl Calculus
Identities (2) and (3) share two crucial features. They reflect that
the construction of the fibers (both classical and quantum) aim
at, on the one hand, making constant the Hamiltonian on each
fiber, and on the other hand, making trivial the corresponding
dynamics on each fiber. These two common features point to an
additional (and unexpected) shared feature: for both classical and
quantum Hamiltonians, their COM can be decomposed through
the respective fibers.

Therefore, we claim that H(λ) is the natural quantum
counterpart of 6λ. So, if H0 = Oph̄(h0) one could expect that
we should be able to quantize 6λ into H(λ). The main problem
with this assertion is that in general we do not know what is the

relation between h0(6) and sp(H0), though in the semi-classical
limit (under certain circumstances) h0(6) = sp(H0) [21, 22].

For example, when h0(x, ξ ) = ||ξ ||2, we are able to quantize
6λ into H(λ). Indeed, since 6λ = T∗

S
n−1√
λ

and H(λ) =
L2(Sn−1√

λ
), we are able to transform smooth functions on T∗

S
n−1√
λ

into selfadjoint operators on L2(Sn−1√
λ
) by applying the Weyl-

Landsman quantization [2], which we shall denote from now on
byOpλ

h̄
.

In Belmonte [16] one of the authors built up the following
quantization that by construction preserves constants of motion.

DEFINITION 2. Assume that sp(H0) ⊆ h0(6). LetAd be the space
of functions f ∈ A such that fλ is an admissible symbol forOpλ

h̄
for

almost every λ. For each f ∈ Ad, we define

Opdh̄(f ) : = T∗
[∫ ⊕

sp(H0)
Opλh̄(fλ)dη(λ)

]

T,

where T∗ is the adjoint operator of T defined in (3).
We callOpd

h̄
the h0-decomposable Weyl calculus andAd the space

of admissible symbols forOpd
h̄
.

Remark:

The crucial reasons to introduce this novel quantization are

a) Contrary to Weyl calculus Oph̄, the decomposable calculus

Opd
h̄
preserves constants of motion by construction.

b) When [H0,Oph̄(f )] = 0 for some f ∈ A, the decomposable
Weyl calculus construction provides the ansatz [Oph̄(f )]λ =
Opλ

h̄
(fλ) to compute the field of operators decomposing

Oph̄(f ).

Interestingly, when the ansatz in b) holds, we are able to compute
the spectrum ofOph̄(f ).

When [Oph̄(f )]λ = Opλ
h̄
(fλ), which is equivalent to satisfy

Oph̄(f ) = Opd
h̄
(f ), we will say that we have a commutation of

quantization and reduction, CQR for short, on f . Some examples
of CQR are studied in Belmonte [16]. In the remaining of this
article, we aim at giving a new example of CQR and at discussing
how the ideas behind the involved proofs can lead to more
general cases on which we have CQR on f .

3. ANGULAR MOMENTUM IN THE FREE

HAMILTONIAN

Recall that we are interested in studying the case h0(x, ξ ) = ||ξ ||2
on R

2n. However, we would like to note that using the method
developed in Belmonte [16], we can consider as well the more

general case h̃0 = ϕ ◦ h0 ◦ S, where ϕ is a smooth regular
function on [0,∞) and S is a linear canonical transformation
(symplectomorphism). An example of the latter is h̃0(x, ξ ) =
ϕ(||x||2).

Clearly, we have that Oph̄(h0) = H0 = −h̄21, where 1 is
the Laplace operator. Moreover, since the flow of h0 is linear
and its metaplectic representation coincides with eitH0 , Weyl
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Calculus preserves COM under these conditions. In other words
if {h0, f } = 0, then [H0,Oph̄(f )] = 0 (see [16], for a detailed
proof).

An important example of CQR is the following: Let v be a
complete vector field on R

n and define fv(x, ξ ) = 〈v(x), ξ 〉 (v(x)
should be interpreted as a vector on the tangent plane at x and
ξ as a vector on the cotangent plane). It was proved in Belmonte
[16] that, if v is tangent to each sphere, then fv is a COM and we
have CQR on fv.

3.1. Functions of Angular Momenta
Consider the classical angular momenta functions

li,j(x, ξ ) : = xjξi − xiξj.

Then any function of the form

f (x, ξ ) = ψ(l1,2(x, ξ ), · · · , ln−1,n(x, ξ )) (7)

is a COM, where ψ ∈ C∞(R
n(n−1)

2 ). We will see later that some
of those functions have been already associated with differential
operators in L2(Sn−1√

λ
), so they should form a class of COMwhere

CQR is applicable.
Of course each lij is a COM, in fact lij = fvij , where vij is the

infinitesimal generator of the rotation of the plane generated by
the elements ei and ej of the canonical base of R

n. So, we have
CQR on each lij. After applying Oph̄ on each lij, we obtain the
angular momenta operators Lij = ih̄(xi∂j − xj∂i).

Another important example of a quantum constant of motion
in our case is the operator L2 : =

∑

i<j L
2
ij. It will give us an

important example of CQR. Its analysis is given in any basic
course on quantum mechanics, but we shall recall it to explain
how we obtain our case and why we expect that its spectral
analysis can be performed for any operator of the form Oph̄(f ),
whenever f is a classical constant of motion on which we have
CQR.

3.2. The Canonical Analysis of L2

The operator L2 is of special interest in quantum theory not
only because L2 is a COM, but also for solving the free particle
Schrödinger equation as

1 = 1

r2
∂

∂r

(

r2
∂

∂r

)

+ 1

r2 sin(θ)

∂

∂θ

(

sin θ
∂

∂θ

)

+ 1

r2 sin2(θ)

∂2

∂φ2

= 1

r2
∂

∂r

(

r2
∂

∂r

)

− L2

h̄2r2

(8)

Therefore one is able to apply a separation of variables, and obtain
that

L2|l,m〉 = h̄2l(l+ 1)|l,m〉
Lz|l,m〉 = h̄m|l,m〉

(9)

with 〈θ ,φ|l,m〉 = Yl,m(θ ,φ), where Yl,m(θ ,φ) is the spherical
harmonics with index l (orbital angular momentum number) and

m (magnetic number). The latter analysis of L2 can be applied to
any Hamiltonian with a radial potential [23].

Equation (9) implies that the restriction of L2 to each sphere
coincides with the Laplace-Beltrami operator [24], page 164.

Interestingly, the fact that the separation of variables method
is successful in the Schrödinger equation represented in spherical
coordinates, and that such separation leaves the radial part of the
equation independent of the angular part is intimately related
to the fact that in the classical counterpart the fibers of the free
Hamiltonian are cotangent bundles of spheres.

The canonical spectral analysis of L2 involves its
decompositions, but it is usually presented in a different
way: Let L2λ be the field of operators decomposing L2. Since L2

is invariant by Fourier transform, L2λ is just the restriction of
L2 to the corresponding sphere. It is straightforward to check
that L2λ = S∗λL

2
1Sλ, where Sλ is given by (4). In particular,

sp(L2) = sp(L21). This is the reason why we are able to complete
the spectral analysis of L2 by calculating eigenvectors on
the sphere (the spherical harmonics), but usually this is not
mentioned in the literature.

Notice that the latter analysis applies to L2 but might fail for
other quantum constants of motion F. Namely, the operators Sλ
migh not implement a unitary equivalence between the operators
decomposing F. However, in section 4, we will show that such
equivalence holds true for any operator of the formOph̄(f ), when
f is any function of angular momenta on which we have CQR.

Angular momentum poses an excellent case of study for the
problem of quantization, as the commutation relations in the
classical and quantum counterpart strongly resemble each other
(for the canonical case n = 3):

{li, lj} = ǫijklk

[Li, Lj] = ih̄

3
∑

k=1

ǫijkLk,
(10)

with i, j, k ∈ {x, y, z}. Moreover, the commutation relations
between the angular momentum operators and the total
momentum operator are also preserved.

{li, l2} = [Li, L
2] = 0, (11)

The latter equalities said that L2 is a Casimir element of the Lie
algebra generated by the Lj (actually, it is a Casimir element of the
corresponding universal enveloping algebra); we will come back
to this point later.

3.3. The Decomposable Weyl Calculus on

L2

The operator L2 has a natural classical counterpart:

l2(x, ξ ) : =
∑

i<j

l2ij(x, ξ )

The reader might expect that Oph̄(l
2) = L2, but this is not true.

The reasons why this happens are developed in the following
results.
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PROPOSITION 3. Oph̄(l
2) = L2 + n(n−1)

4 h̄2I

Proof: Using the canonical commutation relations and the well
known formula to obtain the value underOph̄ of any polynomial

([12], page 86), we get that Oph̄(l
2
ij) = L2ij + 1

2 h̄
2I. Since there are

n(n−1)
2 terms in the sum defining l2, we obtain our result.

Obviously l2 commutes with h0, so it can be decomposed
through each reduction. Recall that 6λ = T∗

S
n−1√
λ
, therefore

l2λ ∈ C∞(T∗
S
n−1√
λ
). The following is the central result of this

article.

THEOREM 4.

l2λ(q, p) = λ(gλq )
−1(p, p),

where gλq is the metric on TqS
n−1√
λ

induced from R
n and (gλq )

−1 is

the corresponding metric on T∗
qS

n−1√
λ
.

We will present two different proofs of this result. The first one
is straightforward, while the second one is more sophisticated
but relies on the underlying symmetry of the sphere, and we
shall explain later why this reasoning is important for further
developments.

Proof: Since the metric on TqS
n−1√
λ

is induced from R
n, we have

that (gλq )
−1(p, p) = 〈p, p〉 = ||p||2 (once we identify TqS

n−1√
λ

with the hyperplane tangent to q on R
n). Moreover, under the

constraints ||q||2 = λ and 〈q, p〉 = 0, we have that

2l2(q, p) =
∑

i,j

(qipj − qjpi)
2 =

∑

j

p2j (
∑

i

q2i )

− 2
∑

i

qipi(
∑

j

qjpj)+
∑

i

p2i (
∑

j

q2j ) = 2λ||p||2.

Our second proof relies on some results from Poisson
geometry which we shall briefly explain. Let Jλ :T

∗
S
n−1√
λ

→
so(n)∗ the natural moment map, where so(n)∗ is the dual of
the Lie algebra so(n). It is well known that Jλ is covariant, i.e.
Jλ[U(q, p)] = Ad∗U [J(q, p)], where U ∈ SO(n) (the special
orthogonal group), Ad∗ is the coadjoint action, and U(q, p) =
(Uq, (U∗)−1p). Let v ∈ so(n) and define Ev ∈ C∞(so(n)∗) by
Ev(z) = 〈v, z〉. Also, let vij the canonical base of so(n). It is easy
to show that J∗λ(Evij ) = lλij. Also notice that C : =

∑

E2vij is Ad
∗-

invariant (in particular, it is a Casimir element of C∞(so(n)∗))
and l2λ = J∗λC. In particular, l2λ(U(q), (U∗)−1p) = l2λ(q, p).

Proof: It is easy to show that the equality holds when q =
√
λen,

where en is the last member of the canonical base (or any of
them actually). Let q ∈ S

n−1√
λ

and fix U ∈ SO(n) such that

U(q) =
√
λen. Since the canonical action of the orthogonal group

preserves the metric, we have that

λ(gλq )
−1(p, p) = λ(gλ√

λen
)−1((U∗)−1p, (U∗)−1p)

= l2λ(U(q), (U∗)−1p) = l2λ(q, p),

and this finishes the proof.

COROLLARY 5. Opλ
h̄
(l2λ) = L2λ + n(n−1)

4 h̄2I, in other words

[Oph̄(l
2)]λ = Opλ

h̄
(l2λ).

Proof: Since the Ricci scalar (or scalar curvature) of S
n−1√
λ

is

n(n−1)
λ

, proposition 3.7.2 in [2] implies that

Opλh̄(l
2
λ) = λOpλh̄(g

λ
q )

−1 = λ(−h̄21S +
n(n− 1)h̄2

4λ
),

where1S is the Laplace-Beltrami operator on the sphere. It is well
known that−h̄2λ1S = L2λ and this finishes the proof.

It is well known that the principal symbol of the Laplace-
Beltrami operator on any complete Riemannian manifold is
(gλq )

−1(p, p) [24]. So our previous theorem comes to show that

the well known relation between L2 and the Laplace-Beltrami
operator on the sphere also holds true classically.

Also notice that all the quantization the authors know for
the cotangent bundle of a Riemannian manifold sent (gλq )

−1(p, p)
to the Laplace-Beltrami operator plus some constant times the
Ricci scalar. It seems that this was first noticed by Pauli [25].
So, the fact that Oph̄(l

2) 6= L2 turns to be natural. However,
there is no agreement about what constant should multiply
the Ricci scalar. In physics literature, many different constants
have been proposed, as it was noticed in [26] [some further
development can be found in [27]], where a proposal for such
constant followed some general interesting ideas concerning the
case when the Riemannian manifold is a hypersurface. Our result
follows Weyl quantization and is based on the idea that the
angular momenta coordinates on the cotangent bundle of the
sphere should play the role of momenta coordinates on the flat
Euclidean phase space.

4. SPECTRAL ANALYSIS AND CQR

In this section we will show that the first part of the spectral
analysis of L2 can be generalized to any operator of the form
Oph̄(f ), where f is a constant of motion on which we have CQR
and some extra symmetry is preserved. Any function of angular
momenta preserves that symmetry. Let us introduce first some
notation.

Let Dλ : S
n−1√
λ0

→ S
n−1√
λ0λ

be the diffeomorphism given

by Dλ(z) =
√
λz and sλ :T

∗
S
n−1√
λ0

→ T∗
S
n−1√
λ0λ

the

symplectomorphism given by

sλ(q, p) = (Dλ(q), (D
∗
λ)

−1(p)) = (
√
λq,

1√
λ
p). (12)

If λ0 = 1, then sλ is the classical counterpart of the unitary
operator Sλ.

Notice that Dλ (respectively sλ) is the restriction of a map
defined on R

n (respectively T∗
R
n = R

2n) given by the same
expression, and they define a multiplicative one parameter group
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of diffeomorphisms (respectively symplectomorphism), i.e.D1 =
Id andDλ1·λ2 = Dλ1Dλ2 (respectively s1 = Id and sλ1·λ2 = sλ1 sλ2 .
In fact, up to composing with the exponential, Dλ correspond to
the (additive) one parameter group of the gradient ∇ϕ, where
ϕ(x) = ||x||2. Therefore sλ, after composing with the exponential,
coincides with the Hamiltonian one parameter group of J∇ϕ .

THEOREM 6. Let f be an admissable constant of motion such that
f (tx, t−1ξ ) = f (x, ξ ), for any t > 0. Then

fλ ◦ sλ = f1

and

Opλh̄(fλ) = S∗λOp1h̄(f1)Sλ

Proof: The first equality follows directly from the condition
f (tx, 1t ξ ) = f (x, ξ ) and the definition of fλ. Using the expression

forOpλ
h̄
given in Belmonte [16], section 5, we obtain

Op1h̄(f1)Sλu(z)

= h̄1−nλ
n−1
4

∫

Sn−1−{−z}
f̂1

(

(z + w)

||z + w|| ,
θ

h̄

(z − w)

||z − w||

)

u(
√
λw)dµ(w)

= h̄1−nλ
1−n
4

∫

S
n−1√
λ
−{−

√
λz}

f̂1

( √
λz + w

||
√
λz + w||

,
θ

h̄

(
√
λz − w)

||
√
λz − w||

)

u(w)dµ(w)

Notice that the Fourier transform f̂1 is computed in the cotangent

plane of Sn−1 at the point q =
√
λz+w

||
√
λz+w|| . Let v = θ

h̄
(
√
λz−w)

||
√
λz−w|| .

Then

f̂1(q, v) =
∫

T∗
qS

n−1
f1(q, p)e

ip·vdµ∗
q(p)

=
∫

T∗
qS

n−1
f1(q, p)e

iλ−
1
2 p·λ

1
2 vdµ∗

q(p)

= λ
n−1
2

∫

T∗√
λq
S
n−1√
λ

(f1 ◦ sλ−1 )(
√
λq, p)eip·

√
λvdµ∗

q(p).

Therefore

Op1h̄(f1)Sλu(z)

= h̄1−nλ
n−1
4

∫

S
n−1√
λ
−{−

√
λz}

f̂λ

(√
λ(
√
λz + w)

||
√
λz + w||

,

√
λθ

h̄

(
√
λz − w)

||
√
λz − w||

)

u(w)dµ(w)

= SλOpλh̄(fλ)u(z)

COROLLARY 7. Let f be an admissable constant of motion such
that f (tx, t−1ξ ) = f (x, ξ ), for any t > 0.

1. Then , for any λ ∈ [0,∞), we have that

sp(Opdh̄(f )) = sp(Opλh̄(fλ)).

2. If Opλ
h̄
(fλ) is bounded, for some λ ∈ [0,∞). Then Opd(f ) is

bounded and

||Opdh̄(f )|| = ||Opλh̄(fλ)||.

Proof: Both identities are direct consequences of the previous
theorem and the equalities (5) and (6).

COROLLARY 8. If f is a constant of motion such that f (tx, t−1ξ ) =
f (x, ξ ), for any t > 0, and we have CQR on f , then for any
λ ∈ [0,∞) we have that

sp(Oph̄(f )) = sp(Opλh̄(fλ)).

Remark:

Notice that since lij(tx, t
−1ξ ) = lij(x, ξ ), every function of

angular momenta satisfies that condition and therefore we can
apply our results on them. However, not every classical constant
of motion satisfies that condition, for instance h0 itself does
not. The constants of motion satisfying f (tx, t−1ξ ) = f (x, ξ )
are completely determined by their value on the set {(x, ξ ) ∈
R
2n/||ξ || = 1; 〈x, ξ 〉 = 0}. The fact that not every f is such that

f (tx, t−1ξ ) = f (x, ξ ) is the classical counterpart of the fact that
not every quantum constant of motion is completely determined
by its restriction to one sphere, as we discussed in subsection 3.2.

The last corollary 8 gives further reasons to look for a proof to
our conjecture, at least for functions of angular momenta.

5. DISCUSSION AND FUTURE WORK

The technique used to prove theorem 4 and corollary 5 are
interesting on its own right and lead to some further questions;
we shall briefly explain why. Let g be a Lie algebra and let U(g)
be the corresponding universal enveloping algebra. In general,
Casimir elements by definition belong to the center of U(g).
Using the universal property of U(g), we can represent it on
C∗(g∗). In our case, we were working with the quadratic Casimir,
but one can consider any symmetric homogeneous polynomial to
build Casimir elements. On the other hand, if g is the Lie algebra
of a Lie group G, we can identify U(g) with the algebra of left-
invariant differential operators onG; it turns out that the operator
corresponding to the quadratic Casimir is precisely the Laplace-
Beltrami operator on G (endowed with its canonical Riemannian
structure). Moreover, if G acts on some Riemannian manifoldM
and such action satisfies certain condition, then the quadratic
Casimir is represented as the Laplace-Beltrami operator on M
(this seems to be the case when M is a G-homogeneous space;
for instance M = S

n−1 and G = SO(n)). We can also represent
U(g) on C∞(T∗M) as well. So, our theorem and the proof of
the corollary show that Weyl-Landsman quantization factorizes
both representations up to some lower degree term, at least for
the quadratic Casimir and g = so(n). One should wonder if this
holds true for any element of U(g), in particular for any Casimir
element. The latter would be already interesting for quartic
Casimirs, since they are related with the stress-energy tensor.
Heuristically, such result would mean that the representation on
C∞(g∗) (and therefore on C∞(T∗M)) can be interpreted as a
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dequantization of U(g). For details see Barut and Raczka [28] or
Fuchs and Schweigert [29].

Coming back to our context, recall that our main purpose is
to understand the decomposition of the operators of the form
Oph̄(f ) through the diagonalization of the Laplace operator on

R
n, where f is a classical constant of motion for h(x, ξ ) = ||ξ ||2.

Also recall that functions of angular momenta are examples
of such constants of motion. The latter claim is another way
to say that every function of the form J∗ϕ is a constant of
motion, where J :R2n → so∗(n) is the canonical moment
map and ϕ ∈ C∞(so∗(n)). Notice that [J∗ϕ]λ = J∗λϕ.
Therefore, studying the problem described in the previous
paragraph would lead to some further interesting examples
where we might have that our conjecture [Oph̄(f )]λ = Opλ

h̄
(fλ)

holds.
From a physically and a bit more speculative perspective,

we would like to state that it is remarkable that the method
introduced in this paper leaves aside the requirement of
mapping position and momentum coordinates, and focuses
on the mapping of COM themselves. Indeed, recall that
the state of a quantum system is not determined by the
position and momentum coordinates, but by a complete set of
commuting observables (CSCO). Since CSCO usually includes

the Hamiltonian, then the observables in CSCO are COM.
Therefore a quantization that preserves COM will necessarily
map a classical system into a quantum system where the
description of the states can be directly determined from the
quantized operators. In order to develop a decomposable Weyl
calculus where the latter is possible, one should apply recursively
the decomposable quantization calculus for each operator in
the CSCO. If that is possible, we would obtain an intuitively
more appropriate quantization than the regular quantization
that demands the quantization of position and momentum
coordinates.
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