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Electric-Magnetic Duality in Gravity
and Higher-Spin Fields

Ashkbiz Danehkar*

High Energy Astrophysics Division, Harvard-Smithsonian Center for Astrophysics, Cambridge, MA, United States

Over the past two decades, electric-magnetic duality has made significant progress
in linearized gravity and higher spin gauge fields in arbitrary dimensions. By analogy
with Maxwell theory, the Dirac quantization condition has been generalized to both
the conserved electric-type and magnetic-type sources associated with gravitational
fields and higher spin fields. The linearized Einstein equations in D dimensions, which
are expressed in terms of the Pauli-Fierz field of the graviton described by a 2nd-rank
symmetric tensor, can be dual to the linearized field equations of the dual graviton
described by a Young symmetry (D — 3, 1) tensor. Hence, the dual formulations of
linearized gravity are written by a 2nd-rank symmetric tensor describing the Pauli-Fierz
field of the dual graviton in D = 4, while we have the Curtright field with Young symmetry
type (2,1) in D = 5. The equations of motion of spin-s fields (s > 2) described by the
generalized Fronsdal action can also be dualized to the equations of motion of dual spin-s
fields. In this review, we focus on dual formulations of gravity and higher spin fields in
the linearized theory, and study their SO(2) electric-magnetic duality invariance, twisted
self-duality conditions, harmonic conditions for wave solutions, and their configurations
with electric-type and magnetic-type sources. Furthermore, we briefly discuss the latest
developments in their interacting theories.

Keywords: electric-magnetic duality, gravitation, dual graviton, higher-spin fields, gauge fields

1. INTRODUCTION

Electric-magnetic duality basically evolved from the invariance of Maxwell’s equations [1], which
led to the hypothesis about magnetic monopoles in electromagnetism [2], and the introduction
of magnetic-type sources to gauge theories [3-7]. Electric-magnetic duality contributed to the
development of Yang-Mills theories [8-11], p-form gauge fields [12-14], supergravity theories
[15, 16], and string theories [17-19]. Generalizations of this duality emerged as weak-strong
(Montonen-Olive) duality in Yang-Mills theories [7]. The duality principle was refined in
supersymmetry [20] and was extended to A = 4 supersymmetric gauge theories [21]. The N' = 4
Super Yang-Mills theory has an exact SL(2, Z) symmetry, typically referred to as S-duality, that
includes a transformation known as weak-strong duality [22], and can be understood as electric-
magnetic duality in certain circumstances such as the Coulomb branch. Strong-weak duality
exchanges the electrically charged string with the magnetically charged soliton in the heterotic
string theory [23-25]. Electric-magnetic duality was shown in N' = 1 supersymmetric gauge
theories [26]. Compatifications of type II string theory (or M-theory) on a torus have an E;
symmetry, referred to as U-duality, which includes the T-duality O(6, 6,7, and the S-duality
SL(2,7Z.) [27]. S-duality of the N” = 4 Super Yang-Mills theory and S- and U-dualities of type II
string and M-theory correspond to exact symmetries of the full consistent quantum theory [27, 28].
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U-duality (see e.g., [29-31]) provides nonperturbative insights in
M-theory [32], and also in string theories [33, 34]. The electric-
magnetic duality principle also permeated into gravitational
theories [35-43], supergravity [44-46], higher-spin field theories
[38, 47-49], holographic dictionary [50-52], hypergravity [53],
and partially-massless and massive gravity on (Anti-) de Sitter
space [54-56].

Gravitational electric-magnetic duality originally appeared
in wave solutions of general relativity [57-59]. The Bianchi
identities for the Weyl curvature provide some dynamical
equations for perturbations in cosmological models [60-66],
which are analogous with Maxwell’s equations [67, 68]. In general
relativity, the Riemann curvature is decomposed into the Ricci
curvature and the Weyl curvature. The Ricci curvature defined
by the Einstein equations corresponds to the local dynamics of
spacetime, while the nonlocal characteristics of gravitation, such
as Newtonian force and gravitational waves, are encoded in the
Weyl curvature [66-70]. Based on this analogy, the electric and
magnetic parts of the Weyl curvature tensor have been called
gravitoelectric and gravitomagnetic fields [64, 68, 71-74], though
their spatial, symmetric 2-rank tensor fields make them dissimilar
to the electric and magnetic vector fields of the U(1) gauge theory
for spin-1 fields.

Analogies between gravitation and electromagnetism
led to propose gravitationally magnetic-type (also called
gravitomagnetic) mass almost a half-century ago [75-78].
The solutions of the geodesic equations for the Taub-NUT
[79, 80] metric also pointed to the magnetic-type mass, whose
characteristic could be identical with the angular momentum
[81]. Moreover, the gravitational lensing by bodies with
gravitomagnetic masses, as well as the predicted spectra of
magnetic-type atoms have been explained in Taub-NUT space
[82]. The effects of the gravitomagnetic mass on the motion
of test particles and the propagation of electromagnetic waves
have been studied in Kerr-Newman-Taub-NUT spacetime [83].
Furthermore, the gravitational field equations and dual curvature
tensors, which characterize the dynamics of gravitomagnetic
matter (dual matter), as well as the relationship between the
dynamical theories of gravitomagnetic mass (dual mass) and
gravitoelectric mass (ordinary mass) have been elaborated among
the NUT solutions, the spin-connection and vierbein [84, 85].
Finally, energy-momentum and angular momentum of both
electric- and magnetic-type masses have been formulated for
spin-2 fields [86].

The linearized formulations of gravity describe the graviton
using a 2-rank symmetric tensor ;,,, which can be dualized to
a gauge field ’;Mr--uo-sv with mixed symmetry (D — 3,1), the
so-called dual graviton. The dual gravity with mixed symmetry
tensors first appeared in 1980 [35], and mixed symmetry (2,1)
tensors were shown to be gauge fields [35]. It was also argued that
a free massive mixed symmetry (2, 1) field in D = 4 could be dual
to a free massive spin-2 field (massive graviton) and a massive
spin-0 field (Higgs boson) that may illuminate “magnetic-like”
aspects of gravity [87]. Following these earlier works [35, 87],
mixed symmetry (D — 3,1) was first suggested as a candidate
for the dual graviton in D dimensions in 2000 [37]. Using the
“parent” first-order action at the linearized level, it was then

demonstrated that the formulations of the dual graviton with
mixed symmetry (D — 3, 1) and the graviton are equivalent and
have the same bosonic degrees of freedom [44]. Considering
the Riemann curvature and its dual curvature, the linearized
Einstein equations and Bianchi identities were found to hold
on dual gravity with mixed symmetry (D — 3,1) [38]. From
the “parent” first-order action introduced in [44], the familiar
“standard” second-order formulation of the dual graviton with
mixed symmetry (D — 3,1) in D dimensions was then obtained
in [47], which was found to be the Curtright action [35] in
D = 5 [through this paper, we consider the “standard” second-
order formulations of dual gravity and spin-s fields, while the
“parent” first-order actions are briefly presented in Appendix 1
(Supplementary Material)]. The dual formulation of linearized
gravity have been further investigated by several authors [40, 41,
43, 46, 88-90]. In the linearized theory, the magnetically charged
D—4 branes arise from Kaluza-Klein monopole, which are indeed
gravitationally magnetic-type sources (0-brane in D = 4), can
naturally be coupled with the gauge field of the dual graviton
([37]; see also [38, 91]). In fact, the dual graviton in D = 4
becomes the Pauli-Fierz field based on a symmetric tensor fzw,

while in D = 5 we get the Curtright [35] field izwp with
Young symmetry (2, 1) [40]. Generally, the spin-2 field described
by a rank-2 symmetric tensor h,, is dualized to the linearized
dual gravitational field fzm..‘,mfsv described by a (D — 2)-rank
tensor with Young symmetry type (D — 3,1) [37, 38, 43]. It
was also demonstrated that spin-2 fields can be dualized to two
different theories:' dual graviton with (D — 3,1) and double-
dual graviton with (D — 3,D — 3) [38, 96]. It was understood
that mixed symmetry (D — 3,1) fields can possess a Lorentz-
invariance action principle. Although the equations of motion for
mixed symmetry (D — 3, D — 3) fields could maintain the Lorentz
group SO(D — 1, 1) [38], some authors argued that they may
not have a Lorentz-invariance action in D > 4 [40]. Moreover,
the graviton, the dual graviton and the double-dual graviton in 4
dimensions can be interchanged by a kind of the S-duality of D =
4 Maxwell theory [88]. In the context of the Macdowell-Mansouri
formalism, the strong-weak duality for linearized gravity also
corresponds to small-large duality for the cosmological constant
[36] (see also [97] for duality with a cosmological constant). The
dual formulations of spin-2 fields in D dimensions have also been
generalized to spin-s fields whose dual fields are formulated using
s—1
Young symmetry type (D — 3,1,---,1) [38, 47, 49, 89, 96, 98].
Dirac’s relativistic wave solutions [99] for massive particles
were the first theory extended to higher spins in 1939 [100],
which provided the foundation for the Lagrangian formulations
of massive, bosonic fields with arbitrary spin [101]. The free
and interacting theories of massless, bosonic gauge fields with
spins higher than 2 (the so-called Fronsdal [102] field) have been
investigated later [102-106]. In particular, dual representations
of spin-s fields (s > 2) were formulated using exotic higher-rank
gauge fields of the Lorentz group SO(D — 1, 1) in the linearized
theory [38, 48]. It was found that dual formations of spin-s fields

!In particular, it was shown that there are infinitely many off-shell dualities of the
graviton [38, 92, 93], and infinite chains of dualities for spin-s fields [94, 95].
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can be described by a tensor with mixed Young symmetry type
with one column with D — 3 boxes and s — 1 columns with one
box [47], which turns out to be the Pauli-Fierz field (s = 2),
the Fronsdal field (s > 3) in D = 4, and the Curtright field
(s = 2)in D = 5. Nonlinear theories of massless, totally
symmetric spin-s fields were also discussed in the (Anti-) de Sitter
space, (A)dS [107]. It was shown that nonlinear representations
of dual spin-s gauge theories can partially be implemented with
a Killing vector [38]. The conserved electric- and magnetic-type
sources associated with spin-s fields and their corresponding
dual fields were also derived, in analogy with electromagnetism
[91]. Recently, the twisted self-duality conditions, which were
previously discussed in dual formulations of linearized gravity
[43, 108], were also illustrated in higher spin gauge fields, which
maintain an SO(2) electric-magnetic invariance in D = 4 [49].
In what follows we evaluate general aspects of electric-
magnetic duality in gravity and higher spin field theories (s >
2) in arbitrary dimensions (D > 4), and advocate their
formulations in linearized theories, their couplings with electric-
and magnetic-type sources, and their harmonic conditions for
wave propagation. In section 2, we study dual formulations of the
spin-2 field (dual graviton). We then extend them to the spin-
3 field (section 3) and higher spin fields (section 4). Section 5
discusses the interacting theories of the dual graviton and spin-s

fields.

1.1. Notations and Conventions

To describe tensors with mixed symmetry types, we employ
Young tableaux where a box in the Young diagram is associated
with each index of a tensor (see [41, 96, 109, 110] for full details).
A vector field (e.g., A,) has Young symmetry type (1) described
by a single-box tableau | |. A 2nd rank anti-symmetric tensor,
e.g., the Maxwell field F,,,, has Young symmetry type (2), which

is represented by two boxes arranged in a column, —. A 2nd

rank symmetric tensor, e.g., the graviton field 4., has Young
symmetry type (1, 1), which is represented by two boxes arranged
inarow,[ [ | Accordingly, the Curtright field, which describes
the dual gravition h wvp in D = 5, is a 3rd rank tensor with Young
symmetry type (2,1), and is represented by the Young diagram

. The Riemann tensor Ry, and the Weyl tensor C,,,,, are

4th rank tensors whose algebraic properties correspond to Young

symmetry (2,2), i.e.,, the diagram . We utilize the notations

in which the Greek alphabet refers to covariant spacetime indices
(e.g.» Ay, hy), and the Latin alphabet refers to light-cone gauge
indices (e.g., Aj, hjj), which is also used for the E1; ®;/; non-linear
realization in section 2.3 (e.g., hat, Agiayas)-

Throughout this paper, the graviton is denoted by a 2nd
rank tensor h,,,, whereas the dual graviton is shown by a (D —
2)-rank tensor i:llil-“qusv with mixed symmetry (D — 3,1) in
D dimensions. A 3nd rank symmetric tensor, e.g., the typical
spin-3 field h,,,, has mixed symmetry type (1,1,1), which is
represented by three boxes arranged in a row, | | | |. The
spin-s fields (s > 2) are denoted by a s-th rank symmetric

s

——
tensor h,,...,, with mixed symmetry type (1,---,1), which is
represented by s boxes arranged in a row, while their dual field
are represented by a (D — 2 + s)-th rank tensor ilm.‘.,mfm..‘vﬂ
s—1

with mixed symmetry (D — 3,1,---,1) in D dimensions. The
electric- and magnetic-type sources for spin-s fields in D =
4 are denoted by s-th rank energy-momentum tensors T),,....;
and T),..,.,, respectively. The Riemann curvatures for spin-s
fields are represented by 2s-rank tensors Ry, v,....u.n,. The dual
Riemann curvatures for spin-s fields in D = 4 are denoted by
Ryiyvy - puov,- We write formulations according to the convention
87TG§\I]) ) = 1 = ¢, unless the physical constants specified (Gg\? )
is the gravitational constant in D dimensions and c is the speed
of light). We utilize the round brackets enclosing indices for
symmetrization, h,, = hy, = h(,,), and the square brackets
for antisymmetrization, Fuv = —Fyu = Fyu).

2. DUAL GRAVITON

Free gauge theories in D-dimensional flat space are typically
described by a particular irreducible tensor representation of
the little group SO(D — 2) [37]. In the view point of the little
group SO(D — 2), free abelian gauge theories can be dualized
to a number of mixed symmetry tensors (see e.g., [38, 96]). The
dual formulations for the free theory F present symmetries in the
equations of motion, which transform the field F into its Hodge
dual fields *F (left dual), F* (right dual), and *F* (left-right dual)
[96]. For symmetric tensors, we have *F = F*.

The 1-form potential A, of the free Maxwell field strength
F,, = 29[, Ay in D dimensions possesses physical gauge degrees
of freedom A; in the little group SO(D — 2) representation, which
can be dualized to a dual (D — 3)-form potential as follows [38]:

Ajl"'jD—Z' = Ejlmjp,g,iAl» (1)

Al = 6171"’jD73Aj1-»-jD_3- )

(D—3)!
While A, is a single-box Young tableau, [ |, its dual field is a
single-box tableau | |in D = 4, a tableau with two boxes in a

column|—{in D = 5, and a tableau with D — 3 boxes in a column

in arbitrary D dimensions.

For spin-2 fields such the graviton h,,,, there are two different
dual linearized formulations in generic D-dimensional spacetime
[38, 40] (and infinitely many off-shell dualities [92, 93]). In
the first dual formulation, the physical gauge graviton h;; in D
dimensions is dualized to a dual field ;1,41...,-,373 j in the little group
SO(D — 2) representation as follows [38]:

k
hi1~~~iD,3j = €j)—ip_3 h]k> (3)

hjk Ell"'lD_sjhilmipf;k’ (4)

~(D—3)

which has the following properties:

hiy-wip_sj = Blir-ip_s)j = Mirvip_sljs Bliv-ip_s) = 0. (5)
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The first dual graviton ]jla1~--ap_3 u is described by a tensor with
Young symmetry type (D — 3,1). In D = 4, the dual graviton
is a symmetric 2nd rank tensor l~1,w with the Young tableau
having two boxes in a raw, | | |, while it is a mixed symmetry

(2,1) tensor in D = 5 with the Young diagram Hj (the

so-called Curtright field). The dual graviton h possesses the
equations of motion, which are equivalent to gravity and describe
the same gravitational degrees of freedom of the graviton h
[44]. The equivalence between the different formulations can be
demonstrated by using their light-cone gauge fields.

In the second dual formulation, the physical light-cone
gauge graviton h;; in D dimensions is dualized to a dual field

iy ip_3j1-jp—s2s follows [38]:

1

Riyip_sji-jp—s = €irmip_s’ €jr-jps Hmn> (6)
hpn = ————
(D —3)(D—3)!

ij-+ip-3  _j1+jp-3
m€ P2k

mn i1~--iD,3j1---jD,3) (7)

having the following properties:

hi1-~-iD—3j1~'-jD—3 = h[il"'iD—3][jl"'jD—3]’ h[i1~--iD—3j1]j2~--jD—3 = 0'( )

8

The second dual graviton hg,...ap_sp,.-gp_; (also called double-
dual graviton) is a tensor with Young symmetry type (D — 3,D —
3). In D = 4, it yields a symmetric 2nd rank tensor h,, with
Young symmetry type (1,1). In D = 5, it becomes a mixed

symmetry (2,2) tensor with the Young diagram whose

algebraic properties are similar to the typical (spin-2) Riemann
tensor Ry yp5.
It can easily be seen that the physical light-cone dual field on

both indices, h;,...i;_sj;.jp_s» can be written using the physical
light-cone dual field on one index h;,...i,_s;,

- 1 ~ -
hil"‘iD—3j1'“jD—3 = i <€i1-~-i1373khj1"-jD—3k + €j1~--jD,3lhi1~~-iD731> .
) 9)

The first physical dual field h is recovered from the physical
second dual field /, so the equations of motion written for the
Hodge dual field h are equivalent to the field k. However, it
was argued that the second dual field hinD > 4 may not
have a Lorentz-invariant action [40] (though Lorentz covariant
field equations were given in Hull [38]). We also note that for a
traceless field (h,* = 0), there is no second dual formulation, as
it cannot be dualized on both indices. Therefore, we only consider
the first dual formulation of gravity (also its equivalences for
spin-s fields) throughout this paper.

For the typical (spin-2) linearized Riemann curvature Ryg.0>
one gets the following dual linearized Riemann curvature in D-
dimensional spacetime for the first and second dual formulations,
respectively [38]:

- 1

Reayapy apv = 5eal.._,XD_Z‘)fﬂzzmg,w, (10)
A 1 A
Roy-ap_ap1-Bp-r = Zedl--ﬂszHveﬁl'“ﬁszp Ryvpis (11)

where the Riemann tensor Ryg,, is of Young symmetry type

(2,2) =

, the first dual Riemann tensor Rg, ..y, ,uv has

Young symmetry type (D — 2,2), and the second dual Riemann
tensor Ry, ...ap_, 6 --fp_, has mixed symmetry type (D —2,D —2).

2.1. D = 4: The Pauli-Fierz Field

The Pauli-Fierz action [100, 111], describing the equations of
motion of a free massless spin-2 field h,, in D-dimensional

D-1
———
Minkowski spacetime 1,,, = diag(—, +, - - - , +) reads explicitly
A D
Ser = — 5 [ dPxLpelhyal, (12)
167 Gy

where the Lagrangian Lpr is quadratic in the first derivatives of
the spin-2 field h,, and its covariant trace (h = hy*):
1
EPF[h,u,v] = _E (aahﬂuaahuv - 23ﬂh“‘)8“hw
+2h9,9,h*" — 0,hd*h), (13)

and is invariant under the gauge transformation
55]1,“) = Za(ﬂé}'\,), (14)

where &, is an arbitrary vector field. The above gauge
transformation is irreducible.
The action (13) has the following equations of motion:

SEPF [h;w]

S = a0 Y = 8,0 hay + BB — 1800 = 0.
Y

(15)
The symmetric tensor h,, is associated with a free massless spin-
2 particle (graviton), and its linearized Riemann curvature Ry,
is defined as (e.g., [41, 43, 108]),
R = —2019;,h,)P, (16)
with the following properties

Ruvap = Rywlap> Ruvap = Ruviapl> Riuvalp =0, (17)

and fulfills the Bianchi identity [, R,ijop = 0 and the linearized

Einstein equations R,, = 0, where R, = R,w“,,gno‘/3 is the
linearized Ricci tensor. We can also define the scalar curvature
asR=R,"

From the definition (16) and the equations of motion (15), it
follows the Euler-Lagrange variation:

8LpE[hy0] 1
T}}MV = RMV — EUHUR = GNV’ (18)

where G, is the linearized Einstein tensor, and fulfills the
contracted Bianchi identity.

The linearized Riemann curvature tensor R, of the Pauli-
Fierz field h,, in D dimensions can be split into the Weyl
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curvature tensor and the expression formulated by the linearized
Ricci tensor and scalar curvature:

2

4
RHY . — MY Ri, BVl Rt v
p ap T 5 Rie " 1p) (D= 1) (D —2) X lelp)
(19)
where the Weyl tensor Cj,qp is traceless, and has mixed
symmetry type (2,2) = , SO
C/J,vaﬁ = _CU/L()lﬂ) Cp.vaf} = —Luvfas Cuvaﬂ = Caﬂp.v: (20)
Culvap) =0, C*ypp = 0. (21)

The Weyl tensor has D(D + 1)(D + 2)(D — 3)/12 independent
components (0, 10, and 35 components for D = 3,4, and 5,
respectively).

The Weyl curvature tensor contains electric and magnetic
components, the so-called gravitoelectric and gravitomagnetic
fields [64, 66, 68], which are encoded by covariant and time
derivatives of the Pauli-Fierz field /;,, (see Equations 27, 28), and
defined as follows:

E,u,v = Cuavﬁuauﬂ = CpcOvOa B,u,v = _Cuavﬂuauﬂ = _C;/.Ovm
(22)
where C/waﬁ = %ewkcpkaﬁ is a Hodge dual of the Weyl
tensor, so By, = —%ewp;\cp)‘vﬁu“uﬂ = —%GW;\C/’%O (the
sign convention similar to Maxwell theory 2). Here, €, is
taken to be the spatial permutation tensor (e,,,u” = 0) with
€pvap = 2U[p€v]ap — 2€uv[a UB)> SO €Epva = e#mﬁuﬂ and €uvp =
—€vapu® (taking u#u, = —1 and u*n,"” = u” in Minkowski
spacetime).
The electric and magnetic parts of the Weyl tensor are both
symmetric and traceless:

Ewn = E(w)’ B = B(;w)’ Eu“ =0, B#M = (23)

In D = 4, the Weyl tensor has ten independent components, and
its electric and magnetic parts have five independent components
each.

From (16), one obtains

1 1
Ry = —Eapaph,w + 303(Hhv)p - Eavap.hpp> (24)
R= 3,8, — 3"3,h,", (25)

so the linearized Weyl tensor can be written in terms of the
Pauli-Fierz field h,,:

2
(DbD-1)(D-2)
X (0,05 h"" — 870,hs")

C’“}aﬂ =— 28[”3[01}1,3]”] + ﬂ“[aﬁﬁ]u

2
-5 (8[a8php[“ + 3[Maphp[a _ 3paph[a[u

000"y g, (26)

>The magnetic part of the Weyl curvature defined here has the opposite sign
compared to the definition often found in the literature of the 1 + 3 covariant
formalism, see e.g., [64-66, 68].

Accordingly, the electric and magnetic parts of the linearized
Weyl tensor can be formulated using twice covariant and/or time
derivatives of the Pauli-Fierz field 4, in the instantaneous rest-
space of an observer moving with the relativistic velocity u/* in
Minkowski spacetime 17,,,,

1
E;/.u[h] =- 5 I:auavhoo -2 (a(uhv)o)/ + (huv)//]

1
= B Bz e ) (el = 0 yhe?)
1
D-2)

+ (Bguttnyhp?) = (97 Bogutn) + 87 9phogutin) — 9 hpod(utiy)

1 "
5 (hpp) Ny |
2

1 1
[Eapaphw = ,0" By + 5800k,

1 /
— Eapaphoomw + (3'th0) Nuv — (27)

1 / 1
Buwhl == 5 €priu (07h)") + Eep/\(uau)apho'\
1
e e A Oy
1
+ 20D —2) [Gm(mvﬂa“ 3o ho” — €3 (uh)”” 3y 1

+ €pi(ud” Pyo 0P 1 — €43, 0" 00y I h°
!
+ fm(ltav)aohopul — €prn (aahffp”v)k)

/

- Gp)h(ﬂav)apu)\hgg + €pain (3'07]1,))7’!00) ], (28)
where primes denote time derivatives, i.e., (Ty...)) = u®dyTy...,
and €, is the spatial permutation tensor (e ,u’ = 0).
It is seen that the above equations are symmetric, traceless
(E,* = 0 = By") and spatial (E,,u” = 0 = By,u"). While
the gravitoelectric field E,, is associated with time/covariant
derivatives of time/covariant derivatives of the Pauli-Fierz field
huyv, the gravitomagnetic field B, is introduced by covariant
curls and rotations of time/covariant derivatives of the Pauli-
Fierz field hy, (the covariant curl is defined as curl(h),, =
Gp;\(ﬂa’ohv))“ = eup,\a["huﬂ).

The linearized Riemann curvature tensor R4 can also be
decomposed as

R op = CMop + 481 40" gy, (29)

where S, is the linearized Schouten tensor that is defined in D
dimensions as

S =55 (R = 3p—pykm ), G0
D—2 2(D—1)
whose curl is called the Cotton tensor:
CHop = 2015 g, (31)
which satisfies
Cuvp = Cutvpl> Cluvp) = 0. (32)
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Substituting Equation (30) into Equation (29), the Riemann
decomposition Equation (19) is easily recovered.

The Pauli-Fierz theory of linearized gravity in D = 4 is
dualized to the Pauli-Fierz action § = 1 f d4x£pp[~ hyy] being
formulated in terms of the symmetric massless 2nd-rank tensor
h,w = hv“ = h(MV (dual graviton) and its covariant trace
(h = ha"‘)[40, 42, 43]. In such a way, the symmetric tensor h;,,

is replaced with i:l,w in the Pauli-Fierz action (13). Similarly, we
can define the dual Riemann curvature R4 for the Pauli-Fierz
field h,w as R,w"‘ﬁ = —28[‘"8[ h.,]ﬂ] which is decomposed into
the dual Ricci tensor Ruv = R,mvﬂn @8 and the dual Weyl tensor
Cuvaﬂ

There is an SO(2) electric-magnetic invariance between the
Riemann curvature and its dual curvature, which is called the
“twisted self-duality conditions” [38, 41, 43, 49, 88]:

R[h] = —*R[h],  R[h] = *R[Al. (33)

The gravitoelectric and gravitomagnetic fields of the Pauli-Fierz
field h,, and its dual field h,, also demonstrate the twisted
self-duality conditions [43, 49]:

Ewlh] = Buy[h]l,  Buylhl = —Ep ), (34)
where E,,, and By, are the electric and magnetic parts of the
(dual) Weyl tensor Cy,,qp associated with the dual Pauli-Fierz
field k), (dual graviton), and are both symmetric and traceless.

The twisted self-dual conditions (Equations 33, 34) can be
expressed in a duality-symmetric way [49]:
R = SR,

Cpp =SB, B =SE,. (35

with matrix notations

[ RIH] von (*RIH]
ER_(fl[fz])’ m‘(*fz[ﬁ])’ (36)
_ Euv[}}] _ BMVUf]
Cuw = (E,w[h] ) Buv = (B,w[h] ) 7

0 -1
S:(1 0), (38)

which imply that the equations of motion for the dual graviton
h wv are fully equivalent to those for the graviton h,,, under SO(2)
electric-magnetic duality rotations.

Using the first dual expression (Equation 10), the dual
Riemann curvature f%waﬁ in D = 4 is defined by

1
Raﬁ,uv = Efaﬁp}\Rpluw (39)
which enjoys the following properties

Rywalp =0, B1pRyunjap = 0. (40)

The equations of motion are invariant under the duality
transformations [42]

R p = COSUR,vap + sin &R yvap, (41)

p.va
uvaﬂ = —sinaRyqp + cos aRwaﬁ. (42)
where the Riemann curvature R,,up and its dual curvature
R,,vap are transferred into each other under the electric-magnetic
duality rotations (Equations 41, 42).

It is useful to see the electric-magnetic duality rotations in
terms of the electric and magnetic parts of the linearized Riemann
curvature tensor (see e.g., [112]):

Sp,v = R,u,OvO: B;Lv = _éu,OvO- (43)
While the equations of motion are satisfied, the rotations in (41)
and (42) are equivalent to

5;/“; = cosa&y, — sinaBy,, (44)

/
B,

sina&yy + cosalB,y. (45)

This SO(2) rotation in gravity is analogous to the duality
transformations of Maxwell fields [113, 114] in which the free
Maxwell field strength F,, is transformed into its dual field
~ _1 of . .. .
strength F;, = 5€,0apF*. Using the definitions (16), it can be
shown that the graviton £, is rotated into the dual graviton fz,w
under the transformations (41) and (42), so they are invariant
under the electric-magnetic duality.

2.2. D = 5: The Curtright Field

The equations of motion of a free massless spin-2 field fl[w] o =

huvlp (dual graviton) in 5-dimensional flat spacetime can be
described using the following action [35, 41, 47, 105]

Ir - s 5 5
LIyl = ~ [3th|p3th\p — 40y W70 by
+ 4;& u\)»ayaplflyﬂlp _ Zayi:lp Mlpayfl)\,u,lk
420, MY 9P R, + 2ayﬁlylkaaﬁpa‘p] .
(46)

It is also convenient to use a Lagranglan con51st1ng of the
Curtright field strength tensor F[,M] = F,L,,,W, the so-called
Curtright action [35, 40] 3

- 1 /- _ _ _
ﬂ[huvk] = _7 (FuvaF“Upl)\ _ 3FMVM)»FMVP|p) , (47)

where the Curtright field strength tensor F,,;4 is a tensor with

defined as

mixed symmetry type (3,1) =| |

F[Mvp])» = aui’vp?» + 3/J‘MW\ + av;’puk = 33[/1?’\)0]/\’ (48)

3The Curtright action could also be expressed by Equations (73, 74) of [89].
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and l~1,w;u is the Curtright [35] field with mixed symmetry type
en=

hyvp = ;I[MV]P = illwlm ;l[uvp] =0. (49)

The Curtright action (47) is invariant under the following gauge
transformation [35, 37, 38, 40, 115]

So,ahpvp = 2(9[0v])p + O[puav)p — potu), (50)

where 0, and «,,, are symmetric and antisymmetric arbitrary
tensors, respectively:

Opv = Ovp = O(uv)> Opy = —Cyy = Uy (51)

The Curtright field F wia 18 transformed as [43]:
SaFuvip = —63,9[,001], (52)

although it is not gauge invariant. The gauge transformations
for o, and «,, are reducible, so we get 8,0, = 69(,0,) and
850ty = 20[,0,), where o, is an arbitrary vector field. The gauge
symmetry for o, is irreducible [40].

The Curtright field iz,w 5 is associated with the linearized dual
Riemann curvature tensor [37, 40, 43]:

fz[uvp][aﬂ] — 28[0,1_3[“"”];;] = 6a[aa[uf,vp]ﬁ]) (53)

and the linearized dual Ricci curvature tensor and the dual vector
curvature, respectively,

Ryuia = 0" Ryup)ipa)s (54)
RM = I]WR[MV]Q. (55)

The linearized dual Riemann curvature tensor has the Young

tableau symmetry (3,2) = , and the linearized dual Ricci

curvature tensor has the Young tableau symmetry (2,1) = ‘

The linearized dual Riemann curvature satisfies the “Bianchi
identity” [38, 88]

B[KRMVP]OOS =0. (56)

We can also define the linearized “dual Einstein tensor” for the
Curtright field [37, 40, 43, 88] through

Gluvle = Rivle — Rpumuies (57)

where Giy]q is the dual Einstein tensor with Young symmetry

type (2, 1), and fulfills the “contracted Bianchi identities”
B“G[MU]Q =0, 8“@[1“)]0[ =0. (58)

The doubly contracted Bianchi identity yields 3"R, = 0. The

linearized dual Einstein equations are Gj,,j¢ = 0, which are
equivalent to R, = 0.

The action (47) is gauge-invariant, and provides the following
equations of motion [40]:

M — 3(R[MV]P + n,Uv[VRP]) =0, (59)
8hyp
which satisfy the contracted Bianchi identities (58).
The linearized dual Riemann curvature of the Curtright field
;luvp is decomposed into a traceless part (dual 5-D “Weyl”
tensor), and terms containing the (dual 5-D) Schouten tensor:

}}Mvpaﬁ — Cuvpaﬁ + 33[“”[0:77‘)]/3], (60)

where the dual Schouten tensor S,wa is defined as [43]:
- -~ 1.~
Su.voz = R,u.va - ER[an]a- (61)

The dual 5-D Weyl tensor C wpap has 35 independent
components.

One can also define the Cotton tensor, the curl of the Schouten
tensor, as

Cﬂvaﬂ = 23[(,5‘#”[3], (62)

which is traceless C‘Waﬂ n"? = 0, and contains both mixed
symmetry types (2,2) and (3, 1), and satisfies

Clwvap) =0, 31y Oy = 0. (63)
It was shown in Curtright [35], Aulakh et al. [105], Labastida
and Morris [115], Hull [37], and Hull [38] that the physical
degrees of freedom of the dual graviton in D = 5 are massless,
and its dynamical variables are represented by spatial, transverse
and traceless components h;j of the Curtright field h,,,,, which

have the Young symmetry similar to ilwp, and transform in the
little group SO(D — 2). There are the spatial dual Einstein tensor
Gijx and the spatial dual Riemann curvature Rjjs,, which are

constructed by the spatial tensor ftijk. Moreover, the dynamical
variables of the standard graviton, which is dual to the Curtright
field fzwp in D = 5, are given by spatial, transverse and traceless
components h;; of the Pauli-Fierz field hy,,,, which is symmetric
similar to k. Similarly, there are the spatial Einstein tensor Gj;
and the spatial Riemann curvature Rjjs which are constructed by
the spatial tensor h;;.

Let us consider the electric and magnetic fields of the standard
graviton, which are constructed from the spatial Riemann
curvature [43]:

1 1
Eijmn (h] = ZetjrerSZkélkmm Biunilh] = EemnlkROilk, (64)

where Ejjmp[h] has the Young symmetry , Bimnilh] and has

the Young symmetry ‘
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We also build the electric and magnetic fields of the dual
graviton from the spatial dual Einstein tensor and the spatial dual
Riemann curvature, respectively [43]:

~ ~ ~ ~ 1 ~
gijm [h] = Gijm: Bijmn[h] = EemnlkROijlky (65)

where gijm[fl] has the Young symmetry ‘, Bijmn [il] and has

the Young symmetry

The electric fields Ejjmn[h] and gijm [iz] are double-traceless
and traceless, respectively, which correspond to Gop = 0 and
Gojo = 0. There are similar properties for the magnetic fields

Byunilh] and B [h]:
éz]m[;l]n]m = 0>
B~ijmn []:l]r}jnnim =0.

(66)
(67)

5ijmn[h]r}jn77im =0,
ani[h]nni =0,

The electric fields, jju[h] and c‘:’ijm[l;], and the magnetic fields,
Biunilh] and [;’,-jmn [;l], have the following identities

S[Ijm]n[h] =0, g[mni] [il] =0 (68)
Bl 1] =0, Bpipmpalh] =0, (69)
which are equivalent to the Ricci conditions Ry = 0 and

Rojm = 0.

The Bianchi identities imply that the electric fields, &jjun[h]
and gijm[fz], and magnetic fields, Byui[h] and éijmn[fl], are
similarly transverse:

(70)
(71)

8igijmn [h] =0,
amani[h] =0,

9i&jjm[h] = 0,
8ml;j;ijmn [fl] =0.
The electric fields &jjyy [h] and é,’jm [iz] transform under the mixed
symmetries (2,2) and (2,1), while the magnetic fields B,,,;[h] and
Level: 0 1 2 3

Field: 1o’ Aaarass Aayags Mayoaglbr Ay

Bijmn[fl] transform under the mixed symmetries (2,1) and (2,2).
From the twisted self-duality conditions [43], it follows that

Eimnlh) = Bijmnlh),  Bijmlh] = —Egmlh],  (72)
or in a duality-symmetric way
¢ = —-8%, B =S¢, (73)
with matrix notations
gi'mn[h]) ( Bi'm[h] )
e=(2Z"-0), ws=("- ), 74
( Eml] Bl 79

where the SO(2) duality matrix S is defined by Equation (38).
Therefore, the electric and magnetic fields of the standard
graviton are fully equivalent to the magnetic and electric fields of
the dual graviton in D = 5 under SO(2) electric-magnetic duality
rotations (see [43] for constraint and dynamical formulas).

waglbibabys Aar-arglbiby> Aayan|bs -

2.3. D = 11: Mixed Symmetry (8, 1) Field

In the case of D = 11 spacetime, which are relevant to maximal
supergravity/ M-theory, the dual graviton defined by the first dual
representation is associated with a tensor field ;lal ..ag|b of Young
symmetry (8, 1). Interestingly, the conjectured hidden symmetry
Ej; of M-theory is decomposed into GL(11) subalgebras: a mixed
symmetry (8,1) tensor (dual graviton), a 3-form, a 6-form,
and other mixed symmetry fields [44]. It was shown that the
dynamics and hidden symmetries of gravity are strongly linked
to Lorentzian Kac-Moody algebras [116]. Moreover, the Weyl
groups of infinite-dimensional Kac-Moody algebras (see [117]
for review) are compatible with the groups E;;(= E;‘H') [118-
120] and Ejo(= E;"“) [121, 122], which contain information
about the gravitational electric-magnetic duality, as well as the
structures of M-theory (see [123] for review).

The Dynkin diagram of the Lorentzian Kac-Moody algebra
E = E;'++ is depicted below (see e.g., [44, 124-126]):

E11:E§_++E e—0o—o

— o — @
0 9 8 7 6
which encodes underlying hidden symmetries of M-theory [44,
124] (the same for Ejyp = Eg"" [127]). The various exceptional
Lie groups (Es, ..., E19) are embedded in the infinite-dimensional
Kac-Moody algebra Ej;, ie., Es C Cc Eyp C En.
The infinite-dimensional Kac-Moody algebra E;; (also Ejg)
can be constructed from Eg through extensions of Eg with
three extra nodes (two extra nodes in Ejp), so we derive the
Lorentzian Kac-Moody algebra E;++ = Ej; (also E;rJr = Eqp)
[117].

The Kac-Moody algebra E;; can be decomposed into
the GL(11) subalgebras by deleting the node 11 in the Ej;
Dynkin diagram (see the above diagram) [44, 46, 128]. The
decomposition subalgebras correspond to the low level E;; tensor
fields in the non-linear realization of E;; and its vector, E1; ®; I1,

4 5 6
(76)

The zero- and third-level fields, h,” and ;lal...a8|b, correspond
to the graviton and the dual graviton in D = 11, respectively.
The first-level bosonic 3-form field, Ay, q,q; is related to non-
gravitational degrees of freedom of M-theory. The second-level
6-form field, A, ...q, has equations of motion, which can be dual
to those of the 3-form field A, 4,45, and provides another way to
describe the degrees of freedom of A, 4,4,. These fields lead to at
least one spacetime coordinate for each in the E1; ®;/; non-linear
realization [125, 129],

Level 0: h < X9,

Level 1: Agiazas <> Xajays

Level 2: Agyag <> Xay-as (77)
Level 3: ﬁal...us\b <> Xay--ag> Xay a7 |b>
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The spacetime coordinate x, which corresponds to the graviton,
constructs the spacetime curvature for the dynamics of gravity. It
is seen that the 3-form field, A4, 4,4;, and 6-form field, Ag, ...4, are
associated with the 2-form and 5-form coordinates, respectively.
The mixed symmetry (8, 1) tensor field, ftal.._a8| > which is dual to
the graviton in D = 11, is related to the 8-form coordinate and
the mixed symmetry (7, 1) coordinate. The dual graviton field and
its equation of motion possess the following identities [130]

E(Z) 0,

[ar-ag|b] =

hiay-asie) = 0,

. . (2) .
where the equations of motion E;"_, . is of Young symmetry

type (8, 1), and the numerical superscript describes the number
of spacetime derivatives (see [129, 130] for more details of the
Ej; equations of motion), i.e., in empty space

1 ~
E® b —Za[fa[chm...as]b] =0, (78)

ay--bg|
while the equations of motion for the graviton are [129]:
EQb = 28,0 =0, (79)

where wgg|, is defined as (hs? in the E;; ®; I, non-linear
realization) [129]:

@aplc = —ah(pe) + Ophiac) + chiap)- (80)

The equations of motion for the non-gravitational fields Ay, ,a;
and Ay, ...q are also given by [129, 130]

0 Aqaras) =05 EL) g = 0P 0pA0;.aq) = 0.

(81)
There is a unique E;; invariant equation with one derivative,
which is obtained from the non-linear realization [129], and it
contains the graviton and its dual field:

2
Egl)az@

1 1 = .
Y = Wable — Zeabdl d93[d1 ha,...d51c = 0. (82)

ablc

The non-gravitational fields Ag 4,45 and Ag,...qs possess a unique
Eq; invariant equation with one derivative (see [126, 131] for
details):

1

by-b
meal...(M ! 78b1Ab2...b7 =0. (83)

ED . = Oa, Aarasas] —

ay---a4

Variations of the E;; equations of motion (82) and (83) result in
E(azh) and E,(zzl)az%, with the duality relations of E(azl)...ag\ , and E((lzl)...%,

respectively [129]:

Efa =0 EJl=0
\:
Ehs =0  EPP=0 (84)
<>
@  _ @ _
EQgg=0 ED =0

From the unique E;; invariant Equation (82), E;L)lc

= 0, we get
the linearized Einstein equation, EP? = 0, and the equation
of motion for the 11-dimensional dual graviton, E(uzl)--»ag\ p = 0.
While from the unique E;; invariant Equation (83), one deduces

the equations of motion E,(lzl)aza3 = 0, and its dual equations of
motion E(uzl)a6 = 0. Therefore, the algebra E;; yields a network
of equations of motion, including the typical equations of motion
in general relativity.

2.4. Generalized Dual Spin-2 Fields

As mentioned at the beginning of section 2, the Pauli-Fierz field
associated with the spin-2 field hyg is dual to a field dualized
on one index (dual graviton) or on both indices (double-dual
graviton) [38, 96]. We consider only its dualization on one index
since it presents equations of motion equivalent to the linearized
Einstein equations and its action satisfies Lorentz-invariance
[40]. Hence, the generalized, free massless, dual spin-2 fields
fz[al..iamﬂﬁ = izal...anﬂﬁ in arbitrary dimensions (D > 4) can
be given by Young symmetry type (D — 3, 1) having the Young
diagram [38, 43]:

hay-ap_s1p = D — 3 boxes { —| (85)

which possesses the following properties

hay.ap_sp = ha)ap_s1p = hayap_s|8>

hia - ap_sp1 = 0
(86)
and has (D — 3)(D + 1)!/3(D — 2)! components in D dimensions
[41].
The action associated with the equations of motion of
free massless, dual spin-2 fields fam..‘awﬂ in D-dimensional
Minkowski spacetime explicitly reads [41, 47, 105]*

E[Ijlal"-anleﬁ]

1 - -
= =53 7 b

— 2D — 3)3, 2> W s

+2(D = 3y, 23V 8P R i

—(D-— 3)3Vflp az-»-aofz.lpay illaz...ap,w

+(D = 3)(D — ) h7> P 3P, oy sy o1y

+(D —3)(D — 4)ayIZAV"‘&-“D*‘Aa"fv"am...ap,ﬂp] . (87)

It may also be written in terms of a field strength tensor

Fy,..ap_,|p> in a similar manner of the Curtright action (47), as

4Also, see the action defined by Equations (77) and (78) in [89], and Appendix 1
in Supplementary Material for the parent first-order action.
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follows [132-134]°:

~ 1

E[hotr“o!Dfs\ﬁ] = 5

(D —2)! R

- (D - Z)Fa]...aD73)\.|A’Fa1“.aD_3p‘p) >

(88)

where the “generalized Curtright” field strength tensor
Fy,.ap_,p> @ general form of (48), is a tensor with Young
symmetry type (D — 2, 1) with the diagram:

Foy..ap_s)p = D — 2 boxes 1| | (89)

defined as
Fotl...OtD,ﬂﬂ = (D - 2)8[011 ilelZ'“Othz]ﬂ- (90)
For D = 4 and 5, the Lagrangian (87) recovers the Pauli-

Fierz (13) formulated by fl,w and the Curtright action (46),
respectively. For D = 5, the Lagrangian (88) also becomes the
Curtright action (47).

The action (87) is invariant under the following gauge
transformation [38, 41, 134]

Syahayap_sip = (D = 3)(0a, Xay--ap_31p
+0[, Yay-ap_31p — (_1)D_33/5a0t1“'041773)’
(o1

where X, ...ap_y|p and Qq;...q;_; are mixed symmetry type (D —
4,1) and antisymmetric (D — 3)-rank tensors, respectively:

Xay--ap_y|p = D —4boxes {—

— (92)

gy -ap_3] = D — 3 boxes

The action (88) is also invariant under the gauge transformation
(91) (see [132, 133]). The field strength tensor Fy, . «;,_,|s defined
by (90) is not gauge invariant, but it is transformed as

8aFayap o1p = —(D = 2)(D — 3)3pd[e; Xaryap_s]- (93)

SRef. [134] presented a similar generalized Curtright action via the Einstein-
Hilbert assumptions.

The gauge transformations for Xg;..qp_i|8 = X[a1-am_i]p aNd
Oyt Qgy-ap] (M = D — 3 at the initial level) are
reducible to an arbitrary mixed symmetry type (m — 2, 1) tensor
Xar-amzlf = Xlar--am—]p and an arbitrary antisymmetric (m —
1)-rank tensor ¢y, ..q,,; = Xfa;--ap_;] for m > 3 (see [115] for
irreducible representations):

Sy Xaram|p = (m—1) (a[alxaz-"am—ﬂﬂ
+0a, Qa1 18 — aﬂamdz"-dm—l) > (94)

8y oy, = (M)0[e Ay -atyy] - (95)

For m = 3, they are reduced to an arbitrary symmetric tensor
Ouv = O(,y) and an arbitrary antisymmetric tensor a;,, = @[],

Sy Xenaa|p = 2 (3[a1‘7az]ﬁ + O, Oay]p — 3ﬂ0‘a1az) > (96)

Sy Carazar = 30y Yz ]- (97)

The gauge transformations for o, and «,, are also reducible to
an arbitrary vector field o,
800y = 60(,,0,), 8o Qyy = 20[,,0v], (98)
The gauge symmetry for o, is irreducible.
The linearized dual Riemann curvature tensor in D
dimensions is defined as

~ 1
Ral-“au—zuzvz = 56011-"(YD—ZMVIRMlVleVz’ (99)
which is of Young symmetry (D — 2,2):
Roy-ap spavy = D — 2 boxes (100)
Similarly, the D-dimensional dual Einstein equations are
Gal"'OtD—3|M =0, (101)

where the D-dimensional dual Einstein tensor Gg,...qp 5|y is of
mixed symmetry type (D — 3, 1) with the Young diagram:

Gay-ap_sju = D — 3 boxes { — (102)
The D-dimensional dual Ricci tensor is defined by
Ral'"aD—ﬂMz = ka1--~ap_2|uzv2nal)_2vz> (103)

where the dual Ricci tensor is of Young symmetry (D — 3, 1).
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2.5. Gravitationally Magnetic-type Source
The introduction of magnetic monopoles to Maxwell theory
requires that the magnetic charge g, is related to the electric
charge g, through the so-called Dirac quantization condition
(1, 2]
1

qeqm = nihc, nez, (104)
which is invariant under the SO(2) electric-magnetic duality
rotations,
(105)

de = qm> qm —> —e-

A singularity of the magnetic field or a Dirac string is
unobservable in the spin-1 field if the condition (104) is imposed
on the magnetic charge.

Similarly, there is a quantization condition for the spin-2 field
such as gravity [91]:

hel

pupt =n—-, n e Z. (106)
8 4Gy

where the quantities p,, and pr are 4-momenta of linearized
diffeomorphisms associated with the ordinary (electric-type) and
magnetic-type matters, respectively. For a massive particle, we get
pu = muy, and p* = rmiit, where m is the ordinary (electric-
type) mass, u,, is the 4-velocity of the electric-type source, 711 is the
magnetic-type mass, and zi* is the 4-velocity of the magnetic-type
source.

It is important to note that the Dirac quantization condition
(Equation 104) is applied to the charges in the spin-1 case,
whereas the spin-2 quantization condition (Equation 106) is
imposed on 4-momenta, not the mass. In the rest frame, we get a
quantization condition:

. e’

EE=n——m-—, ne Z.
4Gy

(107)

where E is the ordinary (electric-type) energy, and E is the
magnetic-type energy. Hence, we get the energy quantization
condition [91, 135, 136] (see also [77, 78, 137] for a quantization
condition for ordinary mass and gravitomagnetic mass).

The Einstein equations coupled to the gravitating source are

(4)

87 G
GHY — 7T74NTMV , (108)

c

which are equivalent to
(4)
87 G 1
R = =1 (TW -3 v Tﬂp>, (109)
c

where T"V is the energy-momentum tensor of the ordinary
(electric-type) matter.

In section 2.1, it was shown that the Pauli-Fierz field equations
are duality invariant in D = 4, so the Einstein tensor G"’

for the dual gravity ]jl/w can be coupled to the magnetic-type
energy-momentum tensor TV as follows:

(4)
~ 8 Gy =
G = — T, (110)
c
or equivalently to the dual Ricci curvature:
(4)

= 8nGy (- 1 ~
R = =N (TW - T%) ) (111)

The electric-magnetic duality rotations (Equations 41, 42) of
the curvatures imply that there are the SO(2) rotations of the
electric-type and magnetic-type energy-momentum tensors:

T/

' (112)

(113)

, =cosaTy, +sinaly,,

_— ) -
T;w = —sinaTy, +cosaTy,,.

Hence, the Einstein equations are invariant under the electric-
magnetic duality in D = 4.

Considering D-dimensional spacetime, the linearized Einstein
equations become

(D)
8w Gy
Gy = =T (114)
which are equivalent to [38]:
(D)
81 G 1
L N
Rypuin® = —a (Tltu + D2 zﬂuvap) ) (115)

where T),, is the energy-momentum tensor of the electric-type
source.

The conservation laws for the electric-type and magnetic-type
sources impose that 3T, = 0 and 8”T,w = 0, so the motion
of a massive particle should follow straight lines. For a massive
particle, one can write

(116)

a
Ty = muﬂfdr8(4) [x— W(l’)] ;:v,

Ty = maﬂfdns(‘*) [x — #n(1)] aaw“, (117)
where w, and w, represent the electric- and magnetic-type
worldlines, respectively, u,, = dw,/ds and u, = dw,/ds are
the 4-velocities of the electric- and magnetic-type sources, and
m and m the electric- and magnetic-type masses, respectively.
The quantity s is spacelike, and 7 is timelike. From Equations
(116, 117), one obtains T}, 83 (?c — ﬁ/(xo)) uy Uy /1y and

Ty =60 (% = ) i /.
Dirac strings in D = 4 can be constructed as follows. Let

decompose the linearized Riemann curvature R,,qg into the
massless part and the massive part,

R,uvozﬂ = Tpvap + Muvap- (118)
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The massless part 7,4 satisfies the cyclic and Bianchi identities
(rvalp = 0 and 9, 7yvjep = 0), and the massive part 1,04 is
coupled to the magnetic-type source

1 . -
Muvap = Eewpga[a (Mp“ﬂ] + 5[9,3]M“])‘A) , (119)
where M, wv defines the magnetic-type source as
(4)
167Gy ~ -
Ty = 0 Mo, (120)

Mg, is a tensor with the mixed

and Mopy = Miap)y
symmetry type (2, 1).
There is a symmetric tensor h,,, that satisfies
r®® = =200,k P, (121)
If we define y*#,, = €*fv*3,h;,,, where y*f, = ylefl s a
mixed symmetry type (2, 1) tensor (80,)/"‘/3 u = 0), the linearized
Riemann curvature R4 can be rewritten as

1
Rivap = 5 €uvpo e (y" g1+ 8 g7

1P ) +8[”ﬂ]1\~4"”,\). (122)

Defining Y, va = Yuva + MMW (where Y, ¢ = Y[uvje) yields

1
Ruvaﬁ = Efuvpoa[a (ngﬂ] + S[pﬁ] YU]}L)\) . (123)

The tensor 1\7[0,,3\ . defined by (120) can be written using a Dirac
string y*(t,0) attached to the magnetic-type source, y*(7,0) =
wH(t) in (117). One can take [91]

- 1671G§§) s
aflp = muy,

/ drdos® [x —y(r,@)]

d
NI TN (124
90 a1 at 90

From Equations (117) and (124), it can be seen that the
divergence of Mgg, is identical with T,, (by a factor of

16w Gg)/c“). The momentum 7nii, of the magnetic-type source
by its mass 7 and 4-velocity i, is therefore conserved.

Similarly, the linearized Einstein equations of the dual
graviton ;lal...aD_Sm in D dimensions with the magnetic-type
source read

- SnGg\ID) ~

Gy ap_slp = i (125)

ay-ap-3|pf >

where (N?al...aD_ﬂﬁ is the dual Einstein tensor, Ta1a2-~-ap_3\ﬂ is
the energy-momentum tensor of the magnetic-type source in D-
dimensional spacetime, both Gg,...qp /g and Tuas-ap_s|p are
tensors with the mixed symmetry type (D — 3, 1).

The linearized dual Einstein Equations (125) are equivalent to

oA 8JTG§\II))

( Q1-0pD-3 1

(D-3) ~
) Nuton Taz-ap_31p” | > (126)

Roypazreap_spll

+

where RUIO(Z“'QD—ZMv is the linearized dual Riemann curvature
defined by Equation (10).

In the little group SO(D — 2), the Einstein tensor and its
dual tensor in D dimensions satisfy (see [38, 138] for further
discussions):

(D)

i = 8nCG4N ﬁe"l“'kmii‘klkz.“kwu (127)
Giyip_slj = éhfj\lmEilminTjk, (128)

If the magnetic-type energy-momentum tensor satisfies
Thiyeinslj = =i My.wip_s)j» (129)

where Mj,...i,_,j is an arbitrary tensor with the mixed symmetry
type (D — 4, 1), and the electric-type energy-momentum tensor
can be written as follows:

1

Li == %

EklmkD’3,'8[kle2, (130)

"kD—S]]"

so the magnetic-type source is correlated to the Hodge dual of the
electric-type source:

“Ty, (131)

Tiyvip_s|j = €iy-ip_s
1

T: =
Y7 (D -3)

ekko=s Ty (132)

"kD—3]"

The magnetic-type energy-momentum tensor Til"'iD73‘j can be a
source for the gravitational Bianchi identity [38]

1

kikz---kp—3 77
CEETRA

Riijm)n = €ijm kp_s|n- (133)
Similarly, the energy-momentum tensor Tj; is a source for the
Bianchi identity of the dual Riemann curvature [38]

Riiyiyeip1)j = €ir-ojpt T (134)
It can be seen that the Einstein Equations (127, 128), and the
Bianchi identities (133) and (134) are invariant under the twisted
self-dual conditions discussed in section 2.1. We can express
their electric-magnetic duality transformations using matrix
notations

R = SR,

T =87 (135)
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where the SO(2) electric-magnetic duality matrix S is defined
by Equation (38), T and R represent the D-dimensional energy-
momentum tensor and Ricci curvature associated with both the
electric-type and magnetic-type sources, respectively,

T;

R::
z:<~ ) m:(~ Y ) (136)
Tnl"'”D—fslm Rnl"'"D—3\m

and *T and *R represent their corresponding Hodge
isomorphisms,

1
€nynps Lml

T = kikp_s 7
ﬁe ! DiS"TklkZ"'kDfslj
(D—3)! , (137)
. €ny-np_z Rl
R = Kiokpos 5
et DiSiRklkz---kD,ﬂj

(D — 3)!

It means that the equations of motion for the D-dimensional
dual graviton h;;...;,_,); are equivalent to those for the graviton
hij under the SO(2) electric-magnetic invariance.

2.6. Spin-2 Harmonic Condition
In this section, we introduce the harmonic coordinate condition,
which makes it possible to propagate gravitational waves
(0°0,h, 0) in linearized gravity. We will see that
the harmonic condition is equivalent to divergenceless and
nonvanishing curl of the electric and magnetic parts of the
linearized Weyl tensor encoded by the Pauli-Fierz field h,,, in the
instantaneous rest-space of an observer moving in flat spacetime
(defined by Equations 27, 28).

We consider the vacuum Einstein equations in the linearized
flat condition (R,, = 0 and R = 0), which imply

1 1

Ry = =070k + 878 h0yp — S by =0, (138)
R = 9,3, — 3"3,h," =0, (139)
C* o = =208 hg) ") (140)

Equation (138) presents a second-order equation for the Pauli-
Fierz field h,,,. To have a wave equation for the Pauli-Fierz field,
9°9,h,, = 0, it is required to have a constraint, the so-called De
Donder gauge condition [103]:

1
D = 8" by — 3 3uho” = 0. (141)

Substituting Equation (141) into (138) leads to the wave equation
9°09,h,, = 0.

We can have some constraints along a four-velocity vector u*
in the rest-space of a local co-moving observer in Minkowski

spacetime:

1 1
Ry = =09, hoy + 07 (hvp)'

1 1
+ 590 hop = =0y (h,") =0, (142)
1 1
Ry u” = —=0"dhoo + (9”hop) — 3 (h,")" =0, (143)
1
W'Dy = 8"hgp — - (1) =o0. (144)

From Equation (140), the electric and magnetic parts of the
linearized Weyl tensor in the vacuum Einstein equations become

1 ’
B[] = =3 [aﬂavhoo —2(0uhvy) + () ] . (145)

By[h] = —%epm (0°hy") + %epwawaphok. (146)
Taking a covariant divergence from the gravitoelectric field
(145) and the gravitomagnetic field (146), and using constraints
(Equations 142 -144), one obtains the covariant divergenceless
condition for the gravitoelectric and gravitomagnetic fields:

O"E,, =0 = 0"B,,,. (147)
In Minkowski spacetime, the covariant derivative of a spatial,
traceless symmetric 2nd-rank tensor is decomposed into the time
derivative along with a four-velocity vector u* and the spatial
derivative, 9*E,,, = —u" (E,w)/ + DHE,, (see e.g., [66]). As the
gravitoelectric and gravitomagnetic tensor are spatial (E,,u" =
0 = Byyu"), one gets ut (E,w)/ =0 = ut (BM,,)/, so we get
the spatial divergenceless condition (D*E,,, = 0 = DM B,,),
which were previously proven for gravitational waves in the 1 + 3
covariant formalism [66, 139, 140].

It can easily be verified that the covariant curl and distortion of
the gravitoelectric field (145) and the gravitomagnetic field (146)
do not vanish under the De Donder gauge condition and the
linearized flat condition:

cutl(E), # 0 # curl(B) 40, d(pEpvy # 0 # 9B,
(148)
where the covariant curl is defined as cutl(E),, = €,,(,9” Ev)*.
The nonvanishing covariant curl and distortion conditions are
equivalent to the nonzero, spatial curls and distortions of E,,,
and By, for gravitational waves in the 1 4- 3 covariant formalism
[66, 67, 141]: curl(E),, # 0 # curl(B),, and D,E,, #
0 # D,B,., where the spatial curl is defined using the spatial
derivative D, as curl(E),, = epk(MDpEv))‘. From Equations
(147, 148), the wave equation of the Pauli-Fierz field h,,, in empty
space, 07 d,h,,, = 0, corresponds to 9”9, E,,, = 0 = 0°9,B,,, in

the linearized theory, which are equivalent to DZE,W - (EM,,)”
0= DZBW - (B,w)” in the 1 + 3 covariant formalism [60, 66].
Hence, the De Donder gauge condition in the vacuum Einstein
equations allows the propagation of the spin-2 waves, 3°9,h,,, =
0, and imposes divergenceless and nonvanishing-curl of the
gravitoelectric and gravitomagnetic fields encoded by the Pauli-
Fierz field (Equations 27 and 28) of the linearized theory in
Minkowski spacetime.
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To satisfy the De Donder gauge condition (141), the Pauli-
Fierz field could be assumed to be transverse, traceless, and spatial
(e.g., [39]):

9 hyy =0, hy? =0, u’hy, =0, (149)
which is called the transverse-traceless gauge condition, and
allows the propagation of a massless, spin-2 field in Minkowski
flat spacetime.

In the case of the transverse—traceless gauge condition (149),
the harmonic, massless spin-2 field of the wave equations (see e.g.,
[39]) in the momentum space m,, = (||, m) reads

hyw(m) = h¥ (m)ef, (m) + h* (m)e);, (m), (150)
where it and h* are the helicity states associated with the +
and x polarization states of the Pauli-Fierz field h,, (graviton),
e:[U = XuXy — Yuyv and e;v = xuyv + yuxy are the + and x
polarization tensors, x,, = (0,%) and y,, = (0,7) are spatial 4-
vectors satisfyingx-x = 1=y -yandx-y=0withx-m=0=
¥ - m making an orthogonal triad y = X x m (i.e, X = —) x )
where 1 = m/|m|.

Since the equations of motion for the Pauli-Fierz field h,,

are fully equivalent to the dual Pauli-Fierz field fz,w under
SO(2) electric-magnetic duality rotations, we have the following
expression for the dual Pauli-Fierz field ;‘uv inD =4

hu(z) = h*(m)e:;v(m) + h*(m)ey, (m), (151)
where bt and h* are the helicity states associated with the +
and x polarization states of the dual Pauli-Fierz field ;l,w(dual
graviton).

Considering the first dual formulation, and taking a 2-D
permutation €, from the expression (150) yields f:,w(m) =
h+(m)eﬂpe';v(m) + h*(m)e, ey, (m). As the spatial vectors &
and y making an orthogonal triad with 711, one gets €, x,(m) =
yu(m) and €,°y,(m) = —x,(m) in the momentum space m,,
(equivalent to X x m = y and y x m —X), so we get
eﬂpe;‘v(m) =e),(m)and €, e, (m) = —e;v(m):

iz,w(m) = h+(m)e;V(m) — hx(m)el";v(m), (152)

by comparison with Equation (150), the dual helicity states in the
momentum space have the following rotations:

hWt(m) = h<(m),  h*(m) = —h*(m), (153)

which is similar to Equation (34). We see that the + and x
helicity states of the graviton h,, and the dual graviton fl,w
are fully equivalent to each others under the following twisted
self-dual condition in the momentum space:

hF(m) = =Sh*(m),  h*(m) = Sh*(m). (154)

with S defined by (38), and matrix notations of the helicity states:

)) hx(m)=< ) (155)

bt (m)
bt (m)

h> (m)

o*om = ( I (m)

which is analogous with the twisted self-dual conditions (35).
We can also show that the helicity states of the graviton h,,

is rotated into those of the dual graviton h,,, under the duality
transformations:

(156)
(157)

., (m) = cosahy.(m) — sinah, (m),

W, (m) = sinah (m) + cos ahy (m).

Thus, the + and x helicity states of wave equations for the dual
graviton (9”9, flw = 0) are respectively rotated to the x and +
helicity states of gravitational waves (3”9,h,, = 0) under SO(2)
electric-magnetic duality rotations in D = 4, and are duality
invariant under the twisted self-dual condition.

3. SPIN-3 FIELD AND ITS DUAL FIELDS

We now introduce the spin-3 field, as a step toward the spin-
s generalization. The typical spin-3 field in D-dimensional
spacetime is represented by a symmetric 3rd rank tensor h,,, =
h(,p) With Young symmetry (1,1, 1) and the diagram [ | | |.
The equations of motion of 4., (the ordinary spin-3 field) in D-
dimensional flat spacetime can be described using the Fronsdal
action [102] for the spin-3 case

Sspin-3 = % / dPxLhyp), (158)
where the Lagrangian L[h,,,,] is as follows [47, 142, 143]
L] = —g[atha*h/w%’ — 301 hyp0 B P
+ 6h3 9V 0P hyypyy — 303 107 h P
- %akh*“uavhvpp]. (159)

The Fronsdal Lagrangian (159) is a generalization of the Pauli-
Fierz theory on the spin-3 field, and is invariant under the gauge
transformation
Sehyvp = 30(,60p)s (160)

where the gauge parameter &, = £(,,,,) is an arbitrary symmetric
2rd rank field.

By analogy with the Einstein equations, one can write the spin-
3 Einstein equations in D dimensions (see [91] for the generalized
Einstein equations):

Guipons =0, (161)
where the spin-3 Einstein tensor Gu u,u; = Gujuops) 1 @
traceless (G,” = 0), symmetric tensor with the Young diagram

. The tensor Gy, ,u; can be written in terms of the
so-called Fronsdal [102] tensor F,, ,,., for the spin-3 case as
follows

F

3
Guipaps = Fuapops — E"(’“’“ us)pp> (162)
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where the spin-3 Fronsdal tensor Fy s = Fuuous) 18 2
symmetric tensor with the diagram| [ [ |, defined by

Fuipans = 000" Puy s — 301, 0” hyuypis)p + 300, 0z Bz
(163)
which is related to the spin-3 Ricci tensor

=200, Fpi s (164)

— V3
Rynluaps = Ryvypavapisvs

where the spin-3 Ricci tensor Ry, y,|u, 5 i a 4th-rank tensor with

the mixed symmetry (2, 1, 1) having the Young diagram ,

and the spin-3 Riemann tensor R, v, ;v 305 1S @ 6th-rank tensor
with the mixed symmetry (2,2,2) having the Young diagram

For spin-3 fields, we can define the first dual representation in
a similar manner of the dual definitions for the spin-2 field, i.e.,
Equations (3, 4) [38, 89, 98]. The first dual field of the spin-3 field
huvp = huyp) in D-dimensional spacetime is dualized on one
index only. For the physical gauge spin-3 field h;j, we have in the
little group SO(D — 2) [38]:

)
hi1-~iD—3jk = €jj-ip_3 hljk) (165)

P )

1
= 7(D 3 | (166)

hik iy eweip_sks

with the following properties [38]:

hiy il = 0-

i (167)
The first dual spin-3 field A, ...qp,_5 00 is then described by a tensor
with Young symmetry (D — 3, 1, 1) having the Young diagram:

hiyccip_sjc = hiiyip_s)jk = Riy-ip_s]jie

hay . -ap_suv = D — 3 boxes (168)

For spin-3 fields, we may also define the second dual formulation
in a similar manner of the spin-2 dual field (6) and (7)°. In the
second dual formulation, the physical gauge spin-3 field A in
D-dimensional spacetime is dualized on two indices:

hil..A,‘Dﬁjl...jD%k = €i1~--ip_3m6j1~--jp_3nhmnk’ (169)

]
(D—3)D-3)°

i1eip_ i1eip_a ]
honnt = m" PR TIPS Ry iy s

(170)

having the following properties:

hi1~-infsj1~-jnfsk = h[i1-~-i073][]’1"‘jD—3]k’ h[il"-il)—3[j1]j2-~-jD_3k(: 0.

71)

®For traceless spin-3 fields, it is impossible to dualize on two indices, so there is no
second dual formulation.

The second dual spin-3 field I;a1-~-au-3ﬂ1-~-ﬁu-3p is described by a
tensor with the mixed symmetry (D — 3, D — 3, 1) having the
Young diagram:

1]

A~

hay-ap_spr--pp_sp = D — 3 boxes (172)

It might be possible to define a third dual field of the spin-3 field,
which is dualized on all three indices. The physical gauge spin-
3 field Ay in D dimensions can be dualized in the little group
SO(D — 2) as follows:

1 _ . om_ . n 1
hil"'iD—3j1"'jD—3k1"'kD—3 = €ijvip_3 €j1-jp_3 €ki--kp_3 B>

(173)
Byt = 1 <€i1"'iD—3m€jl"'jD—3n
(D= 3)(D - 3)(D - 3)!
X eklmkD_alhi1~~~iz)73j1~~jD—3k1"'kD—3)’ (174)
having the following properties:
hil"'iD—Sjl"'LD—Skl”'kD—S = h[il"'iD—S][jl"'jD—S][kl"'kD—S]’ (175)

hiiyip_s lir)ja-jp—3ky-kp_3 = O-

The third dual spin-3 field Ijloll"'OlD—3}31"'ﬁD—3)’1"'VD—3 is described
by a tensor with the mixed symmetry (D — 3, D — 3, D — 3).

In particular, we notice that there are two different dual
formulations for the spin-2 field in section 2, whereas three
different dual formulations for the spin-3 field exist. In D = 4,
all three dual formulations correspond to a symmetric 3rd rank
tensor fup = M,y with the Young diagram[ | | | Thus, we
get only one dual formulation of the spin-3 field in 4-dimensional
spacetime.

The second dual physical gauge field h and the third dual
physical gauge field h can be written in terms of the first dual
physical gauge field h and second dual physical gauge field h,
respectively, and one can recover the first dual physical gauge
field i from the second and third dual physical gauge field in the
little group SO(D — 2). Nevertheless, the action principle of the
second field & and third dual field / in D dimensions higher than
4 may not follow from a Lorentz-invariance action (similar to the
argument made for the spin-2 field [40]), so the first dual field
formulation, which is dualized on one index only, is considered
in the following parts of this section.

The Fronsdal theory for the spin-3 case in D = 4 is dualized
to a Fronsdal action § = [ d4x£[;lwp] where the Lagrangian
C[fl uvp] is formulated in terms of a symmetric massless 2nd-rank
tensor fzwp = iz(wp) (dual spin-3 field), similar to Equation (159)
with the gauge transformation 8¢ fz,wp = 38(M§vp) where &, is a
arbitrary, symmetric 2nd rank tensor.
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3.1. D = 5: Mixed Symmetry (2,1, 1) Field
The dual field of the spin-3 field /,,,; in 5-dimensional spacetime

is represented by I~1a5| uv»> Which is a tensor with Young symmetry
(2,1, 1) with the diagram:

hapiw = >

(176)

and satisfies:

hapun = hiap)u) = Hapluvs  Hiapupy = 0. (177)

The equations of motion of a free massless spin-3 field I~1a5| wv in
5-dimensional Minkowski spacetime 1, = diag(—, +,+,+,+)
is represented by the following action principle [47] 7

ﬁ[h;w\pcr] = —é [3)%’“}“)0 aklj‘uu\po - zaxljlmlpaauljluv\ﬂa

— 20,1"1P% 0" hyupg + 81" 91 0P hy)po
+ 20 807 By po — 407127 9,0 o
— Py PRI o — 40P By B By RO
+ 9 hTHP 87 B0 4 205 K7 8P B0

+2ayizﬂ'*"apiz“p|w] , (178)

which satisfies the gauge symmetry

5X,(p]7£#v‘pg - (23[MXV]M

+olrg ), 4+ alkgrl,,, — za(pga“”‘(,)), (179)

where X0 = X(up) is an arbitrary symmetric tensor with
Young symmetry (1,1,1) = Djj, and Quujp = @[uv]p is an
arbitrary tensor with Young symmetry (2,1) =

(see also

gauge transformations in [47, 143]). The gauge transformations
for x,.vp and @y, are reducible:

50)(,“,[, = 33(“0‘,/,), (180)
SoaPuvip = 2(9[.0v)p + dpuavlp — dpoyu). (181)
The parameters 0, = 0(y,) and @, = a[y,] are symmetric

and antisymmetric arbitrary tensors, respectively, and their gauge
transformations are reducible:

860y = 60(,0v), S50y = 20[,0v]. (182)
The parameter o, is an arbitrary vector field, and its gauge

transformation is irreducible.

7The 5-dimensional dual spin-3 action could be expressed by Equations (75) and
(76) of [89].

3.2. D > 5: Young Symmetry (D - 3,1,1)
Fields

The D-dimensional spin-3 field hqg, can be dualized to a free
massless spin-2 fields iz[al.i.ams]w = fla1~--an,3|uv with Young
symmetry type (D — 3,1, 1) defined by (Equation 165, 166), and
satisfying

hal...aw—s\uv :~h[a1-~az>—3]wv

= hal...aD,g,KMV)’ (183)
h[aln-apfﬂﬂ]v =0,
ljlalwapfsllw??uv =0, ]jla1~~-otz)73llwnmaz et = 0. (184)

This is associated with the dualization on one index only, which
provides equations of motion with a Lorentz invariant action.
The equations of motion of free massless, dual spin-3 fields
flal...aD_ﬂ gp in D-dimensional flat spacetime are represented by
the action principle [47]:

E[;loq.‘.au_ﬂ,uv]
B 2
T 3(D—3)!
- (D - 3)3/)]100[2“.%73lwaghwz'--ap—slw
_ 23phal"'aD_S‘puadhmmau—ﬂ(fu
+ 4(D _ 3)hy(12'~'0lD—3W“apaahpaz..-aD,ﬂo',u
+ Zflal...au—ﬂyyaff 3pfla1“_aD73‘ap

2D — 39k ety o

pLoap-3luv g 1
i

_ a9 0 appar--ap-3ly
8ph0t1“-011373\0 0"h 14

—2(D = 300511, P Ty, 15°

+ %(D — 3)0 BT GV Ry 18P

+ (D —3)(D— 4)30]:laazmaD%lyﬂapﬁﬂaz--vab—alyu

+(D —3)(D — 4)apfzyP“3"'“D—3‘V“a“fz*ws...w,m] ,
(185)

which satisfies the gauge symmetry
SX,(pilal'“aD’ﬂMv = 2(D—3) (8[“1X“2---0D73]|MV

_}_3[0(1(/)0!2..-&D—3](mv) _ a(ﬂ(pﬂllmﬂm—s\v)) ,
(186)

where Xay...ap_g|lpy = X[a1-~»(¥D—4]MV = Xaj..ap_g(uv) is an arbitrary
tensor with the mixed symmetry (D — 4,1,1), and @y, ..ap_5|u =
@las..ap_3]p 18 an arbitrary tensor with the mixed symmetry (D —
3,1). The gauge transformations for xa, . .ap_4uv a0d @o; _ap_s|u
are reducible.

The action (185) is also invariant under the following gauge

symmetry [47]:
8y Ijlal'“a[”ﬂuv = (D-3) (8[0”)(”2'“&1)’3”“1)

+ 28(;0( [a1..ap—slap-3] V)> , (187)
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where Xq,..ap_4|uv i @ tensor with the mixed symmetry (D —
4,1,1), and its gauge transformation is reducible.

In a similar way of the Curtright action (47) and the
generalized Curtright action (88), one may write the action of
the dual spin-3 field flal —ap_s3|v Using a “spin-3 Curtright” field
strength tensor Pal..,anz\ wv defined as

Fal...ap,zmv = (D - z)a[ali:laz-nap,z]uw (188)
is a tensor with Young symmetry type (D — 2,1,1):
Pal..uu_zluu = D — 2 boxes { — (189)

The spin-3 Curtright action should be invariant under the gauge
symmetry (186), however, the field strength tensor Pal_“apfz\ v 18
not gauge invariant. The field strength tensor Fy, _4p, ,|uv has the
following transformation

S Fayap o™ = —2(D — 2)(D — 3)0"“ 810, Py..ap o). (190)

Note that the Curtright field strength tensor Fy, 4, 5|0 defined
by Equation (188) should be not mistaken with the Fronsdal
tensor Fa1-~-ap_3mv defined by (198) in this section.

The spin-3 dual Riemann tensor defined as

- 1

_ H1vi
Royeap_apavapsvs = = €ayap_s Ry pavapizvss

S (191)

is a tensor with Young symmetry (D — 2,2,2) and the diagram:

Ral.,‘ammzvz,ﬂv} = D — 2 boxes (192)

For a free, massless dual spin-3 field }Nzal.i.ans‘ uv»> ONE can write
the spin-3 dual Einstein equations similar to the spin-2 case [38]:

Gayap sl = 0, (193)
where the spin-3 dual Einstein tensor éa1~~~az>73| wv is of Young
symmetry type (D — 3,1,1), and traceless (Gy,-..ap 5w’ =
Gal weap_s|uv *P~3Y = 0) with the following definition:

~ 1 -~
Gal--up—zlw = Fa1-~-au—3\w ) [Z(D - 3)’7[a1(u Faz-~-ap—3]plv)p

+ 1" Fayeaps1p”]» (194)

where both the spin-3 dual Fronsdal tensor Fy,...q;, 5|0 and the
spin-3 dual Einstein tensor Gg, ..., ,|,v are of Young symmetry
type (D — 3,1, 1), and the diagram

1]

Fot1~-DéD—3\MU =D—

3 boxes { (195)
Gay-ap_sluw L
The spin-3 dual Ricci tensor can also be defined by
Ron--upfz\uzm = Ral"'aD—Z\M2V2M3U3 "%, (196)

where the spin-3 dual Ricci tensor is of Young symmetry
(D — 2,1,1), and defined in term of the dual Fronsdal tensor
Fy,ap_s v as follows:
Royap sluv = —(D = 2)a, Fayap v (197)

The dual Ricci tensor Ral...ap_z\w is antisymmetrized in
aj--- ap—p and symmetrized in puv, ie, Ral"-OlD—zllLV =
Riey-ap aluv = Ral"'ang(N—U)'

The Fronsdal tensor Fy,...qp_3|u ., €an be written in term of
the dual spin-3 field hq, ... 3|0 as follows:

Fal"'aD—S‘Mv =3,08plj1011-"010—3luv — (D = 3)0j, ap;l(XZ'-ﬂD—a]p\uv
— 200, hyyoap 5"

+2[(D = 3)0i0) 9" Fag ap 3101

1 ~
+53”3vha1...aD73|pp] . (198)

The dual Einstein tensor éal"'aD—SW«V and the dual Fronsdal
tensor Fy,..qp sy for the spin-3 field are antisymmetrized
in indices o---ap-3 and symmetrized in indices puv,
G -ap_s(uv) and

ie, Gojeapslpy = Glag-ap_sluv

Foap_sluv = Flayap_sluv = ay--ap-—3(uv)-

3.3. Spin-3 Magnetic-Type Source

The spin-3 field (huyp = h(up)) can be coupled to the spin-
3 electric-type source Ty = T(up) [38, 91]. For the spin-3
Riemann tensor Ry, v, usvy 305> ONE can write the field equations
in D-dimensional spacetime as follows

1
Ry paps = Ru1v1uzvzu3v3’7VZV3 = 58[1117;1]#2#3’ (199)

where the spin-3 Ricci tensor Ry vijjopus = Riuvlpomus

Ry 01 (juaps) 18 @ tensor with mixed symmetry (2, 1,1), defined by
(164), and Ty = T(up) is a traceless (7,,” = 0), symmetric
3rd rank tensor defined by removing the traces T},,” from the
energy-momentum tensor Tuvp:

T

PRYCS (200)

3
Turpans = Tiypaps — Zn(umz
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By analogy with the Einstein equations, one can write an
equivalence of Equation (199):

GH1H2H3 = nwzua’ (201)
which can be considered as the spin-3 Einstein equations with
the spin-3 electric-type source (see [91] for spin-s generalization
of the Einstein equations).

The dual Einstein tensor (193) for the dual spin-3 field can be
coupled to the spin-3 magnetic-type source:

Gey-wapsluv = Tony-wap_sluv> (202)
where the spin-3 dual stress-energy tensor Tg,..qp s/uv is a

traceless (7a,..qp_sp"" = 0), tensor with Young symmetry type
(D — 3,1,1) and defined as

. - (D—3) -
Tay-ap-s)"” = Tayeap_s)"" — 2 ’7[041( Tar--otnfs]p\v)p»

(203)
where Tg,..qp_sjuv 18 the spin-3 dual stress-energy, and

has Young symmetry type (D — 3,1,1). Both TO{]"'QD—3|MV
and ’7~'0,1...QD73|W are antisymmetrized in o;---op_3, and
symmetrized in pv.

The dual Einstein tensor (202) is equivalent to

- - 1 -
Royap sluans = Rayvap apavapsvs ' = EB[WIEZ"'QD—Z]MIMZ’
(204)
where the spin-3 dual Riemann tensor Ry, ...ap_,uvypusv; 1S @
tensor with Young symmetry type (D — 2,2,2), and the spin-3
dual Ricci tensor Ry,...ap_slusps = Ray-ap_spavapusvs 18 @ tensor
with Young symmetry type (D — 2, 1, 1), defined by (197).
In the little group SO(D — 2), we may write the following
relations
Giyipiy = meﬂ'“JD—s i 7;1"‘jD—3|i2i3’ (205)

C]‘l"']‘D—S‘iliZ = 6j1-~-jD73i3771i2i3 : (206)
It can easily verify that the spin-3 Einstein equations (201) and
(202) are invariant under the twisted self-dual conditions & =
S§*® and T = §*T if we employ the following matrix notations

Following Equations (116) and (117), for a spin-3 charged
particle in D = 4, the spin-3 stress-energy tensors, which are
coupled to its field, read

ow
Tyivp) = mUpp) / drs® [x — w(r)] aTH (209)

Tyutp) = MmUpp) / drs® [x — iw(r)] % (210)
where m is the electric-type spin-3 charge, and 1 is the magnetic-
type spin-3 charge, U,y = 1, uy) denotes the traceless part of
Uy ty, and f](,w) i, ity the traceless part of i, i, (the angle
brackets denote the traceless part; see e.g., [66, 144] for the same
notation). For example, one defines traceless parts of symmetric
tensors Syg and Syp, in 4-dimensional flat spacetime as follows

1
S(;w) = (ﬂ(uanv)ﬁ - Zﬂuvnaﬂ) Saﬁ, (211)
_ o B 1 af
S(uv)p =\ My — ann Saﬁp: (212)
so the traceless part of u,,u, is defined by
_ _ (o an Bt
U(;w) = Uty = N M)y — meﬂ UglUp. (213)
Equations (209, 210) can be rewritten as
u, U .-
Tutp) = m=—260) [% — i) (214)
0
-~ i, U, L=
Tvpy = L= (vp) s® [x — w(xo)] . (215)
uo

It can be easily varified that these stress-energy tensors are
conserved.

One can write a quantization condition for the spin-3 field in
D = 4 similar to the Dirac quantization condition (104) and the
spin-2 quantization condition (106) as follows (see [91] for spin-s

fields):

~ 1
PP =nhe,  nel, (216)
where the conserved spin-3 charges are defined by
Puy = mUyyy, PRV = mUW), (217)

We now consider the construction of a Dirac string in the spin-
3 theory in D = 4. The spin-3 Riemann curvature Ry, v, uyv,35

T = < _ Tiriis ) , ® = ( _ Giriai ) , (207)  can be split into the chargeless and charged terms,
Tji-jp—sliriz Gji--jp-sliriz
Rﬂlvmzvzusvs = Tupvipavapesvs T Mpgvpovasvs - (218)
€j1~-jD73i37?1i2i3 The chargeless term 7.,y 40,30, 18 of mixed symmetry type
* T 1 e ~ (2,2,2), and satisfies the cyclic and Bianchi identities. The
(D—3)! I Tjrjajp-sliaia charged term 11,1, 151,305 18 Of mixed symmetry type (2,2,2),
¢ “'jD—Si3 Giriyis (208)  and may be coupled to the spin-3 magnetic-type source
* — . . ~
©= e €V, Gl ip slinis | pwavs _ 1 (s fgeo vsl
(D—-3)! My pavy = 5Cmvipo A, 0 M7 )
and the matrix S is defined by Equation (38). +3[M28[pv2] 3[M3|M‘7mv3lx) . (219)
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The tensor Myg|,.y, which represents the spin-3 magnetic-type

‘. The

source, is of Young symmetry type (2,1,1) =

notations [ | and | ] separate different antisymmetrized indices
from each other, e.g., 40,1, 9,1,/ Sjv1]1vy] = 40, 912S,,)"2).

The chargeless term 7, v, 11,1, 03v; May be rewritten in terms of
covariant derivatives of a symmetric tensor /., 5

T ™" wavs —28[M3|8[“2 a[mhvll‘)ﬂlva]'
Let us define y*#!,, = €*7*3, h; ., where y*Pl ,, = ylofl = —
¥*P () is of Young symmetry type (2, 1, 1) tensor (3,y*?!,,, = 0),
the spin-3 Riemann curvature R, v, ;v 1505 €an be defined by

|

1
Ruyvpavapsvy = Eeulvlﬂﬁa[uzla[m\ (ypa\vz]\vsl +8[pw2]y Alvs]

+MPU\U2HV3] +8[p\uz]MUm)L|V3])- (221)

If we take Yog)00 = Yapluv + Maﬁmu (where Yo = Y[uv)a) it
is obtained

V3 _ %eulvmaa[uza[m (Ypduz]vs] + 5[’0\;2]YU]MU3]A)

(222)
A Dirac string y*(t,0) can be connected to the spin-3 magnetic-
type source Maﬁ“w, y*(7,0) = w*(t) in (210). By analogy with
(124), one can write

"3
RMI Vi2Vv2

- - ) Yy 0
Mapiw = MUy / drdos® [x—y(t,@)] (%g—i — %%) R

(223)
where the tensor Mg, defines the spin-3 magnetic-type source
as

Touvp = 3 Mapujvps (224)
so the divergence of M, ulvp is identical with T,wp, and the Dirac
string of a spin-3 magnetic-type point source is conserved. One
can prove the conserved charges associated with a spin-3 electric-
type point source (see [91] for complete proof of the spin-s
conserved charges with magnetic-type and electric-type point
sources).

3.4. Spin-3 Harmonic Condition

The spin-2 harmonic coordinate condition can be generalized
to the spin-3 field hy,,; that allows the propagation of a spin-3
particle in empty space. To have a wave equation for the spin-3
fields in empty space, 9,0 h,px = 0, it is necessary to eliminate
the last two of the spin-3 Fronsdal equation (163):

Equation (225) is the De Donder gauge condition for the spin-3
field k5. To have the De Donder gauge condition, one way is to
make the spin-3 field ., transverse and traceless:
Phynp = 0, hyp? =0, uthy,, =0, (227)
which imply that the gauge parameter £,, is a symmetric,
traceless 2-th rank tensor.
The transverse-traceless spin-3 field /.3, which is projected
along a four-velocity vector u, in the rest-space of a co-moving
observer, may be written in terms of its helicity state vectors

+ x ot + x
h; and h;’, and the polailza'ilon tensors e, and e, in the
momentum space m,, = (|m|, m):

By (m) = €5, (m)t (m) + €, (mB<(m),  (228)

where the polarization tensors are
e;‘, = XuXy — YuYvs eﬁv = XYy + YuXv, (229)
while x, = (0,%) and y, = (0,)) are spatial 4-vectors with

X-x=p-y=1landx-y=0withx-m =p-m =0, and
form an orthogonal triad y = X x 1, where m = m/|m)|.
Similarly, the transverse-traceless dual spin-3 field h .,

which is projected along a four-velocity vector i, in the rest-
space of a co-moving observer, may be written in terms of its
helicity states ;" and k', and the polarization tensors in D = 4:

By (m) = €f, (mF (m) + e, (mhS (m),  (230)
Taking a permutation €,, from Equation (228) according to
the first dual formulation definition, one can easily find in the
momentum space:

+ - — it

Bim) =m), BiGm) = —him),  (231)
which means that the helicity state vectors of the spin-3 field
are respectively rotated to those of its dual field under SO(2)
duality rotations in D = 4, and demonstrate the twisted self-dual
condition, similar to what were shown the graviton and the dual
graviton in section 2.6.

4. HIGHER-SPIN FIELDS AND THEIR DUAL
FIELDS

We now consider the general spin-s fields (s > 4) and its dual
formulations. The spin-s fields in D-dimensional spacetime can
be represented by a symmetric s-th rank tensor Ay, ,,..; =
B jiz--us) With the Young diagram:

s boxes
Dy = 9 Byuwp = duhup” = 0, (225) b= L LT T (232

which is invariant under the gauge transformation (160): which is double-traceless for s > 4 [102]:
5517#” = 33p3p€;ﬂu_ (226) hmuzmmu-usﬁmmnmm =0. (233)
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The action of the free, massless spin-s fields /1, ..., in arbitrary
dimensions (D > 4) reads:

1
SsPin-s = E/deE[hm#z-“#s]’ (234)

where L[l ;... ] is the Fronsdal Lagrangian [102]:

9P s

(s—1)
‘C'[hﬂll'LZ"‘I'Ls] == I:aphuy--us
_ saphwlmuH3Ahw1~~us71

+ (s — DI M2 3 Wi

1

= 5305 = DI sy 0TI
1

= 35— D6 - 2)0MH iy e s

x avh;’”’“'“”ﬂ]. (235)

The Fronsdal Lagrangian (235) is invariant under the gauge
transformation [102]
ey iz = S0 Sz -oopay)- (236)
The gauge parameter £,,...,,,_, is a symmetric tensor.
The equations of motion for free, massless spin-s fields satisfy
the generalized spin-s Einstein equations [91, 102]
Gurprops = 0, (237)
where the spin-s Einstein tensor G p,..u;, = G(ujpp-py) 15 @
double-traceless (G, ju,... . 0" 1#20H*3#4 = 0), symmetric tensor.

The spin-s Einstein tensor Gy, ..., can be written using the
Fronsdal tensor F,,...,,, as

s(s—1)

Gy = Fpyoops — T M Fusen)p”s (238)
where the Fronsdal tensor Fy, ..., = F,..;.;) is a symmetric
tensor, and defined by [49, 102]

Fuyope = 0p0P e = 500,07 hysycpi)
s(s—1)
——— 0, O hm...m)pp. (239)

The linearized spin-s Riemann tensor Ry, v, uyv, v, 18 @ (25)-th
N
. f_/b\ .
rank tensor with Young symmetry (2, - - - ,2) and the diagram:

s boxes

Ryyvipavyeepgns =

The linearized spin-s Ricci tensor,

Vs—1Vs
bl

(240)

Rl’vl”l Havaehs—2Vs—2 | fhs—1 s = R,U«l VIV fls— 2 Vs—2 s—1 Vs—1 [AsVs 1]

is a (2s — 2)-th rank tensor with Young symmetry type

s boxes

| ‘, (241)

Ryyvipiavy g v alpsoi s =

and obtained by taking covariant derivatives from the Fronsdal
tensor Fy, ..., as follows

Rul VIV s Vs—2 | s—1[As

—2
= -2 w1 100a ]+ * O o Pl llmallias—alps—rpas- (242)

Here, the notations [ | and | ] such as 49[,,0[v,S|1t,]|4,] IMPly
that covariant derivatives are antisymmetrized on v; 0 and vy
separately, i.e., 49],,8("28,,,)") = 8,,8"28,,,"2 — 8,128, —
0,078, "2 +0,,0"2S,, "2, The equations of motion of a free,
massless spin-s field Fy, ;.0 SASEY Ryyvy o vy pisavsalps s =
0, which is equivalent to the spin-s Einstein equations (237).

Substituting the Fronsdal definition (239) into the Ricci
definition (242) yields [49]

Rytivipiavseeopis—avsal o1 as
-2
=2 [3p3p3[u1|3[v2\ SRR CRY PP TP N PO PR

= 010wy 0wy - - 8[vs-z|8ph\m]\uz]--~\us-z]m—1p

= sy Opuy vy -+ 8[V572|8ph\ﬂ1]|ﬂ2]"-lusfz]lisp

F Oyt OBy Oy -+ a[vs—zlh\m]\#z]"-ms—z]pp]' (243)

For the spin-s field hy,u,....,» there might be s different
dual formulations (also infinite chains of dualities [94, 95]).
Considering the fact that spin-s fields are double-traceless (s >
4), it is problematic to dualize on multiple indices. Thus, we
consider only the first dual formulation of the spin-s field in D-
dimensional spacetime, which is dualized on one index only. For
the physical gauge spin-s field, we can write
hil"'iD73|]‘2“‘js = €i1-~-iD73J1hj1j2~--js>

1 i1ip-3 )

Pjvjzic = (5 3y

(244)

(245)

iy-ip—3lj2--js-

The dual spin-s field fzal...apfﬂ pio---ju5 18 of Young symmetry (D —
s—1

——
3,1,---,1) having the Young diagram:

s boxes

hay ap_slpz--us = D — 3 boxes { — ,

(246)

and double-traceless for s > 4 [47]:
oy ap sluaps s 45 =0, (247)
1’1011012013014-"OZD—Z»\11-2"#5'70(10(2770(30(4 =0. (248)

Frontiers in Physics | www.frontiersin.org

January 2019 | Volume 6 | Article 146


https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles

Danehkar

Duality in Gravity and Higher-Spin Fields

It has the following properties:

hiayap_spaluz-ps = 05
(249)

hayap_slpa-pus = Plag-ap_sluz-us

hayap_slpaeps = hal”'aD—S(MZ”'ll—s)‘ (250)

In D 4, the dual spin-s field is symmetric, hy, ...,
By pyp)- The Fronsdal action (234) for the spin-s field
By jiyeons in D 4 is dual to the Fronsdal action S

i d*xL[hy,,...,..], which is formulated in terms of the dual spin-s

field ljlmm...m, ie, hyyep, — ;LM...M in the action (234).

4.1. D > 4: Generalized Dual Fronsdal

Fields

The Fronsdal field hy, ..., is dual to a field dualized on
one index. The dual Fronsdal field Ijlal...aD73| p--p 18 @ double-

s—1

traceless, tensor with Young symmetry (D — 3,1,---,1). It is
a symmetric tensor in D = 4, whose equations of motion
can be described by the Fronsdal Lagrangian (235). In D >
4, the equations of motion of free massless, dual spin-s field
flal..quﬂm.‘.m explicitly reads [47]

= (s—1)
Llha, - ap_s1p,--8] =

~ s(D - 3)!

where Xay..ap-glBy-Bs = Xlar..ap_gpr-Bs = Xoy..wp—a(B2-Bs) is an
s—1

arbitrary tensor with the mixed symmetry (D —4,1,---,1),

s boxes

Xar..ap_alps-ps = D — 4 boxes | — ,

(253)
such

(254)

Xay..ap_s|Ba-+Bs = Xlar..ap—4]B2-+Bs = Xay..ap—a(Ba-Bs)-

The gauge transformations for xq,..ap_4|,--g, are reducible.
The action (251) also has the following gauge symmetry

Sy h™ P73 gy,

= (s= (D = 3) [al x0Ty, g

+0 10203l g gy — 3<ﬁz</’“1"'ab_3‘ﬁs“'ﬂs)]’ (255)

[8[);'“1'“%73‘/}2""353pﬁa1-~-aD,3|ﬂz--~ﬁs

— (D — 3)3, kP2 on=3lB2 B yo b

— (s — 109, B eD=31PBsBsgoh o opape

+2(s — 1)(D — 3)hy, @203 B BsgPao o slopaps
(s — 1)(s — 2R3 g 6 978 hg o _jopt e
— (s — 1)(D — 3)8h,, 2 ap=3lvBsbsg jo o oy

1 ~ -
= Sl=Dis- 2)8phay . ap 510 7P P dP R

~ap-3ly
VBaBs

— (s = D(s = 2)(D = 3)dsh, > 0N g g 8 By PP

+ (s — 1)(s — 2)(D — 3)d, hoerop=3le o

e A i Y

— N

S~

which is invariant under the gauge symmetry [47]:

8, h1-0=3 5, g =(D — 3) [3 o yz-p=3l g g,

+(s — 1)a(ﬂzx[C(l---C(D—4|0¢D—3]ﬁ3m65):| , (252)

— —(s=1D(s=2)(s — 3)3V;lal"'an3lppyﬁs...lgs80;10,1___0,1373”2‘0&""35] )

'ﬂsayilydz-“anawa.ﬁs
“(s— 1)(D = 3)(D — 4)3, ho@2 D=3 Bs By e

“(s = 1)(D = 3)(D — 4)3,h, PO BBy e Bspe

(251)

where Xu,..ap_4|—p. 15 an arbitrary tensor with the mixed
-1
r—s/b\
symmetry (D — 4,1,---,1), and @, .ap_s85--, = Plon..ap_sln
—2

. . . . ,-S/‘
is an arbitrary tensor with the mixed symmetry (D —3,1,---,1).
The gauge transformations for X, ..ap_4|8,--gs A0 Qay..ap_s|85-- B
are reducible.
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One may define the spin-s generalized Curtright action of

the dual spin-s field hq, ...qp_3|p,--p, using a field strength tensor
Fu,..ap_3B--p; as (see Appendix 1 in Supplementary Material):

h s—12( 1 .
Elhar-ap—sips-pd = = =\ gy Fea-avalpr-pios
w F1ap—2|Br-fs—1
(s—2)
X Foﬁlal'"olp,4|yﬂ2...ﬂ571
(s=3)(D—-2) - )
(D+s—4)(D —3)1 “op=solbifi
X F"‘l"'O‘D—sy\ﬂl--ﬂs—zy
(s—2)(D—2) )
(D+s—4)(D— 3)!FO'VO!]“'O(D74|/31...13572

x FPBran--ap—alyfa-Ps— p) ,

(256)

where the “spin-s Curtright” field strength tensor Fy,_ap |-,
defined as

Foy.apsiprpe = (D = 2)(a Hayeoap 1 prpi (257)
s—1
——
is a tensor with Young symmetry type (D — 2,1,---,1):
s boxes
paln-anz\ﬁzmﬁs = D — 2 boxes :
o (258)

The spin-s Curtright field strength tensor Fu, ap |88 1S
transferred as follows

8aForyap 217 P = =2(D — 2)(D = 3)0"2 010, @ur..ap 2.
(259)
However, it is not gauge invariant under the gauge symmetry
(252).
One can define the spin-s dual Riemann tensor by

1

R — Hivi
Ral"'aD—ZULZVZ”'MsUs - zéal'"aD—Z RIJ«IVIN«ZVZ'“ILSVS’

(260)

s—1

———
which has Young symmetry (D — 2,2, ---,2):

s boxes

Rayapalpuavy-psv, = D—2 boxes

(261)
The spin-s dual Ricci tensor is defined by
Ral"'OlD—z|IJ-2V2"'M5—2V5—2|M5—IIJ-5
= Ral QD2 |2 V2" [hs—2 Vs—2 [hs—1 Vs—1 UsVs nVS71vS’ (262)
s—1
. ,—/— .
with Young symmetry (D — 2,2, --,2,1,1) and the diagram:
Roy v apa|pavaeeepis—avs alpte1pus
s boxes
=D — 2boxes{| | .(263)

Similarly, there is the spin-s dual Einstein tensor G, ...ap_s|8,.. 5
with Young symmetry:

s boxes
[T T]
Gal"'OtD—3|ﬂ2-.-ﬂs = D — 3 boxes{ — 5
o (264)
which is defined by
~ - s—1)
Gdl-"OlD—ﬂﬁzmﬁs =Fa1~--0!D—3|ﬂ2mﬂs - (T[Z(D - 3)n[alﬂ2

X FOtZ"‘OlD—S]PlﬁSMﬁSP

+ (s = 20 Fyyap oM7) (265)

where Fy,..ap 5|p,..p, is the spin-s dual Fronsdal tensor [47]

F,

a1ap_3| Ba-Bs _ (D _ 3)

Ba-.Bs

Brbs = 8,0  hyy.apy s

X Jq api’pazmap—s]\

—(s—1)a#2 3 hayoapy s B3...Bs)p

+ (s = DD — 3)d|gy 8P2hpgyy..py_3) 3PP

—D(s—2 -
" %30323}33 s gy PP (266)
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The spin-s dual Fronsdal tensor Fy,..qp 5/, is of Young
s—1
symmetry type (D — 3,1,---,1). In D = 4, the definition (266)
recovers Equation (239).
The spin-s dual Ricci tensor (262) can be defined in term of
the dual spin-s Fronsdal tensor Fo,...ap, 3/8.. 4"

D —3
Ry apoalpavyptsavsalpsips = = 2° (D = 2)0uy) =+ Oyy_y

X 8[0t1Faz-“anz]\Mz]“'\ltsfz]usfms-
(267)

Substituting the dual Fronsdal definition (266) into the dual Ricci
definition (267) presents

Reyoapalpava-eepis—aveal et s

= _25_3(D - 2)[3;,3/)3[”2\ OOy

hD‘Z"'aD—Z]|M2]"'|V~s—2]ﬂs—1ﬂ~s

= (D = 33,1+ Oue—z1ay 0" pay-wocupsllpta ) ez it 15

— O, Oy -+ 3[v572|3p3[,11 hO‘Z"'O(D—Z]‘MZ]““MS—Z]MS—IP

= Oy Oy a[stz\apa[alhaz"'anleluzl"'lusleusp
+ (D = 3)0, 0wy - -~ 3[vs-z\393[!!1h,oaz~~~an-z]I;Lz]~-~|/»s-zhts-m

+ (D = 3)0u,, Oy -+ 8[”5—2‘apa[alhPOlZ'“aD—Z]|M2]""IJ«5—2]M5P

A 01 0o~ vga | Vleny hOlZ‘“aD—z]\II»Z]'“\/l«s—Z]ﬂp}' (268)
4.2. Spin-s Magnetic-Type Sources
We now introduce the coupling between the spin-s fields
By iy h(u, py-us) @and spin-s electric-type sources, and
then make a generalization to the dual spin-s fields and spin-s
magnetic-type sources.

The linearized spin-s Ricci tensor Ry, v, 115,305 €an be coupled
to a traceless (7, - 0" H20*3H4 = 0), symmetric tensor in
D-dimensional spacetime:

1
Ryyvipavyeepusavealps—i s = Ea[vll “ e O Thaa]lpts—al oo s
(269)
The tensor 7y,,....,, is defined by

N

Ty = oo — Zn(mﬂz T,

o> (270)

where T);,.....; = Ty, ..., i the spin-s electric-type stress-energy
tensor.

The spin-s Einstein equations with the spin-s electric-type
source read [91]:

Guyopts = T oopis- (271)

The dual spin-s Einstein tensor defined by (265) can be coupled
to the spin-s magnetic-type source:

Gay-ap_s|Bafs = Tar-ap_s|r-.bs » (272)

equivalently,

Royoap_alpava-eepis avsalpne—1pas

1 -
= Ea[vzl 0wy Oy Tazap ol lias—alps—1ps> - (273)

~ Tar-ap—s|B2--Bs
(Tay-ap_s| o *2 0%

is a double-traceless

- 0 = 7;1-4-05373\/32...5577/32}3377/34}35),
s—1

where

——
tensor with Young symmetry type (D — 3,1,-- -, 1) and defined
as

7;1_“%73'#2-%5 = Tal___aD%‘ur--us
(s—=1)(D—3) =
_f’?[mwz T()l2~~l)tD73]p|M3 us)p,
(274)

and Tal"'OlD—3|l/«2"'ll«s is the spin-3 magnetic-type stress-energy,
s—1

and has Young symmetry type (D — 3,1,---,1).

By analogy with the Dirac quantization condition (104), the
spin-s quantization condition in D = 4 is [91]

- 1
Py PRV = nihc, nez, (275)

where Py, ..u.; = MUy, ...us_,) is the conserved spin-s electric-
type charge, and P#1 -1 = fpU{#1-#s-1) s the conserved spin-
s magnetic-type charge, m is the electric-type spin-s charge, and
m is the magnetic-type spin-s charge, Uy,...u) = U, - - Upy)
the traceless part of uy,, - - - ., and (g = By - - - iy, the
traceless part of i1, - - - Uiy,

The stress-energy electric-type and magnetic-type tensors in
D = 4 can be written as

ow
T o) = MU pupeeepsg) / drs® [x - W(f)] ?ﬂl

Uiy s o
— g Y aits) o(3) [x — W(x0)] (276)
Ug
i o ow
Ty (i) = MUy opy) / drs™ [x B W(r)] 87:1
_ mwgﬁ) [} — v:v(xo)] . (277)
Ug

A Dirac string in the 4-D spin-s theory can be constructed as
follow. Let us consider the decomposition of the spin-s Riemann
curvature Ry, v, ...us,» it can be split into the chargeless part and
the charged part,

Rytyvyepsvg = Tpgoeepesvg + Mpgvpe v, - (278)

Both 7,0,..pgn, and miy ;.. 0, are of mixed symmetry type
N

(2,---,2). The tensor 7y, y,.....,v, satisfies the cyclic and Bianchi
identities, and can be written in terms of covariant derivatives of
a symmetric tensor M, i, 5

Pugvreepigns = — 200 ]+ - 3[le8[M1hV1]Ivz]-~\vs]’ (279)

The charged part m,,,y,...;.,», can be defined in terms of the spin-s
magnetic-type source:

1

:Eeﬂmpff [8[M2| T a[uslMpU [v2]-[vs]

+ 00,8 0,1 00y03) -+ Oy MM ] (280)

mﬂl”l"'#s”s
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where the tensor Mygju,.u, is of Young symmetry type

s—1
@5
s boxes
P O
If we define
PP gess = PPy s (282)

where the tensor yug|u,..., is of Young symmetry type
s—1

——
(2,1,---,1) tensor,

aayaﬁlﬂT”Ms =0,
(283)
the spin-s Riemann curvature Ryiivypigvs can be rewritten as

)’amuzwus :)’[aﬂ]uzwus :)’aﬁ(uz-~-us)’

1

S €m0 Ay g 7 gl + 810057

T cro |
+ M s tug] + 8 g O]

A
] l?»vsl--~|v5]

(284)

Rﬂl”l"'ﬂs‘}s =

AsSUming Yop |-, = Yapluz-ue + Mapiyz-u.» one has

1
Mzvs _ ...
Ryvipan, = 26M1V1003[#2| el

x (nglvzl"'\vs] + 8[pV2]YU]M)LV3]'“|Us])' (285)
We can now connect a Dirac string y"(r,6) to the spin-s

magnetic-type source Mg, .u,» ¥*(7,0) = W*(t) by analogy
with (124):

Mgy = MU / drdos™ [x — y(z,0)]
The divergence of Myg|,...ps, is equal to Tyy,...p..:
Tytyopse = 0 Moy, s (287)

Hence, the Dirac string of a spin-s magnetic-type point source is
conserved (see also [91] for spin-s electric-type source).

4.3. Higher-Spin Harmonic Condition
We now introduce a harmonic coordinate condition for the
generalized Fronsdal equation (239) that makes the linearized
wave equation for spin-s fields by eliminating the last two terms
of (239).

To have a wave equation for the spin-s fields in empty space,
it is required to have the generalized De Donder gauge condition
[103]:

s—1

by, =0, (289)

=y -
Dpuyeveg = 0 hyuepip

Substituting Equation (288) into (239) leads to the wave equation
9p 0P hyyyepg = 0.
It can be seen that Equation (288) is also invariant under the
gauge transformation
8eDyyeeiy = 5090715 pts- (289)
It was imposed that the spin-s field has the double-traceless
condition (233) [102]. To make the De Donder gauge condition
(288), one may require that the spin-s field is transverse and
traceless (see [145] for proof):
Mypynep =05 By p” = 0. (290)
Having the transverse-traceless gauge condition, the gauge
parameter &,,..,. is a symmetric, traceless (s — 1)-th rank
tensor. Similar to massless spin-2 fields described in section 2.6,
massless, spin-s fields have only two polarization states with the
=s helicity states [146]. However, massive, spin-s fields have 2s+1
polarization states [147, 148].

5. DISCUSSION: INTERACTING THEORIES

Consistency of the interacting theory for a free field can
traditionally be determined from coupling deformations of the
gauge transformations of the free theory. The BRST formalism
[149-152] was originally developed to examine whether the
deformed gauge transformations can be constructed. Inclusion of
auxiliary fields (antifields and ghosts) led to the BRST-antifield
formalism [153-157] that allowed us to assess consistency of
interactions of the free theory with other theories and itself. This
involves studying consistent deformations of the master equation
[158, 159], which contains gauge transformation structures,
corresponding local reducibilities, as well as stationary surfaces
(inc. equations of motion) of each field. The master equation
of the free theory is associated with the BRST differential.
The coupling-order deformations of the master equation of the
interacting theory by means of the BRST differential allow us to
evaluate all the requirements for consistency of the interacting
theory (see reviews [160-167]). The action principle of the free
theory is the integral of the Lagrangian over the manifold that
corresponds to the propagation of perturbations of the free field
in the spacetime. Nevertheless, the action of the interacting
theory associated with observables, which are invariant under the
gauge transformations, may make consistent interactions with
themselves or other fields of other free theories. A detail study
of consistency of interactions of the free theory of the fields with
itself can deduce whether the interacting theory has consistent
deformations.

The action principle of a massless, spin-2 field particle is
described by the Pauli-Fierz action [100, 111], which corresponds
to the linearized Einstein equations in Minkowskian flat
spacetime. The Pauli-Fierz action is free of ghost excitations, and
its field equations are algebraically consistent. The interacting
theory of gravity has only one single massless spin-2 field [168-
170], and there are no consistent interactions among multiple
interacting massless spin-2 fields [171], i.e., no spin-2 analogy
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of Yang-Mills theory. However, the action of a single, massless
spin-2 field h,,,, coupled to a positive-definite dynamical metric
is g,y is not invariant under the h,, gauge transformation,
so it is inconsistent [172]. Similarly, cross-interactions among
multiple massless spin-2 fields are inconsistent in a positive-
definite metric [171], while consistency is mathematically
possible in a negative-definite metric (negative-energy) [171,
173]. In the case of direct coupling to matter, the locality
and consistency conditions require that the interacting theory
includes all nonlinear terms [168, 169, 174], otherwise the spin-
2 field of the linearized theory remains ghost-like in empty
flat space [170]. Despite the inconsistency of linear, massless
spin-2 interactions, the nonlinear theory of a massive spin-2
field provides ghost-free consistent coupling to matter [175-
177]. A spin-2 field coupled to matter or nonlinear self-
interaction leads to the general covariance of the interacting
theory [169]. Constructing the interacting multi-graviton model
and coupling a single spin-2 field to a dynamical metric require
a fully non-linear representation of the interacting theory for
gravity.

It was proven that the dual formulations of linearized
gravity in D 5, the Curtright Field, does not have
consistent interactions involving two derivatives of the fields
under local, Poincaré invariance [40]. The dual formulations
of linearized gravity in D > 5 do not possess consistent,
local deformations [178], so the dual graviton of the linearized
theory does not have any self-interaction. However, the dual
graviton can be coupled to other theories, such as topological
BF theories [132, 179]. To overcome the inconsistency of
the linearized dual gravity, one may consider a non-linear
theory of the dual graviton, which incorporates a topological
(Chern-Simons like) term for the original graviton, which
leads to consistent nonlinear deformations, and is manifestly
invariant due to a dynamical metric for the dual graviton
[134]. In particular, the properties of the Kac-Moody algebra
Ej; (see section 2.3) are associated with spacetime covariance
and supergravity covariant spectra. In the case of D 11
supergravity, the Kac-Moody algebra (A{"S" for pure gravity)
applies to pure gravity (as well as maximal supergravity), so
the dual graviton cannot be coupled to the original Einstein-
Hilbert action, and it doubles degrees of freedom. Nevertheless,
the dual graviton in the E;; algebra can be coupled with a
topological term containing the original metric without any
doubling of degrees of freedom [134]. The interacting theory
of dual graviton in D > 5 [43] can also be constructed
in de Sitter space (dS,) [180], similar to the nonlinear
implementation of gravitational duality with a cosmological
constant in dS4 [181]. Thus, it is necessary to formulate a
nonlinear representation of dual gravity (see [134, 182] for
nonlinear dual graviton), which is dual to nonlinear Einstein
gravity, containing both the original and dual metrics, and is fully
gauge covariant.

It has been shown that a massless spin-3 (also s > 3) particle
described by a linear gauge field cannot have a self-interaction
in D = 4 [183, 184]. Although first-order deformations of
spin-3 fields are possible [183], self-interactions encounter some
difficulties: the first-order deformations do not obey the Jacobi

identity [185], and the commutator of two gauge transformations
cannot be written [184]. Similarly, the commutator between
two gauge transformations of a linear spin-s gauge field (>
3) cannot be constructed in D = 4, so self-interactions of
a spin-s field do not exist in 4-D flat space [184]. Using
the BRST-antifield formalism, the first-order deformations of
a spin-3 gauge field in D 4, defined by a non-abelian
symmetric rank-3 tensor hj,, = h?/wp)’ were built under
the assumptions of parity and Poincaré invariance, local and
perturbative deformation of the free theory in Minkowski space,
which correspond to the cubic vertex of Berends, Burgers, and
van Dam [183] involving three derivatives of the fields, but the
theory is again inconsistent at second order [186]. In D = 5
Minkowski spacetime, the second-order deformations of spin-3
fields can be obtained, while the first-order deformations involve
the generalized de Wit-Freedman connection [187]. In D > 4
flat spacetime, the structure constants given by a completely
antisymmetric tensor can make a cubic vertex at second order
involving five derivatives of the fields, but the analysis will be
complicated due to tedious five-derivative calculations [186].
Hence, the interacting theory of linearized spin-3 particles is
problematic in flat space D > 4, and only feasible under some
certain assumptions involving 3 derivatives at first order and
5 derivatives at second order in spacetime dimensions higher
than 4.

The generalizations of the Coleman-Mandula “no-go”
theorem [188] to supersymmetry [189] and higher spin gauge
theories [190-192] indicate that the interacting theory of
linearized higher spin fields (s > 2) are incompatible in flat
spacetime, since their conserved currents are associated with a
free theory, which does not permit to have a nontrivial S-matrix
[190]. The no-go theorem allows us to have only gauge fields
of spin-1 and spin-2 perturbations around a flat background.
However, the restrictions imposed by the no-go theorem on
higher spin fields (s > 2) can be overcome in the nonlinear
theory of spin-s perturbations around the anti de Sitter (AdS;)
spacetime of arbitrary d dimensions [193]. It is argued that
the interacting theory of nonlinear, massless bosonic fields of
arbitrary spins s > 1 can be formulated in d-dimensional AdS
space [194-196]. Nonlinear spin-s fields with a non-vanishing
cosmological constant in D = 4 were shown to have consistent
interaction in the cubic-order [197, 198], and in the first-order
in the Weyl 0-forms [199], and also in all orders [200-203] (the
so-called Vasiliev higher-spin theory). Consistent interactions
of nonlinear spin-s fields were also formulated in 3-D AdS
spacetime [204], in AdSs spacetime [205, 206], and in AdSy
space with arbitrary d dimensions [207]. In particular, it was
shown that irreducible massless mixed symmetry fields in AdS,
are decomposed into certain reducible massless flat fields in the
flat limit [208], which permit to have consistent deformations for
generic higher-spin fields in the AdS space. It was demonstrated
that all spin-s consistent deformations are explicitly made using
Vasiliev’s unfolded equations in D = 4, which are expressed
in terms of a gauge connection and a (twisted)-adjoint matter
field, while the Vasiliev gauge connection is found to be related
to the spin-s Fronsdal fields [209]. Therefore, the nonlinear,
massless higher spin gauge theories can have consistent
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interactions around the AdS vacuum solution with the non-zero
cosmological constant in the Vasiliev higher-spin theory
[210].

It is well known that the compactification of M-theory or
supergravity on (d + 1)-dimensional AdS spacetime is dual
to conformal field theory (CFT) in d dimensions, which is
called the AdS;,,/CFT; correspondence or Maldacena duality
[211]. This correspondence indicates that the chiral operators
of NV = 4 Super Yang-Mills theory (CFT observables) in D =
4 correspond to those of Kaluza-Klein Type IIB supergravity
on AdSs x §° (where §° is a 5-dimensional compact space)
[212, 213]. We know that electric-magnetic duality in the bulk
of AdS4 can relate holographically derived deformations of the
boundary CFT3 [50]. It was also argued that gravity theories
in AdS, are holographically dual to two CFTs in D = 3 with
different parity: the Dirichlet CFT3 with the graviton source and
a dual CFT3 with a dual graviton source at the non-linear level
[52]. The holographic properties of electric-magnetic duality in
gravity also provide some insights into non-linear aspects of
M-theory (see [51] for review). The “yes-go” Vasiliev higher-
spin theory of spin-s perturbations in the AdS background
is naturally conjectured in the higher-spin holography [214-
216], which gives evidence for duality between Vasiliev’s higher-
spin fields and the free field theory of N massless scalar fields
[217], and holographic dualities between Vasiliev’s higher-spin
fields and O(N) vector models [215, 216] (the so-called higher
spin/vector model duality; see [218, 219] for review). The
interacting theory of Vasiliev’s higher-spin fields may reveal the
hidden origin of AdS;,/CFT  correspondence (see [220-222]
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