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Starting from the dual Lagrangians recently obtained for (partially) massless spin-2

fields in the Stueckelberg formulation, we write the equations of motion for (partially)

massless gravitons in (A)dS in the form of twisted-duality relations. In both cases,

the latter admit a smooth flat limit. In the massless case, this limit reproduces the

gravitational twisted-duality relations previously known for Minkowski spacetime. In the

partially-massless case, our twisted-duality relations preserve the number of degrees of

freedom in the flat limit, in the sense that they split into a decoupled pair of dualities for

spin-1 and spin-2 fields. Our results apply to spacetimes of any dimension greater than

three. In four dimensions, the twisted-duality relations for partially massless fields that

appeared in the literature are recovered by gauging away the Stueckelberg field.

Keywords: electric-magnetic duality, dual graviton, Stueckelberg formalism, constant curvature spacetimes,

partially massless fields

1. INTRODUCTION AND CONVENTIONS

Electric-magnetic duality, the symmetry of vacuum Maxwell equations under the exchange of
electric and magnetic fields that interchanges dynamical equations with Bianchi identities, has
counterparts in other physical systems, including supersymmetric field theories, linearised gravity
and free higher-spin gauge theories. In supersymmetric Yang-Mills theories, electric-magnetic
duality—see Olive andWest [1] and references therein—acts as a strong/weak duality and, as such,
has found applications in the study of non-perturbative phenomena like confinement (see e.g., [2]).
In extended supergravity theories it is part of the U-duality symmetry and, since the pioneering
work [3], it has been extensively studied.

If the dimension of spacetime is bigger than four, electric-magnetic duality actually links
different descriptions of the same physical system. For linearised gravity on a flat background
in n dimensions, for instance, it relates the Fierz-Pauli description in terms of the tensor hab
with a description in terms of an irreducible mixed-symmetry tensor Ta1...an−3|b, completely
antisymmetric in its first n−3 indices. This link has however been established only at the linearised
level: non-linear Einstein gravity cannot be reproduced in the dual mixed-symmetry picture by
means of local interactions [4, 5]. The problems encountered in the attempts to lift gravitational
dualities from the linearised formulation in flat background to the interacting level suggest that the
study of electric-magnetic duality in curved backgrounds may be particularly promising. Positive
results about interaction vertices for mixed-symmetry fields are indeed available in this context [6]
and may indicate a way to extend the duality to the interacting theory.

Recently Boulanger et al. [7], built manifestly covariant action principles in the Stueckelberg
formulation for dual massless, partially massless and massive spin-2 fields in maximally symmetric
spacetimes of arbitrary dimensions n > 3 , such that the degrees of freedom are preserved in the
flat limit. The action principles for the dual fields were also related to the standard ones for such
field theories by building on the previous works [8–19]. See also Mignaco [20] for references on
earlier works.
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In this Letter we focus on the massless and partially-massless
cases and formulate the field equations derived from the actions
of Boulanger et al. [7] as twisted-duality relations. In the
massless case, our twisted-duality relation—see Equation 2.34—
generalizes to (A)dS backgrounds the twisted-duality relation
written in Hull [21, 22] for linearised Einstein gravity in flat
spacetimes. Our duality relation actually smoothly reproduces
the latter duality relation in the flat limit, thanks to the crucial
role played by the Stueckelberg fields.

In the case of a partially-massless spin-2 field [23], the
twisted-duality relation that we obtain—see Equation 3.35—
has a smooth flat limit that reproduces a couple of twisted-
duality relations in flat background, one for a massless spin-2
field and the other for a massless spin-1 field, thereby
correctly accounting for the degrees of freedom of a partially-
massless spin-2 field. Moreover, keeping the cosmological
constant non-zero and setting the dimension of spacetime
to n = 4 , our twisted-duality relation reproduces the one
given in Hinterbichler [24], upon eliminating the Stueckelberg
field.

Twisted-duality relations are interesting for many reasons. In
particular they relate, for a pair of dual theories, the Bianchi
identities of one system to the field equations of the dual one,
and vice versa. In the present work, we show that the field
equations of two dual theories are formulated as a twisted-duality
equation, although we note that the latter is not obtained from
a variational principle that is manifestly spacetime covariant.
Forgoing the latter requirement, for linearised Einstein theory
around flat spacetime Bunster et al. [25] gave an action principle
that yields the twisted self-duality conditions as equations of
motion, keeping the graviton and its dual on equal footing.
Finally, let us mention that, for the fully nonlinear Einstein-
Hilbert theory, an action principle was given in Boulanger
and Hohm [26] where both the graviton and its dual appear
inside the action, albeit not on an equal footing and together
with extra auxiliary fields. For recent interesting works where
twisted (self) duality relations play a central role and for
more references, see Henneaux et al. [27–29] and Lekeu
[30].

As for our conventions, we work on constant-curvature
spacetimes with either negative or positive cosmological constant
3 . We denote the number of spacetime dimensions by n and
define the quantity λ2 = − 2 σ 3

(n−1)(n−2)
, σ = ±1 , that is

always positive. When the background is AdSn one has σ =
1 , while σ = −1 for dSn . The commutator of covariant
derivatives gives [∇a,∇b]Vc = − σλ2

(
gacVb − gbcVa

)
, where

gab is the background (A)dSn metric. The symbols ǫa1···an and
ǫa1···an denote the totally antisymmetric tensors obtained from
the corresponding densities upon multiplication and division by√−g .

2. MASSLESS SPIN-2 TWISTED DUALITY

2.1. Fierz-Pauli Formulation
In the Fierz-Pauli formulation for amassless spin-2 field around a
maximally-symmetric spacetime of dimension n , the Lagrangian
(where we omit the factor

√−g for the sake of conciseness) is

given by

L
FP =− 1

2 ∇ahbc∇
ahbc + ∇ahbc∇chba + 1

2 ∇ah∇
ah

− ∇ah∇bh
ab − (n−1)σλ2

2

(
2 habh

ab − h2
)
.

(2.1)

It is invariant, up to a total derivative, under the gauge
transformations1

δhab = 2∇(aξb) . (2.2)

The primary gauge-invariant quantity for the Fierz-Pauli theory
is given by

Kab|mn = − 1
2

(
∇a∇[mhn]b − ∇b∇[mhn]a +∇m∇[ahb]n

−∇n∇[ahb]m
)
+ σλ2

(
ga[mhn]b − gb[mhn]a

)
.

(2.3)

It possesses the same symmetries as the components of the
Riemann tensor,

K[ab|c]d ≡ 0 , (2.4)

and obeys the differential Bianchi identity

∇[aKbc]|mn ≡ 0 . (2.5)

The field equations derived from the Lagrangian L
FP imply the

tracelessness of the curvature:

Kmn : = gab Kma|nb ≈ 0 , (2.6)

where weak equalities are used throughout this paper to indicate
equalities that hold on the surface of the solutions to the
equations of motion. More precisely, defining K = gabKab , the
left-hand side of the field equations read

δLFP

δhab
≡ −2

(
Kab − 1

2 gabK
)
. (2.7)

By virtue of the differential Bianchi identity for the curvature, one
also finds that, on-shell, the curvature has vanishing divergence:

∇mKmn|ab ≈ 0 . (2.8)

To summarize, the important equations in this section are 2.4,
2.5, and 2.6. The latter relation was derived from the Lagrangian
L
FP . For the purpose of deriving a twisted-duality relation, we

can actually forget the origin of 2.6 and focus on the three
Equations 2.4, 2.5, and 2.6.

1Indices enclosed between (square) round brackets are (anti)symmetrised,

and dividing by the number of terms involved is understood (strength-one

convention). Moreover, we will use a vertical bar to separate groups of

antisymmetrised indices, see e.g., Equation 2.3.
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2.2. Dual Formulation
We start from the dual formulation of the massless spin-2
theory as given by the Lagrangian L0(Ŷ ,W) in Equation (20) of
Boulanger et al. [7]:

L0(Ŷ ,W) = 1
λ2

[
1
2 ∇cW

abc|d∇eWdbe|a + λ Ŷab|c∇eWcbe|a

+ σ
2(n−2)

∇bŶab|c∇dŶcd|a + λ2

2 Ŷab|cŶac|b
]
.

(2.9)

This Lagrangian describes the propagation of the same degrees
of freedom as the Fierz-Pauli one in Equation 2.1. It has been
built in two steps: a Lagrangian depending only on the field
Ŷab|c (that is a traceless combination of the components of the
spin connection) is obtained by eliminating the vielbein from
the first-order formulation of linearised gravity in (A)dS. The full
Lagrangian 2.9 then results from the Stueckelberg shift

Ŷbc|
a → Ŷbc|

a + 1
λ
∇dWbcd|

a . (2.10)

The Lagrangian 2.9 possesses as many differential gauge
symmetries as the Lagrangian obtained in Boulanger et al.
[13] that describes dual (linearised) gravity in Minkowski
background.

We now define the following quantities

Rab|
cd
: = 2∇[a|

(
∇eWcde

|b] + λ Ŷcd
|b]

)
, (2.11)

Kab|
d
: = 2∇[a|∇cŶ

cd
|b] + 2σ (n− 2)λ

(
∇cWcd

[a|b] + λ Ŷd
[a|b]

)
,

(2.12)

together with their various non-vanishing traces

Ra|
c = Rab|

cb , Ka = Kab|
b . (2.13)

Further introducing the traceless tensor Vab|cd encoding the

traceless projection of Rab|cd ,

Vab|
cd = Rab|

cd − 4
n−2 δ[c[aRb]|

d] , (2.14)

we find that Vab|cd is invariant under the following gauge
transformations:

δŶbc|
a=∇dζ bcd|

a+∇a3bc+ 2
n−1 δa

[b∇d3c]d + (n− 3)σλχbc
a,

(2.15)

δWbcd|
a = ∇eυbcde|

a + ∇aχbcd − 3
n−2 δa

[b∇eχ cd]e − λ ζ bcd|
a .

(2.16)

Finally, the traceless tensor

Xab|
c
: = Kab|

c + 2
n−1 δc[aKb] (2.17)

is also found to be gauge invariant.

As in Boulanger et al. [7], one can also express the fields W

and Ŷ in terms of their Hodge duals, that we denote by C and T:2

Wabc|
d = − 1

(n−3)!
ǫe[n−3]abcCe[n−3]|d ,

Ŷab|
d = − 1

(n−2)!
ǫe[n−2]abTe[n−2]|d . (2.18)

The corresponding curvatures are obtained from the previous
gauge-invariant tensors V and X as follows:

KC
a[n−2]|bc =

1
2! ǫa[n−2]de Vbc|

de , KT
a[n−1]|bc = ǫa[n−1]d Xbc|

d .

(2.19)

In components, the curvature tensors read

KC
a[n−2]|

bc = 2(n− 2)(−1)n−1∇[b∇aCa[n−3]|
c] + 2λ∇[bTa[n−2]|

c] + . . . ,

(2.20)

KT
a[n−1]|

bc = 2(n− 1)(−1)n∇[b∇aTa[n−2]|
c]

− 2σλ(n− 1)(n− 2)2 δ[ba∇aCa[n−3]|
c]

+ 2σλ2(n− 1)(n− 2)Ta[n−2]|
[bδa

c]+ . . . , (2.21)

where the ellipses denote terms that are necessary to ensure
GL(n)-irreducibility of the curvaturesKC

a[n−2]|bc andKT
a[n−1]|bc

on the two-column Young tableaux of types [n − 2, 2] and
[n–1, 2], respectively. Pictorially, they are represented by

a1 b

a2 c

...
an−2

and

a1 b

a2 c

...
an−2

an−1

.

Indeed, tracelessness of Vbc|de and Xab|c implies that the Hodge

dual tensorsKC
a[n−2]|bc andK

T
a[n−1]|bc obey the following algebraic

Bianchi identities:

KC
a[n−2]|ac ≡ 0 , KT

a[n−1]|ac ≡ 0 . (2.22)

The two curvatures are linked via the following differential
Bianchi identities:

∇aKC
a[n−2]|

bc ≡ λ
(−1)n(n−3)
(n−1)(n−2)

KT
a[n−1]|

bc , (2.23)

∇[bKC
a[n−2]|

cd] ≡ λ 1
n−2 K

T
a[n−2]

[b|cd] . (2.24)

These are equivalent to the following two identities:

∇dVab|
cd ≡ − λ n−3

n−2 Xab|
c , ∇[bVcd]|

ij ≡ λ 2
n−2 δ[b

[iXcd]|
j] .

(2.25)

The equations of motion for the dual gauge fields Ca[n−3]|b and
Ta[n−2]|b derived from the Lagrangian L0(C,T)—obtained by
substituting 2.18 in 2.9 and given in Equation (23) of Boulanger

2We substitute groups of antisymmetrised indices with a label denoting the total

number of indices, e.g., ǫa1 ···an ≡ ǫa[n] . Moreover, repeated indices denote an

antisymmetrisation, e.g., AaBa ≡ A[a1Ba2].

Frontiers in Physics | www.frontiersin.org 3 November 2018 | Volume 6 | Article 129

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Boulanger et al. Spin-2 Twisted Duality in (A)dS

et al. [7]—can be written in terms of the traces of the gauge-

invariant curvatures KC
a[n−2]|b[2] and KT

a[n−1]|b[2] . Explicitly, one
has

δL0

δCa[n−3]|b
≡ 1

λ2(n−3)!

(
KC

a[n−3]c|
c
b + n−3

2 KC
a[n−4]cd|

cd g
ab

)
≈ 0 ,

(2.26)

δL0

δTa[n−2]|b
≡ σ

λ2(n−2)2(n−3)!

(
KT

a[n−2]c|
c
b + n−2

2 KT
a[n−3]cd|

cd g
ab

)
≈ 0.

(2.27)

The field equations 2.26 and 2.27 can easily be obtained by starting
from the field equations of the Lagrangian L0(W, Ŷ) and then
expressing the fields Wabc|

d and Ŷab|
c in terms of their Hodge

duals Ca[n−3]|b and Ta[n−2]|b , respectively. More in details, the

left-hand sides of the field equations derived from L0(W, Ŷ) read

δL0(W, Ŷ)

δWabc|
d

= 1
2λ2

V[ab|c]
d ,

δL0(W, Ŷ)

δŶab|
d

= − σ
2(n−2)λ2

Xab|
d ,

(2.28)

and the gauge invariant tensors X and V can be expressed as

Xab|
d = − 1

(n−1)!
ǫc[n−1]d KT

c[n−1]|ab ,

Vab|
cd = − 1

(n−2)!
ǫe[n−2]cd KC

e[n−2]|ab . (2.29)

The field equations 2.26 and 2.27 imply the tracelessness of the
curvatures:

KC
a[n−3]c|

c
b ≈ 0 , KT

a[n−2]c|
c
b ≈ 0 . (2.30)

In fact, from a result in representation theory of the orthogonal
group—see the theorem on p. 394 of Hamermesh [31]—, the
second equation above implies that

KT
a[n−1]|bc ≈ 0 . (2.31)

The curvature for the field T thus vanishes on shell, consistently
with the observation that this field does not propagate any
degrees of freedom in the flat limit [7, 19].

Upon using the first and second differential Bianchi identities
2.23 and 2.24, we also find the following two relations that are
true on shell:

∇aKC
a[n−2]|

bc ≈ 0 , ∇[bKC
a[n−2]|

cd] ≈ 0 . (2.32)

These equations, together with 2.30, imply that the divergences
of the curvature KC vanish on shell:

∇aKC
ab[n−3]|cd ≈ 0 , ∇bKC

a[n−2]|bc ≈ 0 . (2.33)

To summarise, the important equations of this section are the
equations of motion 2.30 and the Bianchi identities 2.22, 2.23
and 2.24. In the following section we will relate them to the
field equations and the Bianchi identities of the Fierz-Pauli
formulation via a twisted-duality relation.

2.3. Massless Twisted Duality
The twisted-duality relations for the massless spin-2 theory
around (A)dS backgrounds are

KC
a[n−2]|bc ≈

1
2 ǫa[n−2]ij K

ij|
bc . (2.34)

As usual for twisted-duality relations, the Bianchi identities in a
formulation of the theory are mapped to the field equations of the
dual formulation, and vice versa, as we now explain in details.

First, the algebraic Bianchi identity 2.22 for the left-hand
side of the twisted-duality relation 2.34 implies that the trace of
Kab|cd vanishes on-shell, which is the field equation 2.6 in the
metric formulation. The converse is true: If one takes the trace
of the relation 2.34, the right-hand side vanishes by virtue of the
algebraic Bianchi identity 2.4. This implies that the trace of the
left-hand side of 2.34 vanishes, which enforces the field equation
2.30 in the dual formulation.

Second, starting again from the twisted-duality equation 2.34,
the differential Bianchi identity 2.24 on the second column of
KC combined with the Bianchi differential identity 2.5 imply
the on-shell vanishing of KT , that is, 2.31. Using this result, the
differential Bianchi identity 2.23 on the first column of KC gives
the first equation of 2.32 that implies in its turn, via 2.34, the
field equation 2.8 in the metric formulation of the massless spin-2
theory. The converse is also true: acting on the twisted-duality
relation 2.34 with ∇a gives identically zero, from the right-hand
side and as a consequence of the differential Bianchi identity
2.5 for the curvature in the metric formulation of linearised
gravity around (A)dS. This implies the first field equation 2.33
for the dual graviton. Moreover, acting on 2.34 with ∇d and
antisymmetrising over the three indices {b, c, d} gives identically
zero from the right-hand side of 2.34, as a consequence of 2.5.
That implies the field equation 2.31 (and therefore the second
field equation 2.32) by virtue of the identity 2.24. Finally, the field
equation 2.8 is mapped to the second field equation in 2.33.

Third, the twisted-duality relation 2.34 exactly reproduces,
in the limit where the cosmological constant goes to zero, the
twisted-duality relations given by Hull [22] for linearised gravity
in flat spacetime, see also section 4 of Bekaert and Boulanger [32].

3. PARTIALLY-MASSLESS SPIN-2 TWISTED

DUALITY

3.1. Standard Stueckelberg Formulation
We consider the Stueckelberg Lagrangian for a partially-massless,
symmetric spin-2 field in which both signatures are allowed
(making AdS manifestly non-unitary at the classical level):

LPM = − 1
2 ∇ahbc∇

ahbc +∇ahbc∇chba + 1
2 ∇ah∇

ah−∇ah∇bh
ab

− (n−1)σλ2

2

(
2habh

ab−h2
)
+ σ ∇[aAb]∇[aAb]+(n− 1)λ2AaA

a

−2m̃ Aa

(
∇ah−∇bhab

)
+ σ m̃2

(
habh

ab − h2
)
, (3.1)

where the partially massless theory really appears in the limit

m̃2 −→ (n− 2)λ2

2
. (3.2)

Frontiers in Physics | www.frontiersin.org 4 November 2018 | Volume 6 | Article 129

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Boulanger et al. Spin-2 Twisted Duality in (A)dS

The last two lines in the expression 3.1 are new terms in
comparison with the Lagrangian for a strictly massless spin-2
field in (A)dS, see 2.1. In the limit 3.2, the Lagrangian
LPM is invariant, up to total derivatives, under the gauge
transformations

δhab = 2∇(aξ b) + 2m̃
n−2 gab ǫ , δAa = ∇aǫ + 2 σ m̃ ξa .

(3.3)

The quantity

Hab = hab − σ
m̃ ∇(aAb) (3.4)

is invariant under the gauge transformations with parameter ξa ,
but not under the gauge transformations with parameter ǫ . A
fully gauge-invariant quantity is provided by the antisymmetrised
curl of Hab . Indeed, defining

Kab|c : = 2∇c∇[aAb] − 4σλ2gc[aAb] − 4σ m̃∇[ahb]c ≡ −4σ m̃∇[aHb]c ,

(3.5)

we have thatKab|c is fully gauge invariant in the partially massless
limit 3.2, hence so is ∇[aHb]c . We further define the derived

quantity Qab|mn as follows:

Qab|mn=− 1
2

(
∇a∇[mHn]b−∇b∇[mHn]a+∇m∇[aHb]n−∇n∇[aHb]m

)

+ (1− 2m̃2

(n−2)λ2
) σλ2

(
ga[mHn]b − gb[mHn]a

)
. (3.6)

It possesses the symmetries of the components of the Riemann
tensor, like Kab|cd in the massless case. The second line of the
above expression is identically vanishing in the limit 3.2, so that
Qab|mn is indeed a composite object purely built out of the gauge-
invariant quantity ∇[aHb]c . The writing that we adopted in 3.6
facilitates the relation between Kab|cd and Qab|cd . The interest in
defining 3.6 rests in the fact that the field equations for hab read

δLPM

δhab
≡ −2Gab , where Gab : = (Qac|b

c − 1
2 gab Q

cd|
cd) .

(3.7)

As a consequence, the field equations for hab imply that the
curvature Qab|cd is traceless on-shell, as it was for Kab|cd in the
strictly massless case.

The Noether identities associated with the gauge parameter ξa
give the left-hand side of the field equations for the vector Aa :

δLPM

δAa
≡ −2σ

m̃
∇bGab . (3.8)

The non-vanishing of the covariant divergence of Gab is also
related to the Bianchi identity

∇[aQbc]|
mn ≡ − m̃

n− 2
δ[a[mK

bc]|
n] , (3.9)

where the gauge-invariant quantity Kab|c was defined above in
3.5 and satisfies the identity K[ab|c] ≡ 0 . In terms of Kab|c , the
left-hand side of the field equations for Aa reads

δLPM

δAa
≡ σ Kab|

b , (3.10)

so that the field equations for Aa imply that the curvatureKab|c is
traceless on-shell.

3.2. Dual Formulation
We now consider the dual formulation of the partially-massless
spin-2 theory that is described by the Lagrangian LPM(W,U) in
Equation (39) of Boulanger et al. [7]:

LPM(W,U) = − 1
2λ2

∇dWbcd|a∇eWabe|c + σ
m̃
Uabc∇dW

abd|c

− σ
2(n−2)m̃2 ∇cUabc∇dUabd − λ2

2m̃2 U
abcUabc .

(3.11)

A Lagrangian depending only on the field Wabc|d has first
been obtained by solving the equations of motion given by
the variation of the vielbein in a first-order formulation of the
partially-massless theory. In analogy with the massless case, the
additional field Uabc has then been introduced by a Stueckelberg
shift.

Starting from 3.11 one can define the following quantities

Rab|
cd
: = 2∇[a|

(
∇eWcde

|b] − σλ2

m̃ U|b]
cd

)
, (3.12)

K
U
ab|

c
: = 2∇[a∇eUb]

c
e + 2(n− 2)m̃

(
∇eWec

[a|b] − σλ2

m̃ Uab
c
)
,

(3.13)

together with the successive traces

Ra|
c = Rab|

cb , R = Ra|
a ≡ 0 , K

U
a = K

U
ab|

b ≡ 0 .
(3.14)

In a similar manner to the massless case, we introduce the
traceless tensor Vab|cd according to

Vab|
cd = Rab|

cd − 4
n−2 δ[c[aRb]|

d] , (3.15)

and we find that the tensors Vab|cd and K
U
abc

are invariant under
the following gauge transformations:

δWbcd|
a=∇eυbcde|

a+∇aχbcd − 3
n−2 δa

[b∇eχ cd]e − σλ2

m̃ ρbcd
a ,

(3.16)

δUabc = ∇dρabcd − (n− 3)m̃χabc. (3.17)

Also in this case, we then express W and U in terms of their
Hodge duals

Wabc|
d=− 1

(n−3)!
ǫe[n−3]abcCe[n−3]|d , Uabc=− 1

(n−3)!
ǫd[n−3]abcAd[n−3].

(3.18)

The curvature tensor for C is defined, as in the massless case, by

K
C
a[n−2]|bc =

1
2! ǫa[n−2]de Vbc|

de . (3.19)

We also define the curvature K̃a[n−2]|
b via

K
U
ab|

c = (−1)n−1 2

(n− 2)!
ǫd[n−2][a

c
K̃
d[n−2]|

b] . (3.20)
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In order to invert this relation, we first compute

(−1)n

2 ǫd[n−2]ab
K
U
ab|c = K̃

d[n−2]|
c − (n− 2)δdc K̃

ed[n−3]|
e

(3.21)

and take the trace of the above relation, which produces

K̃
ab[n−3]|

a = 1
4 ǫb[n−3]cde

K
U
cd|e . (3.22)

Inserting this relation back in 3.21 gives

K̃
a[n−2]|

b = (−1)n

2 ǫa[n−3]cde
(
δae K

U
cd|b − n−2

2 δab K
U
cd|e

)
.

(3.23)

Explicitly, we have

K̃
a[n−2]|b = (n− 2)

(
∇b∇aAa[n−3] + (n− 2)m̃∇aCa[n−3]|b

−σ (n− 2)λ2 gab Aa[n−3]
)
, (3.24)

which is gauge invariant under [7]

δCa[n−3]|b = (−1)n−1(n− 3)
(
∇aυ̃a[n−4]|b − σλ2

m̃ gba ρ̃a[n−4]

)

+ n−3
n−2

(
∇bχ̃a[n−3] + (−1)n∇aχ̃a[n−4]b

)
, (3.25)

δAa[n−3] = (n− 3)
(
(−1)n−1∇aρ̃a[n−4] − m̃ χ̃a[n−3]

)
. (3.26)

The curvatures obey the following algebraic Bianchi identities

K
C
a[n−2]|ab ≡ 0 , K̃a[n−2]|a ≡ 0 , (3.27)

which means that KC
a[n−2]|bc and K̃a[n−2]|b are projected on the

following GL(n)-irreducible Young tableaux
a1 b

a2 c

...
an−2

and

a1 b

a2

...
an−2

.

The left-hand sides of the equations of motion derived from the
Lagrangian 3.11 are given by

δLPM

δWabc|d
= 1

2λ2
V
[ab|c]

d ,
δLPM

δUabc
= σ

2(n−2)m̃2 K
[ab|c]
U . (3.28)

Combining with what we obtained above, the field equations
therefore imply

K̃a[n−3]b|
b ≈ 0 , K

C
a[n−3]b|

bc ≈ 0 . (3.29)

The Bianchi identities read

∇dVab|
cd ≡ − σλ2(n−3)

(n−2)m̃
K

U
ab|

c , ∇[aVbc]|
de ≡ 2σλ2

m̃(n−2)
δ[d[a K

U
bc]|

e] .

(3.30)

In terms of the curvatures KC and K̃ , they become

∇aK
C
a[n−2]|

bc ≡ (−1)n 2σλ2(n−3)
m̃(n−2)

δ[ba K̃a[n−2]|
c] , (3.31)

∇[a
K
C
d[n−2]|

bc] ≡ − 2σλ2

m̃ K̃
[a
d[n−3]|

b δc]d . (3.32)

By taking a trace of the Bianchi identity and using the field
equations, one therefore deduces that

∇b
K
C
a[n−2]|bc ≈ (−1)n (n−3)σλ2

(n−2)m̃
K̃a[n−2]|c , (3.33)

∇b
K
C
a[n−3]b|

cd ≈ − 2σλ2

(n−2)m̃
K̃
[c
a[n−3]|

d] . (3.34)

3.3. Partially-Massless Twisted Duality
The twisted duality that mixes the field equations and Bianchi
identities of the two dual theories, the one forLPM(hab,Aa) on the
one hand, and the one for LPM(Ca[n−3]|b,Aa[n−3]) on the other
hand, is

K
C
a[n−2]|bc ≈

1

2
ǫa[n−2]ij Q

ij|
bc . (3.35)

This equation plays the same role as 2.34 in the strictly massless
case.

What is new in the partially massless case compared to the
massless case is that the flat limit of 3.35 is not enough to
describe all degrees of freedom of a partiallymassless field. In fact,
the twisted-duality relation 3.35 also induces a duality relation
between the curvatures K̃a[n−2]|b and Kab|c . This can be viewed

by acting on 3.35 with∇a and contracting the result with ǫa[n−1]d .
One then uses 3.31 and the trace of 3.9, taking into account that,
on shell, the traces of the four curvatures K̃a[n−2]|b , K

C
a[n−2]|bc ,

Qab|cd and Kab|c vanish. We obtain

K̃a[n−2]|b ≈ (−1)n−1 σ m̃2

4λ2
ǫa[n−2]cd K

cd|
b , (3.36)

where we stress that 3.35 and 3.36 are equivalent for non-zero
cosmological constant.

Now, taking the flat limit of both 3.35 and 3.36, we obtain two
decoupled twisted-duality relations for the two decoupled pairs
of fields (Ca[n−3]|b, hab) and (Aa[n−3],Aa) . Both together, they
propagate the correct degrees of freedom for a partially massless
spin-2 field in the flat limit, as was found and discussed in section
4.3 of Boulanger et al. [7]. The flat limit of 3.36 gives

∂bF̃a[n−2] ≈ (−1)n (n−2)σ
8 ǫa[n−2]cd ∂bF

cd , (3.37)

where F̃a[n−2] = (n − 2) ∂aAa[n−3] and Fab = 2 ∂[aAb] are the
field strengths for Ab[n−3] and Ab , respectively. In the flat limit,
these latter quantities are gauge invariant, therefore the gradient
∂b on both sides of the above relation 3.37 can be stripped off
to give, up to an unessential coefficient that can be absorbed
into a redefinition of Aa[n−3] , the usual electric-magnetic duality
between a 1-form and its dual (n− 3)-form in dimension n .

As a consistency check for the second duality relation 3.36, one
can start from the twisted-duality relation 3.35 and this time take
the curl of KC on its second column of indices, which yields

∇[b
K
C
a[n−2]|

cd] ≈ 1
2 ǫa[n−2]ij ∇[bQcd]|

ij . (3.38)
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We then use the Bianchi identities 3.32 and 3.9 and take a trace,
taking into account the field equation 3.29, which allows us to
obtain the relation

K̃a[n−3][b|c] ≈ (−1)n−1 σ m̃2

4λ2
ǫa[n−3]ij[bK

ij|
c] , (3.39)

which is fully consistent with 3.36.
Finally, we come back to the twisted-duality relation 3.36 and

gauge fix to zero both Aa and Aa[n−3] since they are Stueckelberg
fields as long as λ is different from zero. In these gauges for
the dual formulations, our second twisted-duality relation 3.36
becomes

(n− 2)∇aCa[n−3]|
b ≈ (−1)n

2 ǫa[n−2]cd∇chdb , (3.40)

while the first twisted-duality relation 3.35 is just its curl, as
one can readily check. This duality relation makes immediate
contact with the one proposed for the specific case n = 4 in
Equation (2.3) of Hinterbichler [24]. Relation 3.40 identifies the
dual curvature F̃ab|c in Hinterbichler [24] with 4∇[aCb]|c , the curl
of the dual potentialCb|c = Cc|b . Note that, once the Stueckelberg
fields Aa and Aa[n−3] have been set to zero, one cannot take a
smooth flat limit any longer in the sense that physical degrees of
freedom are lost in the flat limit.

The advantage of our Stueckelberg formulation for the
twisted-duality relation is that the identification of the helicity
degrees of freedom is manifest and does not require any specific
system of coordinates to be seen. In the original Stueckelberg
formulation, hab and Aa carry the helicity two and one degrees of
freedom, and the twisted-duality relations 3.35 and 3.36 identify
these degrees of freedom with the dual fields Ca[n−2]|b and
Aa[n−3] , respectively, in a manifestly covariant way.
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