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The non-symmetrized hyperspherical harmonics method for a three-body system,

composed by two particles having equal masses, but different from the mass of the

third particle, is reviewed and applied to the 3H, 3He nuclei, and 3
3H hyper-nucleus, seen

respectively as nnp, ppn, andNN3 three-body systems. The convergence of the method

is first tested in order to estimate its accuracy. Then, the difference of binding energy

between 3H and 3He due to the difference of the proton and the neutron masses is

studied using several central spin-independent and spin-dependent potentials. Finally,

the 3
3H hypernucleus binding energy is calculated using different NN and 3N potential

models. The results have been compared with those present in the literature, finding a

very nice agreement.

Keywords: three-body systems, hypersperical harmonics method, light nuclei, triton, 3He, hypertriton

1. INTRODUCTION

The hyperspherical harmonics (HH) method has been widely applied in the study of the bound
states of few-body systems, starting from A = 3 nuclei [1, 2]. Usually, the use of the HH basis is
preceded by a symmetrization procedure that takes into account the fact that protons and neutrons
are fermions, and the wave function has to be antisymmetric under exchange of any pair of these
particles. For instance, for A = 3, antisymmetry is guaranteed by writing the wave function as

9 =
∑

p

9p, (1)

p = 1, 2, 3 corresponding to the three different particle permutations [1]. However, it was shown
in Gattobigio et al. [3–5] and Deflorian et al. [6, 7] that this preliminary step is in fact not strictly
necessary, since, after the diagonalization of the Hamiltonian, the eigenvectors turn out to have a
well-defined symmetry under particle permutation. In this second version, the method is known
as non-symmetrized hyperspherical harmonics (NSHH) method. As we will also show below, the
prize to pay for the non-antisymmetrization is that a quite larger number of the expansion elements
are necessary with respect to the “standard” HH method. However, the NSHH method has the
advantage to reduce the computational effort due to the symmetrization procedure, and, moreover,
the same expansion can be easily re-arranged for systems of different particles with differentmasses.
In fact, the steps to be done within the NSHH method from the case of equal-mass to the case of
non-equal mass particles are quite straightforward and will be illustrated below. In this work, we
apply theNSHHmethod to study the 3H, 3He, and 3

3H systems, seen as nnp, ppn,NN3, respectively
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(we used the standard notation of N for nucleon and Y for
hyperon). In order to test our method, we study the first two
systems listed above with five different potential models, and the
hypernucleus with three potential models. We start with simple
central spin-independent NN and YN interactions, and then we
move to central spin-dependent potentials. To be noticed that
none of the interactions considered is realistic. Furthermore, we
do not include three-body forces. Therefore, the comparison of
our results with the experimental data is meaningless. However,
the considered interactions are useful to test step by step our
method and to compare with results obtained in the literature.

The paper is organized as follows: in section 2 we describe the
NSHH method, in section 3 we discuss the results obtained for
the considered nuclear systems. Some concluding remarks and
an outlook are presented in section 4.

2. THEORETICAL FORMALISM

We briefly review the formalism of the present calculation. We
start by introducing the Jacobi coordinates for a system of A =
3 particles, with mass mi, position ri, and momentum pi. By
defining xi =

√
mi ri [8], they are taken as a linear combination

of xi, i.e.,

yi =
A
∑

j=1

cijxj, (2)

where the coefficients cij need to satisfy the following
conditions [8]

3
∑

i=1

cjicji =
1

M
(j = 1, 2), (3)

3
∑

i=1

cjicki = 0 (j 6= k = 1, 2). (4)

Here M is a reference mass. The advantage of using
Equations (2)–(4) is that the kinetic energy operator can be
cast in the form

T = − h̄2

2mtot
∇2
y3
− h̄2

2M
(∇2

y1
+ ∇2

y2
), (5)

where y3 is the center-of-mass coordinate. For a three-body
system, there are three possible permutations of the particles.
Therefore, the Jacobi coordinates depend on this permutations.
For p = 3, i.e., i, j, k = 1, 2, 3, the Jacobi coordinates are explicitly
given by

y
(3)
2 = −

√

m2

M(m1 +m2)
x1 +

√

m1

M(m1 +m2)
x2,

y
(3)
1 = −

√

m1m3

Mmtot(m1 +m2)
x1 −

√

m2m3

Mmtot(m1 +m2)
x2

+
√

m1 +m2

Mmtot
x3. (6)

They reduce to the familiar expressions for equal-mass particles
when m1 = m2 = m3 = M (see for instance Kievsky et al. [1]).
We then introduce the hyperspherical coordinates, by replacing,

in a standard way, the moduli of y
(3)
1,2 by the hyperradius and one

hyperangle, given by

ρ2 = y
(p)
1

2
+ y

(p)
2

2
, (7)

tanφ(p) = y
(p)
1

y
(p)
2

. (8)

To be noticed that the hyperangle φ(p) depends on the
permutation p, while the hyperradius ρ does not. The well-
known advantage of using the hyperspherical coordinates is that
the Laplace operator can be cast in the form [8]

∇2 = ∇2
y1
+ ∇2

y2
= ∂2

∂ρ2
+ 5

ρ

∂

∂ρ
+ 32(�(p))

ρ2
, (9)

where 32(�(p)) is called the grand-angular momentum operator,
and is explicitly written as

32(�(p)) = ∂2

∂φ(p)2
− ℓ̂21(ŷ

(p)
1 )

sin2 φ(p)
− ℓ̂22(ŷ

(p)
2 )

cos2 φ(p)

+2

[

cotφ(p) − tanφ(p)

]

∂

∂φ(p)
. (10)

Here ℓ̂21 and ℓ̂22 are the (ordinary) angular momentum operators

associated with the Jacobi vectors y
(p)
1 and y

(p)
2 respectively, and

�(p) ≡ (ŷ
(p)
1 , ŷ

(p)
2 ,φ(p)). The HH functions are the eigenfunctions

of the grand-angular momentum operator 32(�(p)), with
eigenvalue−G(G+ 4), i.e.,

32(�(p))YG(�
(p)) = −G(G+ 4)YG(�

(p)). (11)

Here the HH function YG(�
(p)) is defined as

YG(�
(p)) = Nℓ1 ,ℓ2

n (cosφ(p))ℓ2 (sinφ(p))ℓ1Yℓ1m1 (ŷ
(p)
1 )Yℓ2m2 (ŷ

(p)
2 )

×P
ℓ1+ 1

2 ,ℓ2+ 1
2

n (cos 2φ(p)), (12)

with Nℓ1 ,ℓ2
n a normalization factor [8] and

G = 2n+ ℓ1 + ℓ2, n = 0, 1, . . . , (13)

is the so-called grand-angular momentum. We remark that the
HH functions depend on the considered permutation via �(p).
It is useful to combine the HH functions in order to assign
them a well-defined total orbital angular momentum 3. Using
the Clebsch-Gordan coefficients, we introduce the functions
H[G](�

(p)) as

H[G](�
(p)) =

∑

m1 ,m2

YG(�
(p))(ℓ1m1ℓ2m2|33z)

≡ [Yℓ1 (ŷ
(p)
1 )Yℓ2(ŷ

(p)
2 )]3,3zP

ℓ1 ,ℓ2
n (φ(p)), (14)

Frontiers in Physics | www.frontiersin.org 2 November 2018 | Volume 6 | Article 122

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Nannini and Marcucci NSHH for Non-equal Mass Three-Body Systems

where [G] stands for [ℓ1, ℓ2,3, n], and

Pℓ1 ,ℓ2
n (φ(p)) = Nℓ1 ,ℓ2

n (cosφ(p))ℓ2 (sinφ(p))ℓ1P
ℓ1+ 1

2 ,ℓ2+ 1
2

n (cos 2φ(p)).
(15)

We now consider our system made of three particles, two with
equal masses, different from the mass of the third particle. We
choose to fix the two equal mass particles in position 1 and
2, and we set the third particle with different mass as particle
3. Therefore, we will work with the Jacobi and hyperspherical
coordinates with fixed permutation p = 3.

The wave function that describes our system can now be cast
in the form

9 =
∑

{G}
BH

J
{G}(�

(3)) u{G}(ρ), (16)

where u{G}(ρ) is a function of only the hyperradius ρ, and

BH
J
{G}(�

(3)) is given by Equation (14) multiplied by the spin part,
i.e.,

BHJ
{G}(�

(3)) =
∑

3z ,6z

H[G](�
(3))×

[[

1

2
⊗ 1

2

]

S,s

⊗ 1

2

]

6,6z

× (33z ,66z|JJz) . (17)

Here S is the spin of the first couple with third component s, 6
is the total spin of the system and 6z its third component, and
{G} now stands for {l1, l2, n,3, S,6}. To be noticed that the LS-
coupling scheme is used, so that the total spin of the system is
combined, using the Clebsh-Gordan coefficient (33z ,66z|JJz),
with the total orbital angular momentum to give the total spin J.
Furthermore, (i) ℓ1, ℓ2, and n are taken such that Equation (13)
is satisfied for G that runs from Gmin = ℓ1 + ℓ2 to a given
Gmax, to be chosen in order to reach the desired accuracy, and
(ii) we have imposed ℓ1 + ℓ2 = even, since the systems under
consideration have positive parity. The possible values for 3,6,
and Gmin, which together with Gmax identify a channel, are listed
in Table 1 for a system with Jπ = 1/2+. Note that, since we are
using central potentials, only the first channel of Table 1 will be
in fact necessary.

In the present work, the hyperradial function is itself
expanded on a suitable basis, i.e., a set of generalized Laguerre
polynomials [1]. Therefore, we can write

u{G}(ρ) =
∑

l

c{G},l fl(ρ), (18)

where c{G},l are unknown coefficients, and

fl(ρ) =
√

l!

(l+ 5)!
γ 3 (5)Ll(γρ)e−

γ
2 ρ . (19)

Here (5)Ll(γρ) are generalized Laguerre polynomials, and the
numerical factor in front of them is chosen so that fl(ρ) are
normalized to unit. Furthermore, γ is a non-linear parameter,
whose typical values are in the range (2 − 5) fm−1. The results
have to be stable against γ , as we will show in section 3. With

TABLE 1 | List of the channels for a Jπ = 1/2+ system.

ch 3 6 Gmin

1 0 1/2 0

2 1 1/2 2

3 1 3/2 2

4 2 3/2 2

3 and 6 are the total orbital angular momentum and the total spin of the nuclei. See text

for more details.

these assumptions, the functions fl(ρ) go to zero for ρ → ∞, and
constitute an orthonormal basis.

By using Equation (18), the wave function can now be cast in
the form

9 =
∑

{G}

Nmax
∑

l=1

c{G},l BH
J
{G}(�) fl(ρ), (20)

where we have dropped the superscript (3) in �(3) to simplify
the notation, and we have indicated with Nmax the maximum
number of Laguerre polynomials in Equation (18).

In an even more compact notation, we can write

9 =
∑

ξ

cξ9ξ , (21)

where 9ξ is a complete set of states, and ξ is the index that
labels all the quantum numbers defining the basis elements. The
expansion coefficients cξ can be determined using the Rayleigh-
Ritz variational principle [1], which states that

〈δc9|H − E|9〉 = 0, (22)

where δc9 denotes the variation of the wave function with respect
to the coefficients cξ . By doing the differentiation, the problem is
then reduced to a generalized eigenvalue-eigenvector problem of
the form

∑

ξ ′
〈9ξ |H − E|9ξ ′〉cξ ′ = 0, (23)

that is solved using the Lanczos diagonalization algorithm [9].
The use of the Lanczos algorithm is dictated by the large size
(∼ 50000× 50000) of the involved matrices (see below).

All the computational problem is now shifted in having to
calculate the norm, kinetic energy and potential energy matrix
elements. One of the advantage of using a fixed permutation
is that the norm and kinetic energy matrix elements are or
analytical, or involve just a one-dimensional integration. In fact,
they are written as

N{G′},k;{G},l ≡ 〈9ξ ′ |9ξ 〉 = J δξ ,ξ ′ , (24)

T{G′},k;{G},l ≡ 〈9ξ ′ |T|9ξ 〉 = − h̄2

2M
J δ{G},{G′}

∫

dρ ρ5fk(ρ)

×
[

−G(G+ 4)
fl(ρ)

ρ2
+ 5

f ′
l
(ρ)

ρ
+ f ′′l (ρ)

]

, (25)
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where J is the total Jacobian of the transformation, given by

J =
(

M

√

mtot

m1m2m3

)3

, (26)

and f ′
l
(ρ) and f ′′

l
(ρ) are, respectively, the first and the second

derivatives of the functions fl(ρ) defined in Equation (19).
The potential matrix elements in Equation (23) can be written

as

V{G′},k;{G},l ≡ 〈9ξ ′ |V12 + V23 + V13|9ξ 〉, (27)

with Vij indicating the two-body interaction between particle
i and particle j. Note that in the present work we do not
consider three-body forces. Since it is easier to evaluate thematrix
elements of Vij when the Jacobi coordinate y2 is proportional to
ri − rj, we proceed as follows. We make use of the fact that the
hyperradius is permutation-independent, and we use the fact that
the HH function written in terms of �(p) can be expressed as
function of the HH written using �(p′), with p′ 6= p. Basically
it can be shown that [1]

H[G](�
(p)) =

∑

[G′]

a
(p→p′),G,3
[G],[G′] H[G′](�

(p′)), (28)

where the grandangular momentum G and the total angular
momentum 3 remain constant, i.e., G = G′ and 3 = 3′, but
we have [G] 6= [G′], since all possible combinations of ℓ1, ℓ2, n
are allowed. The spin-part written in terms of permutation
p can be easily expressed in terms of permutation p′ via
the standard 6j Wigner coefficients [10]. The transformation

coefficients a
(p→p′),G
[G],[G′] can be calculated, for A = 3, through the

Raynal-Revai recurrence relations [11]. Alternately we can use
the orthonormality of the HH basis [1], i.e.,

a
(p→p′),G,3
[G],[G′] =

∫

d�(p′) [H[G′](�
(p′))]† H[G](�

(p)). (29)

Their explicit expression can be found for instance in Kievsky et
al. [1] as is reported in the Appendix for completeness. The final
expression for the potential matrix elements is given by

〈9ξ ′ |V12 + V23 + V13|9ξ 〉 = J

∫

dρ ρ5fk(ρ)fl(ρ)

×
{∫

d�(3)BH
†

ξ ′ (�
(3))V12BHξ (�

(3))

+
∑

ξ ′′

∑

ξ ′′′

[

a
(3→1),G′ ,3′
ξ ′→ξ ′′′ a

(3→1),G,3
ξ→ξ ′′

×
∫

d�(1)BH
†

ξ ′′′ (�
(1))V23BHξ ′′ (�

(1))

+ a
(3→2),G′ ,3′
ξ ′→ξ ′′′ a

(3→2),G,3
ξ→ξ ′′

×
∫

d�(2)BH
†

ξ ′′′ (�
(2))V13BHξ ′′ (�

(2))

]}

.

(30)

It is then clear the advantage of using the NSHHmethod also for
the calculation of the potential matrix elements, as in fact all what
is needed is the calculation of one integral of the type

I(ρ) =
∫

dρ ρ5fk(ρ)fl(ρ)

∫

d�(p)BH†

ξ ′′′ (�
(p))VijBHξ ′′ (�

(p)),

(31)
with p the permutation corresponding to the order i, j, k.

3. RESULTS

We present in this section the results obtained with the NSHH
method described above. In particular, we present in section 3.1
the study of the convergence of the method, in the case of the
triton binding energy, calculated withmp = mn. We then present
in section 3.2 the results for the triton and 3He binding energy,
when mp 6= mn. In section 3.3 we present the results of the
hypertriton.

The potential models used in our study are central spin-
independent and spin-dependent. In particular, the 3H and
3He systems have been investigated using the spin-independent
Volkov [12], Afnan-Tang [13], and Malfliet-Tjon [14] potential
models, and the two spin-dependent Minnesota [15] and
Argonne AV4′ [16] potential models. Note that the AV4′

potential is a reprojection of the much more realistic Argonne
AV18 [17] potential model. In the case of the hypernucleus 3

3H,
we have used the Gaussian spin-independent central potential
of Clare and Levinger [18], and two spin-dependent potentials:
the first one, labeled MN9 [19], combines a Minnesota [15]
potential for the NN interaction with the S = 1 component
of the same Minnesota potential multiplied by a factor
0.9 for the 3N interaction. The second one, labeled AU,
uses the Argonne AV4′ of Wiringa and Pieper [16] for the
NN interaction, and the Usmani potential of Usmani and
Khanna [20] for the 3N interaction (see also Ferrari Ruffino et
al. [21]).

3.1. Convergence Study
We recall that the wave function is written as in Equation (20),
and that, since we are using central potentials, only the first
channel of Table 1 is considered, as for instance in Kievsky et
al. [1]. Therefore we need to study the convergence of our results
on Gmax and Nmax. Furthermore, we introduce the value of j as
Ej = Eℓ2+ES, ℓ2 and S being the orbital angular momentum and the
spin of the pair ij on which the potential acts. This allows to set up
the theoretical framework also in the case of projecting potentials.
Therefore, we will study the convergence of our results also on
the maximum value of j, called jmax. Finally, the radial function
written as in Equation (19), presents a non-linear parameter γ ,
for which we need to find a range of values such that the binding
energy is stable. Note that in these convergence studies we have
usedmn = mp.

We start by considering the parameter γ . The behavior of
the binding energy as a function of γ is shown for the Volkov
potential in the top panel of Figure 1. We mention here that for
all the other potential models we have considered, the results are
similar. The other parameters were kept constant, i.e.,Gmax = 20,
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FIGURE 1 | (Top) The binding energy B (in MeV) as function of the parameter14 γ (in fm−1) for the Volkov potential model [12], with Gmax = 20, jmax = 6 and

Nmax = 16, and using mn = mp. (Bottom) The binding energy B (in MeV) as function of the parameter Nmax for the AV4′ potential model [16], with Gmax = 20,

jmax = 8 and γ = 4 fm−1, and using mn = mp.

Nmax = 16, and jmax = 6. The particular dependence on γ of the
binding energy, that increases for low values of γ , is constant for
some central values, and decreases again for large values of γ ,
allows to determine a so-called plateau, and the optimal value for
γ has to be chosen on this plateau. Alternatively, we can chose
γ such that for a given Nmax the binding energy is maximum.
A choice of γ outside the plateau would require just a larger
value of Nmax. To be noticed that this particular choice of γ

is not universal. As an example, in the “standard” HH method,
γ = 2.5 − 4.5 fm−1 for the AV18 potential, but much larger
(≃ 7 fm−1) for the chiral non-local potentials [1]. In our case,
different values of γ for different potentials might improve the
convergence onNmax, but not that on jmax and G

max, determined
by the structure of the HH functions. Since, as shown below,
the convergence on Nmax is not difficult to be achieved, we have
chosen to keep γ at a fixed value, i.e., γ = 4 fm−1 for all the
potentials.

In the bottom panel of Figure 1 we fix jmax = 8, γ =
4 fm−1, and Gmax = 20, and we show the pattern of

convergence for the binding energy B with respect to Nmax,
in the case of the Argonne AV4′ model. Here convergence is
reached for Nmax = 24, i.e., we have verified that, for higher
Nmax value, B changes by less than 1 keV. To be noticed that
for the other potentials, convergence is already reached for
Nmax = 16− 20.

The variation of the binding energy as a function of jmax

and Gmax depends significantly on the adopted potential model.
Therefore, we need to analyze every single case. As we can see
from the data of Tables 2 and 3, the convergence on jmax and
Gmax for the Volkov and the Minnesota potentials is really quick,
and we can reach an accuracy better than 2 keV for jmax = 10
andGmax = 40. On the other hand, in the case of the Afnan-Tang
potential, we need to go up to jmax = 14 and Gmax = 50, in order
to get a total accuracy of our results of about 2 keV (1 keV is due
to the dependence on Nmax). This can be seen by inspection of
Table 4. TheMalfliet-Tjon potential model implies a convergence
even slower of the expansion, and we have to go up to Gmax = 90
and jmax = 22, to get an uncertainty of about 3 keV, as shown in

Frontiers in Physics | www.frontiersin.org 5 November 2018 | Volume 6 | Article 122

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Nannini and Marcucci NSHH for Non-equal Mass Three-Body Systems

TABLE 2 | The 3H binding energy B (in MeV) calculated with the Volkov potential

model [12], using mn = mp, Nmax = 16, and γ = 4 fm−1, as function of jmax and

Gmax .

jmax = 6 jmax = 8 jmax = 10

Gmax B Gmax B Gmax B

20 8.460 20 8.462 20 8.462

30 8.461 30 8.464 30 8.464

40 8.461 40 8.464 40 8.465

TABLE 3 | Same as Table 2 but for the Minnesota potential model [15].

jmax = 6 jmax = 8 jmax = 10

Gmax B Gmax B Gmax B

20 8.376 20 8.381 20 8.381

30 8.378 30 8.383 30 8.385

40 8.378 40 8.383 40 8.385

Table 5. In fact, being a sum of Yukawa functions, the Malfliet-
Tjon potential model is quite difficult to be treated also with the
“standard” symmetrized HH method [1].

In Tables 6 and 7, we show the convergence study for the
AV4′, which is the most realistic potential model used here for
the A = 3 nuclear systems. As we can see by inspection of the
tables, in order to reach an accuracy of about 3 keV, we have to
push the calculation up toGmax = 80,Nmax = 24, and jmax = 20.
Our final result of B = 8.991 MeV, though, agrees well with the
one of Marcucci1, obtained with the “standard” symmetrized HH
method, for which B = 8.992 MeV.

The results for the binding energy of 3H and 3He with the
different potentials will be summarized in the next subsection.

3.2. The 3H and 3He Systems
Having verified that our method can be pushed up to
convergence, we present in the third column ofTable 8 the results
for the 3H binding energy with all the different potential models,
obtained still keeping mp = mn. The results are compared with
those present in the literature, finding an overall nice agreement.

We now turn our attention to the 3H and 3He nuclei,
considering them as made of different mass particles. Therefore,
we impose mp 6= mn and we calculate the 3H and 3He binding
energy and the difference of these binding energies, i.e.,

1B = B3H − B3He. (32)

To be noticed that we have not yet included the effect of the
(point) Coulomb interaction. The results are listed in Table 8. By
inspection of the table, we can see that 1B is not the same for
all the potential models. In fact, while for the spin-independent
Afnan-Tang and Malfliet-Tjon central potentials, and for the
spin-dependent AV4′ potential, 1B = 14 keV, for the Volkov
and the Minnesota potential we find a smaller value. In all cases,

1Marcucci LE. Private Communication. (2018).

though, we have verified that 1B is equally distributed, i.e., we
have verified that

Bmn=mp = B3H − 1B

2
= B3He +

1B

2
, (33)

as can be seen from Table 8. We would like to remark that in
the NSHH method, the inclusion of the difference of masses is
quite straightforward, and 1B can be calculated “exactly.” This is
not so trivial within the symmetrized HH method. Furthermore,
we compare our results with those of Nogga et al. [22], where
1B was calculated within the Faddeev equation method using
realistic Argonne AV18 [17] potential, and it was found 1B = 14
keV, in perfect agreement with our AV4′ result.

In order to test our results for 1B, we try to get a perturbative
rough estimate of 1B, proceeding as follows: since the neutron-
proton difference of mass 1m = mn − mp = 1.2934 MeV is
about three orders of magnitude smaller than their average mass
m = (mn +mp)/2 = 938.9187 MeV, we can assume also 1B to
be small. Furthermore, we suppose the potential to be insensitive
to 1m, and we consider only the kinetic energy. In the center of
mass frame, the kinetic energy operator can be cast in the form

T =
3
∑

i=1

p2i
2mi

= p21 + p22
2me

+ p23
2md

, (34)

where me stands for the mass of the two equal particles, i.e.,
mn for 3H and mp for 3He, and md is the mass of the third
particle, different from the previous ones. By defining E = 〈H〉 =
〈T + V〉, where 〈H〉 is the average value of the Hamiltonian H,
we obtain

∂E

∂me
=
〈

∂H

∂me

〉

=
〈

∂T

∂me

〉

= −〈2Te〉
me

, (35)

∂E

∂md
=
〈

∂H

∂md

〉

=
〈

∂T

∂md

〉

= −〈Td〉
md

, (36)

where we have indicated
〈

Te/d

〉

≈ p2i /(2me/d). Moreover, we
define the proton and neutron mass difference 1mp/n as

1mp ≡ mp −m = −1m

2
, (37)

1mn ≡ mn −m = 1m

2
, (38)

and the 3He and 3H binding energy difference 1B3He/3H as

1B3He ≡ Bmn=mp − B3He, (39)

1B3H = Bmn=mp − B3H. (40)

Then using Equations (35)–(38), we obtain

1B3He ≈ ∂E

∂me
1mp +

∂E

∂md
1mn = 〈2Te〉

me

1m

2
− 〈Td〉

md

1m

2

≈ 〈2Te − Td〉
1m

2m
. (41)

1B3H ≈ ∂E

∂me
1mn +

∂E

∂md
1mp = −〈2Te〉

me

1m

2
+ 〈Td〉

md

1m

2

≈ −〈2Te − Td〉
1m

2m
. (42)
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TABLE 4 | Same as Table 2 but for the Afnan-Tang potential model [13].

jmax = 6 jmax = 8 jmax = 10 jmax = 12 jmax = 14

Gmax B Gmax B Gmax B Gmax B Gmax B

20 6.567 20 6.617 20 6.619 20 6.619 20 6.619

30 6.605 30 6.664 30 6.682 30 6.688 30 6.688

40 6.608 40 6.668 40 6.687 40 6.693 40 6.695

50 6.608 50 6.668 50 6.687 50 6.694 50 6.696

TABLE 5 | Same as Table 2 but for the Malfliet-Tjon potential model [14].

jmax = 10 jmax = 14 jmax = 18 jmax = 20 jmax = 22

Gmax B Gmax B Gmax B Gmax B Gmax B

20 7.943 20 7.943 20 7.943 20 7.943 20 7.943

30 8.155 30 8.179 30 8.179 30 8.179 30 8.179

40 8.182 40 8.222 40 8.229 40 8.229 40 8.229

50 8.190 50 8.231 50 8.241 50 8.243 50 8.243

60 8.192 60 8.234 60 8.244 60 8.246 60 8.247

70 8.193 70 8.235 70 8.245 70 8.248 70 8.249

80 8.194 80 8.235 80 8.246 80 8.248 80 8.249

90 8.194 90 8.235 90 8.246 90 8.248 90 8.250

TABLE 6 | The 3H binding energy B (in MeV) calculated with the AV4′ potential
model [16] as function of Nmax , jmax , and G

max , using mn = mp and γ = 4 fm−1.

jmax = 10 jmax = 12 jmax = 14 jmax = 16

Nmax = 16 Gmax B Gmax B Gmax B Gmax B

20 8.682 20 8.682 20 8.682 20 8.682

40 8.923 40 8.956 40 8.970 40 8.975

60 8.927 60 8.960 60 8.975 60 8.981

80 8.927 80 8.960 80 8.975 80 8.981

Nmax = 20 Gmax B Gmax B Gmax B Gmax B

20 8.686 20 8.686 20 8.686 20 8.686

40 8.927 40 8.961 40 8.974 40 8.979

60 8.931 60 8.964 60 8.977 60 8.985

80 8.931 80 8.964 80 8.977 80 8.985

Nmax = 24 Gmax B Gmax B Gmax B Gmax B

20 8.687 20 8.687 20 8.687 20 8.687

40 8.928 40 8.962 40 8.975 40 8.980

60 8.932 60 8.965 60 8.980 60 8.986

80 8.933 80 8.966 80 8.981 80 8.987

In conclusion

1BPT ≡ B3H − B3He ≈ 〈2Te − Td〉
1m

m
≈ 〈T〉 1m

3m
, (43)

where the last equality holds assuming that 〈Te〉 = 〈Td〉 =
〈T〉 /3, since the 3He and 3H have a large S-wave component

TABLE 7 | The 3H binding energy B (in MeV) calculated with the AV4′ potential
model [16], using mn = mp, G

max = 60, Nmax = 24 ,and γ = 4 fm−1.

jmax 10 12 14 16 18 20

B 8.932 8.965 8.980 8.986 8.989 8.991

TABLE 8 | The 3H binding energy obtained using mn = mp (B(mp = mn )), the
3H

and 3He binding energies calculated taking into account the difference of masses

but no Coulomb interaction in 3He (B3H and B3He), the difference

1B = B3H − B3He, and the 3He binding energy calculated including also the

(point) Coulomb interaction (BC3He).

Potential model literature B(mp = mn) B3H
B3He

1B BC3He

Volkov 8.465 [1] 8.465 8.470 8.459 0.011 7.754

Afnan-Tang 6.6981 6.697 6.704 6.690 0.014 5.990

Malfliet-Tjon 8.253 [1] 8.250 8.257 8.243 0.014 7.516

Minnesota 8.386 [1] 8.385 8.389 8.381 0.008 7.706

AV4′ 8.9921 8.991 8.998 8.984 0.014 8.272

All the values are given in MeV. The results present in the literature for B(mp = mn ) are

also listed with the corresponding references.

(about 90 %). The results of 〈T〉 and 1BPT are listed in Table 9,
and are compared with the values for 1B calculated within the
NSHH and already listed in Table 8. By inspection of the table
we can see an overall nice agreement between this rough estimate
and the exact calculation for all the potential models. Only in the
case of the Minnesota and AV4′ potentials, 1BPT is 4 and 3 keV
larger than 1B, respectively. This can be understood by noticing
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TABLE 9 | Mean value for the kinetic energy operator 〈T〉, 1B estimated with the

perturbative theory (PT ), and 1B calculated with the NSHH for the different

potential models considered in this work.

Potential model 〈T〉 (MeV) 1BPT (MeV) 1BNSHH (MeV)

Volkov 23.798 0.011 0.011

Afnan-Tang 30.410 0.014 0.014

Malfliet-Tjon 30.973 0.014 0.014

Minnesota 27.216 0.012 0.008

AV4′ 37.599 0.017 0.014

See text for more details.

TABLE 10 | The 3
3
H binding energy B (in MeV) as function of jmax and Gmax ,

calculated with the Gaussian potential model of Clare and Levinger [18], using

Nmax = 20, and γ = 4 fm−1.

jmax = 6 jmax = 8 jmax = 10

Gmax B Gmax B Gmax B

0 0.510 0 0.510 0 0.510

2 1.070 2 1.070 2 1.070

4 1.776 4 1.776 4 1.776

6 2.211 6 2.211 6 2.211

8 2.371 8 2.371 8 2.371

10 2.476 10 2.476 10 2.476

12 2.551 12 2.551 12 2.551

20 2.659 20 2.660 20 2.660

30 2.692 30 2.693 30 2.693

40 2.700 40 2.701 40 2.701

50 2.702 50 2.703 50 2.703

that these potentials are spin-dependent, giving rise to mixed-
symmetry components in the wave functions. These components
are responsible for a reduction in 1BPT [23], related to the fact
that the nuclear force for the 3S1 np pair is stronger than for
the 1S0 nn (or pp) pair. Therefore, the kinetic energy for equal
particles 〈Te〉 is less than the kinetic energy for different particles
〈Td〉.

3.3. The 3
3
H Hypernucleus

The hypernucleus 3
3H is a bound system composed by a

neutron, a proton, and the 3 hyperon. In order to study this
system, we have considered the proton and the neutron as
reference-pair, with equal mass mn = mp = m, while the
3 particle has been taken as the third particle with different
mass. The 3 hyperon mass has been chosen depending on
the considered potential. We remind that we have used three
different potential models: a central spin-independent Gaussian
model [18], and two spin-dependent central potentials, labeled
MN9 [19] and AU [21] potentials. Therefore, when the 3

3H
hypernucleus has been studied using the Gaussian potential
of Clare and Levinger [18], we have set M3 = 6/5 mN ,
accordingly. In the other two cases, we have used M3 =
1115.683 MeV. We first study the convergence pattern of our

TABLE 11 | The 3
3
H binding energy B (in MeV) as function of Nmax , calculated

with the the Gaussian potential model of Clare and Levinger [18], using

Gmax = 20, jmax = 8, and γ = 4 fm−1.

Nmax 8 12 16 20

B 2.552 2.651 2.660 2.660

method, which in the case of the Gaussian potential of Clare and
Levinger [18] is really fast, with a reached accuracy of 1 keV
on the binding energy already with Nmax = 20, jmax = 10,
and Gmax = 50. This can be seen directly by inspection of
Tables 10 and 11.

The convergence pattern in the case of the spin-dependent
central MN9 and AU potentials has been found quite slower.
This is shown in Tables 12 and 13, respectively. By inspection of
Table 12, we can conclude that B = 2.280 MeV, with an accuracy
of about 3 keV, obtained with Gmax = 100, Nmax = 34, and
jmax = 14. By inspection of Table 13, B = 2.532 MeV, with an
accuracy of about 4 keV, going up to Gmax = 140, Nmax = 24,
and jmax = 16.

The results obtained with our method for the three potential
models considered in this work are compared with those present
in the literature [18, 19, 21] in Table 14, finding a very nice
agreement, within the reached accuracy.

4. CONCLUSIONS AND OUTLOOK

In this work we present a study of the bound state of a three-
body system, composed of different particles, by means of the
NSHH method. The method has been reviewed in section 2.
In order to verify its validity, we have started by considering
a system of three equal-mass nucleons interacting via different
central potential models, three spin-independent and two spin-
dependent. We have studied the convergence pattern, and we
have compared our results at convergence with those present in
the literature, finding an overall nice agreement. Then, we have
switched on the difference of mass between protons and neutrons
and we have calculated the difference of binding energy 1B due
to the difference between the neutron and proton masses. We
have found that 1B depends on the considered potential model,
but is always symmetrically distributed (see Equation (33)).

Finally we have implemented our method for the 3
3H

hypernucleus, studied with three different potentials, i.e., the
Gaussian potential of Clare and Levinger [18], for which we
have found a fast convergence of the NSHH method, the MN9
and the AU potentials of Ferrari Ruffino [19], for which the
convergence is much slower. In these last two cases, in particular,
we had found necessary to include a large number of the HH
basis (46104 for the MN9 and 52704 for the AU potentials), but
the agreement with the results in the literature has been found
quite nice. To be noticed that we have included only two-body
interactions, and therefore a comparison with the experimental
data is meaningless.

In conclusion, we believe that we have proven the NSHH
method to be a good choice for studying three-body systems
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TABLE 12 | The 3
3
H binding energy B (in MeV) as function of Gmax , jmax , and Nmax , calculated with the MN9 potential model of Ferrari Ruffino [19], using γ = 4 fm−1.

jmax = 6 jmax = 10 jmax = 12 jmax = 14

Nmax = 16 Gmax B Gmax B Gmax B Gmax B

50 2.174 50 2.201 50 2.205 50 2.207

60 2.178 60 2.205 60 2.209 60 2.211

70 2.181 70 2.207 70 2.211 70 2.213

80 2.181 80 2.208 80 2.212 80 2.214

90 2.182 90 2.208 90 2.212 90 2.215

100 2.182 100 2.208 100 2.212 100 2.215

Nmax = 20 Gmax B Gmax B Gmax B Gmax B

50 2.206 50 2.232 50 2.236 50 2.239

60 2.213 60 2.238 60 2.242 60 2.245

70 2.216 70 2.241 70 2.246 70 2.248

80 2.219 80 2.243 80 2.248 80 2.250

90 2.220 90 2.244 90 2.249 90 2.251

100 2.220 100 2.244 100 2.249 100 2.252

Nmax = 24 Gmax B Gmax B Gmax B Gmax B

50 2.219 50 2.243 50 2.247 50 2.250

60 2.227 60 2.251 60 2.255 60 2.257

70 2.232 70 2.255 70 2.259 70 2.261

80 2.235 80 2.257 80 2.261 80 2.264

90 2.236 90 2.259 90 2.263 90 2.266

100 2.236 100 2.260 100 2.264 100 2.267

Nmax = 28 Gmax B Gmax B Gmax B Gmax B

50 2.222 50 2.248 50 2.252 50 2.255

60 2.233 60 2.257 60 2.261 60 2.264

70 2.240 70 2.263 70 2.267 70 2.269

80 2.244 80 2.266 80 2.270 80 2.272

90 2.246 90 2.268 90 2.272 90 2.274

100 2.248 100 2.269 100 2.273 100 2.276

Nmax = 32 Gmax B Gmax B Gmax B Gmax B

50 2.225 50 2.249 50 2.253 50 2.256

60 2.236 60 2.258 60 2.262 60 2.265

70 2.243 70 2.264 70 2.268 70 2.272

80 2.247 80 2.268 80 2.273 80 2.275

90 2.250 90 2.272 90 2.275 90 2.277

100 2.252 100 2.273 100 2.276 100 2.279

Nmax = 34 Gmax B Gmax B Gmax B Gmax B

50 2.225 50 2.249 50 2.253 50 2.256

60 2.237 60 2.259 60 2.263 60 2.266

70 2.244 70 2.265 70 2.269 70 2.272

80 2.248 80 2.269 80 2.274 80 2.276

90 2.251 90 2.273 90 2.276 90 2.278

100 2.253 100 2.274 100 2.277 100 2.280
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TABLE 13 | Same as Table 12 but using the AU potential model of Ferrari Ruffino et al. [21] for Nmax = 16, 20, 24.

jmax = 6 jmax = 10 jmax = 12 jmax = 14 jmax = 16

Nmax = 16 Gmax B Gmax B Gmax B Gmax B Gmax B

20 1.436 20 1.508 20 1.521 20 1.521 20 1.521

30 1.924 30 2.037 30 2.051 30 2.056 30 2.056

40 2.137 40 2.243 40 2.258 40 2.267 40 2.270

50 2.250 50 2.349 50 2.363 50 2.372 50 2.375

60 2.314 60 2.408 60 2.421 60 2.430 60 2.433

70 2.355 70 2.445 70 2.455 70 2.461 70 2.467

80 2.379 80 2.466 80 2.476 80 2.484 80 2.485

90 2.394 90 2.479 90 2.489 90 2.497 90 2.499

100 2.402 100 2.486 100 2.498 100 2.503 100 2.506

110 2.406 110 2.489 110 2.504 110 2.510 110 2.514

120 2.408 120 2.491 120 2.507 120 2.513 120 2.518

130 2.409 130 2.492 130 2.509 130 2.515 130 2.520

140 2.409 140 2.492 140 2.510 140 2.516 140 2.521

Nmax = 20 Gmax B Gmax B Gmax B Gmax B Gmax B

20 1.438 20 1.522 20 1.522 20 1.522 20 1.522

30 1.925 30 2.038 30 2.053 30 2.057 30 2.057

40 2.139 40 2.245 40 2.259 40 2.268 40 2.271

50 2.252 50 2.351 50 2.364 50 2.373 50 2.376

60 2.317 60 2.409 60 2.423 60 2.431 60 2.435

70 2.357 70 2.446 70 2.458 70 2.466 70 2.469

80 2.384 80 2.470 80 2.480 80 2.488 80 2.491

90 2.402 90 2.485 90 2.495 90 2.501 90 2.505

100 2.413 100 2.494 100 2.504 100 2.512 100 2.515

110 2.421 110 2.501 110 2.510 110 2.518 110 2.521

120 2.426 120 2.505 120 2.514 120 2.521 120 2.525

130 2.429 130 2.507 130 2.516 130 2.524 130 2.527

140 2.430 140 2.508 140 2.517 140 2.526 140 2.528

Nmax = 24 Gmax B Gmax B Gmax B Gmax B Gmax B

20 1.438 20 1.523 20 1.523 20 1.524 20 1.524

30 1.926 30 2.039 30 2.053 30 2.057 30 2.057

40 2.139 40 2.245 40 2.259 40 2.268 40 2.271

50 2.252 50 2.351 50 2.364 50 2.373 50 2.377

60 2.317 60 2.410 60 2.423 60 2.432 60 2.435

70 2.357 70 2.446 70 2.458 70 2.467 70 2.470

80 2.385 80 2.471 80 2.481 80 2.488 80 2.492

90 2.402 90 2.485 90 2.496 90 2.502 90 2.506

100 2.414 100 2.494 100 2.505 100 2.513 100 2.516

110 2.423 110 2.502 110 2.511 110 2.519 110 2.522

120 2.429 120 2.507 120 2.516 120 2.523 120 2.526

130 2.433 130 2.510 130 2.519 130 2.527 130 2.530

140 2.437 140 2.511 140 2.521 140 2.530 140 2.532

TABLE 14 | The 3
3
H binding energy B (in MeV) obtained in the present work is

compared with the results present in the literature.

Potential model B literature

Gaussian 2.703 2.71 [18]

MN9 2.280 2.27 [19]

AU 2.532 2.530 [21]

composed of two equal mass particles, different from the mass
of the third particle. Besides 3H, 3He, and 3

3H, several other
nuclear systems can be viewed as three-body systems of different
masses. This applies in all cases where a strong clusterization is
present, as in the case of 6He and 6Li nuclei, seen as NNα , or
the 9Be and 9B, seen as a ααN three-body systems. Furthermore,
taking advantage of the versatility of the HH method also
for scattering systems, the NSHH approach could be extended
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as well to scattering problems. Work along these lines are
currently underway.
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APPENDIX: THE TRANSFORMATION
COEFFICIENTS

Let us start by writing Equation (29) as

a
(p→p′),G,3
ℓ1 ,ℓ2 ,n,ℓ

′
1 ,ℓ

′
2 ,n

′ =
∫

d�(p′) [H[ℓ′1 ,ℓ
′
2 ,n

′ ,33z](�
(p′))]†

H[ℓ1 ,ℓ2 ,n,33z](�
(p)), (A1)

where ℓi (ℓ
′
i) is the orbital angular momentum associated with

the Jacobi coordinate y
(p)
i (y

(p′)
i ). It can be demonstrated by direct

calculation and exploiting the spherical harmonics proprieties
that

a
(p→p′),G,L
ℓ1 ,ℓ2 ,n,ℓ

′
1 ,ℓ

′
2 ,n

′ = N
ℓ′1 ,ℓ

′
2

n′ N
ℓ1 ,ℓ2
n

1

2

∫ π
2

0
dφ

∫ 1

−1
dµ (cosφ(p′))2+ℓ′2 (sinφ(p′))2+ℓ′1

× P
ℓ′1+1/2,ℓ′2+1/2

n′ (cos 2φ(p′))Pℓ1+1/2,ℓ2+1/2
n (cos 2φ(p))

×
∑

λ,λ1 ,λ2

C
(p),(p′)
ℓ1 ,ℓ2 ,λ1 ,λ2

(sinφ(p′), cosφ(p′))Pλ(µ)

×(−)3+λ2+ℓ′2 (2λ + 1)ℓ̂′1ℓ̂′2λ̂1λ̂2

×
{

ℓ′1 ℓ′2 3

λ2 λ1 λ

}(

ℓ′1 λ1 λ

0 0 0

)(

ℓ′2 λ2 λ

0 0 0

)

. (A2)

Here the curly brackets indicate the 6j Wigner coefficients, and

the coefficients C
(p),(p′)
ℓ1 ,ℓ2 ,ℓ

′
1 ,ℓ

′
2
(sinφ(p′), cosφ(p′)) are defined as

C
(p),(p′)
ℓ1 ,ℓ2 ,ℓ

′
1 ,ℓ

′
2
(sinφ(p′), cosφ(p′))

=
∑

λ1+λ2=ℓ1

∑

λ′1+λ′2=ℓ2

(sinφ(p′))λ1+λ′1 (cosφ(p′))λ2+λ′2

× (α
(p)

11(p′))
λ1 (α

(p)

12(p′))
λ2 (α

(p)

21(p′))
λ′1 (α

(p)

22(p′))
λ′2

× (−)λ1+λ2+λ′1+λ′2 Dℓ1 ,λ1 ,λ2Dℓ2 ,λ
′
1 ,λ

′
2

× ℓ̂1ℓ̂2ℓ̂
′
1ℓ̂

′
2λ̂1λ̂2λ̂

′
1λ̂

′
2

(

λ1 λ′1 ℓ′1
0 0 0

)

×
(

λ2 λ′2 ℓ′2
0 0 0

)











λ1 λ2 ℓ1

λ′1 λ′2 ℓ2

ℓ′1 ℓ′2 3











. (A3)

In Equation (A3) ℓ̂ ≡
√
2ℓ + 1, and the round (curly) brackets

denote 3j (9j) Wigner coefficients. The coefficients α
(p)

ij(p′), with

ij = 1, 2 are given by

y
(p)
i =

2
∑

j=1

α
(p)

ij(p′)y
(p′)
j , (A4)

and depend on the (different) masses of the three particles, and
Dℓ,ℓa ,ℓb is defined as

Dℓ,ℓa ,ℓb =
√

(2ℓ + 1)!

(2ℓa + 1)! (2ℓb + 1)!
. (A5)
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