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The objective of this article is to present the computable solution of space-time

advection-dispersion equation of fractional order associated with Hilfer-Prabhakar

fractional derivative operator as well as fractional Laplace operator. The method followed

in deriving the solution is that of joint Sumudu and Fourier transforms. The solution is

derived in compact and graceful forms in terms of the generalized Mittag-Leffler function,

which is suitable for numerical computation. Some illustration and special cases of main

theorem are also discussed.
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INTRODUCTION

In the last decade, considerable interest in fractional differential equations has been stimulated
due to their numerous applications in the areas of physics, biology, engineering, and other areas.
Several numerical and analytical methods have been developed to study the solutions of nonlinear
fractional partial differential equations, for details, refer to the work in [1–6]. Fractional equations
have enabled the investigation of the nonlocal response of multiple phenomena such as diffusion
processes, electrodynamics, fluid flow, elasticity, and many more. Nowadays, fractional derivatives
have gained a significant development to model some real life phenomena in the form of partial
differential equations or the ordinary equations. Several researchers have performed the numerical
simulation for fractional problems and revealed their applications in different directions include
[7–12] and references therein. The exchange of heat, mass and momentum are considered to be
the fundamental transfer phenomena in the universe. The mathematical framework for heat and
mass transfer are of same kind, basically encompass by advection-dispersion equation. In recent
work many authors have demonstrated the depth of mathematics and related physical issues of
advection-dispersion equations. Schumer et al. [13] gave physical interpretation of space-time
fractional advection-dispersion equation. Space-time fractional advection-dispersion equations are
generalizations of classical advection-dispersion equations. The use of Hilfer-Prabhakar fractional
derivative operator is gaining importance in physics because of their specific properties. The
objective of this paper is to derive the solution of Cauchy type generalized fractional advection
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dispersion equation (18), associated with the Hilfer-Prabhakar
fractional derivative. This paper provides an elegant extension of
results, given earlier by Haung and Liu [14], Haubold et al. [15],
Saxena et al. [16], and Agarwal et al. [17].

RESULTS REQUIRED IN THE SEQUEL

In early 90s,Watugala [18] introduced Sumudu transform, which
is defined as,

A =
{

f (t) /∃M, τi > 0, i = 1, 2
∣

∣f (t)
∣

∣ ≤ Me
|t|
τj if t ∈ (−1)j

×[0, ∞)

}

. (1)

for all real t ≥ 0 the Sumudu transform of function f (t) ∈ A is
defined as,

S
[

f (t) ; u
]

= F (u) =
∫ ∞

0

1

u
e−

t
u f (t) dt, u ∈ (−τ1, τ2) (2)

inversion formula of (2), is given by

S−1 [F (u)] = f (t) =
1

2π i

∫ γ+i∞

γ−i∞
e
t
u F (u) du, (3)

where γ being a fixed real number.
Among others, the Sumudu transform was shown to have

units preserving properties, and hence may be used to solve
problems without resorting to the frequency domain. Further
details and properties about this transform can be found in
Belgacem [19], Belgacem et al. [20], and Katatbeh and Belgacem
[21].

For a function u (x, t) , the Fourier transform of with respect
to x is defined by

F [u (x, t)] = u∗ (η, t) =
∫ ∞

−∞
eiηxu (x, t) dx, (−∞ < η < ∞)

(4)

and for the function u∗ (η, t), inverse Fourier transform with
respect to η is given by the formula

F−1
[

u∗ (η, t)
]

= u (x, t) =
1

2π

∫ ∞

−∞
e−iηxu∗ (η, t) dη. (5)

For more details of Fourier transform, see [Debnath and Bhatta
[22]].

Mittag-Leffler function of two parameters is studied by
Wiman [23] as

Eα, β (z) =
∑∞

n=0

zn

Ŵ(αn+ β)
, α, β ∈ C, R (α) > 0. (6)

Mittag-Leffler function of three parameter introduced by
Prabhakar [24] as

E
γ

α, β (z)=
∑∞

n=0

Ŵ(γ + n)

Ŵ(γ )Ŵ(αn+ β)

zn

n!
, α, β , γ ∈ C, R (α) > 0.(7)

Riemann-Liouville fractional integral (right-sided) of order α is
defined in [25]

Iαa (u (x, t)) = RL
a D−α

t (u (x, t)) =
1

Ŵ(α)

∫ t

a
(t − τ)α−1u (x, t) dτ ,

(t > a) , R (α) > 0. (8)

The right sided Riemann-Liouville fractional derivative of order
α defined as

RL
a Dα

t (u (x, t)) =
(

d

dt

)n
(

In−α
a u (x, t)

)

(R (α) > 0,

n = [R (α)]+ 1) , (9)

here [x] is the integral part of x.
Caputo [26], introduced fractional derivative of order R (α) >

0 as

C
0D

α
t (u (x, t)) =











1
Ŵ(m−α)

∫ t
0

um(x, τ)

(t−τ)α+1−m dτ ,

m− 1 < α ≤ m, R (α) > 0, m ∈ N,
∂m

∂tm u (x, t) , if α = m, (10)

The Sumudu transform of (10) is given in [27], as

S
[

0D
α
t u (x, t) ; s

]

= s−α ū (x, s) −
∑m−1

k=0

u(k)u (x, 0)

uα−k
,

(m− 1 < α ≤ m) (11)

where ū (x, s) is the Sumudu transform of u (x, t).
Hilfer [28], gave a fractional derivative operator of two

parameters µ and ν , which is generalization of (9) and (10), in
the form

0D
µ,ν
0+ (u (x, t)) = I

ν(1−µ)
t

∂

∂t

(

I
(1−ν)(1−µ)
0+ u (x, t)

)

, 0 < µ < 1

and 0 ≤ ν ≤ 1 (12)

For ν = 0, equation (12) reduces into (9) and for ν = 1, equation
(12) reduces into (10).

The Sumudu transform of (12) is given in [29], as

S
[

0D
µ,ν
0+ (u (x, t)) ; s

]

= s−α ū (x, s) −
∑m−1

k=0
sk−m+ν(m−µ) ∂k

∂xk
(

I
(1−ν)(1−µ)
0+ u (x, 0+ )

)

, (13)

(m− 1 < µ ≤ m) .

Where the initial value term I
(1−ν)(1−µ)
0+ u (x, 0+ ) involves the

Riemann-Liouville fractional derivative operator of order (1 −
ν)(1− µ) as t → 0+ .

A generalization of Hilfer derivate is given in [30], known as
Hilfer-Prabhakar derivative, is defined as:

Let µ ∈ (0, 1) , ν ∈ [0, 1], and let f . belongs to the set
of locally integrable real valued functions i.e., f ∈ L1[o, b], 0 <

t < b ≤ ∞, f ∗ e
−γ (1−ν)
ρ, (1−ν),ω

(.) ∈ AC1[0, b]. The Hilfer-Prabhakar

derivative is defined by

0D
γ ,µ,ν
ρ,ω.0+ (u (x, t)) = E

−γ ν

ρ, ν(1−µ),ω,0+
∂

∂t

(

E
−γ (1−ν)
ρ, (1−ν)(1−µ),ω,0+
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u (x, 0+)) , (14)

where γ , ω ∈ R, ρ > 0, and where E0ρ,0,ω,0+f = f . We observe

that (14) reduces to the Hilfer derivative for γ = 0. The Sumudu
transform of this derivative operator (14) is given in [31], in the
form:

S
[

0D
γ ,µ,ν
ρ,ω,0+ (u (x, t)) ; s

]

=

s−µ
(

1− ωsρ
)γ
ū (x, s) − sν(1−µ)−1

(

1− ωsρ
)γ ν

[

E
−γ (1−ν)
ρ, (1−ν)(1−µ),ω,0+ (x, 0+)

]

(15)

For details of this derivative, refer to the work in [30, 31].
Brockmann and Sokolov [32], defined a fractional Laplace

operator as:

1
λ
2 =

1

2 cos
(

πλ
2

)

{

−∞Dλ
x + xD

λ
∞

}

, (0 < λ ≤ 2) ,

where the operators are defined by

−∞Dλ
x

(

u(x)
)

=
1

k− λ

∫ x

−∞

uk (u)

(x− u)λ+1−k
du ,

(

k = [λ]+ 1
)

,

and

xD
λ
∞

(

u(x)
)

=
1

k− λ

∫ ∞

x

uk (u)

(x− u)λ+1−k
du ,

(

k = [λ]+ 1
)

.

The Fourier transform of1
λ
2 is given in [32], as

F
{

1
λ
2 (u (x, t)) ; k

}

= −
∣

∣k
∣

∣

λ
F {u (x, t)} , (0 < λ ≤ 2) . (16)

Inverse Sumudu transform of the following function is directly
applicable in this sequel:

In the complex plane C, for any R (α) > 0, R (β) > 0, and
ω ∈ C

S−1
[

uγ−1
(

1− ωuβ
)−δ

]

= tγ−1Eδ
β , γ

(

ωtβ
)

. (17)

SPACE-TIME FRACTIONAL

ADVECTION-DISPERSION EQUATION

Here we will find, the solution of the generalized space-time
Advection-Dispersion equation (18) under the conditions given
in (19) and (20). Our main findings in the form of the following
Theorem 3.1 and Corollary 3.2.

Theorem 3.1.Consider the generalized fractional order space-
time advection-dispersion equation of Cauchy type

0D
γ ,µ,ν
ρ,ω,t (u (x, t)) = −ηDxu (x, t) + ς1

λ
2 (u (x, t)) , (18)

where λ ∈ (0, 2] x ∈ R, t ∈ R+, µ ∈ (0, 1) , ν ∈ [0, 1] ,
with initial condition,

E
−γ (1−ν)
ρ, (1−ν)(1−µ),ω,0+u (x, 0+) = g (x) , γ , ω, x ∈ R, ρ > 0, (19)

and boundary condition

lim
|x|→∞

u (x, t) = 0, t > 0, (20)

where 1
λ
2 is the Laplace operator of fractional order λ, λ ∈

(0, 2] . The positive constant η represent the average fluid
velocity and ς (positive constant) represent the dispersion
coefficient. Subject to the above constraints, solution of equation
(18), is

u (x, t) =
∑∞

n=0

tν(1−µ)+nµ−1

2π

∫ ∞

−∞
e−ikxg

(

k
)

(

iηk− ς
∣

∣k
∣

∣

λ
)n

E
γ (n−ν)

ρ, ν(1−µ)+nµ

(

ωtρ
)

dk. (21)

Proof: First, take the Fourier transform of equation (18) with
respect to the space variable x, then

0D
γ ,µ,ν
ρ,ω,t

(

u∗
(

k, t
))

= ηiku∗
(

k, t
)

− ς
∣

∣k
∣

∣

λ
u∗

(

k, t
)

, (22)

u∗
(

k, t
)

represent Fourier transform of u (x, t) . Again, apply
Sumudu transform on (22) with respect to time variable t, we get

s−µ
(

1− ωsρ
)γ
u∗

(

k, s
)

− sν(1−µ)−1
(

1− ωsρ
)γ ν

(23)
[

E
−γ (1−ν)
ρ, (1−ν)(1−µ),ω,0+u

(

k, 0+
)

]

= iηku∗
(

k, s
)

− ς
∣

∣k
∣

∣

λ
u∗

(

k, s
)

,

where S
[

u
(

k, t
)

; s
]

= ū
(

k, s
)

.
Solve equation (23), by using conditions (19)-(20), we get

{

s−µ
(

1− ωsρ
)γ − iηk+ ς

∣

∣k
∣

∣

λ
}

u∗
(

k, s
)

= sν(1−µ)−1

(

1− ωsρ
)γ ν

g(k),

⇒ u∗
(

k, s
)

=
sν(1−µ)−1(1− ωsρ)γ ν

{

s−µ(1− ωsρ)γ − iηk+ ς
∣

∣k
∣

∣

λ
} g(k). (24)

On taking inverse Sumudu transform of equation (24), and after
little simplification, apply result (17), it gives

u∗
(

k, t
)

=
∑∞

n=0

(

iηk− ς
∣

∣k
∣

∣

λ
)n

g
(

k
)

tν(1−µ)+nµ−1

E
γ (n−ν)

ρ, ν(1−µ)+nµ

(

ωtρ
)

. (25)

Taking inverse Fourier transform of (25), get our required result
(21).

This completes the proof of the theorem 3.1.
0n taking η = 0, ς = ih

2m in Theorem 3.1, we arrive at:
Corollary 3.2. Consider the following one dimensional space-

time Schrödinger equation of fractional order, for a free nature
particle of massm is

0D
γ ,µ,ν
ρ,ω,t (u (x, t)) =

ih

2m
1

λ
2 (u (x, t)) , (26)

where λ ∈ (0, 2] , x ∈ R, t ∈ R+, µ ∈ (0, 1) , ν ∈ [0, 1] ,
with initial condition

E
−γ (1−ν)
ρ, (1−ν)(1−µ),ω,0+u (x, 0+) = g (x) , γ , ω ∈ R, ρ > 0, (27)
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and boundary condition

lim
|x|→∞

u (x, t) = 0, t > 0, (28)

where 1
λ
2 is same as we defined earlier and h = 6.625 ×

10−27erg s = 4.21 × 10−21Mev s is the Planck constant. Subject
to the above constraints, solution of equation (26), is

u (x, t) =
∑∞

n=0

tν(1−µ)+nµ−1

2π

∫ ∞

−∞
e−ikxg

(

k
)

(

−
ih

2m

∣

∣k
∣

∣

λ

)n

E
γ (n−ν)

ρ, ν(1−µ)+nµ

(

ωtρ
)

dk. (29)

Proof: For obtaining the solution of Corollary 3.2, we follow
same procedure, as we used in the proof of Theorem 3.1, and after
little simplification, finally we obtain the desired result (29).

ILLUSTRATION

Example 4.1. To describe solute transport in aquifers, consider
the following generalized fractional advection dispersion
equation

0D
γ ,µ,ν
ρ,ω,t (u (x, t)) = −Dxu (x, t) + u′1

λ
2 (u (x, t)) , (30)

with initial condition

E
−γ (1−ν)
ρ, (1−ν)(1−µ),ω,0+u (x, 0+) = e−x, 0 < x < 1, t > 0, (31)

and boundary condition

lim
|x|→∞

u (x, t) = 0, t > 0, (32)

where µ′ = d
ν′L and we consider a dimensionless parameter,

called Peclet number, Pe = 1
µ′ where L is the packing length.

The Peclet number determines the nature of the problem, that
is, the Peclet number is low for dispersion-dominated problems
and is large for advective dominated problems, d is the dispersion
coefficient

[

L2T−1
]

and ν′ is the Darcy velocity
[

LT−1
]

.
Our interest is in the solution of (30), for this we follow same

procedure, as we applied in the proof of Theorem 3.1, and after
little simplification, finally we obtain

u (x, t) =
∑∞

n=0

tν(1−µ)+nµ−1

2π

∫ ∞

−∞
e−ikxg

(

k
)

(

ik− µ′∣
∣k

∣

∣

λ
)n

E
γ (n−ν)

ρ, ν(1−µ)+nµ

(

ωtρ
)

dk (33)

Here u (x, t) represent the analytical expression of solute

concentration and g
(

k
)

= 1√
2π

[

e−(1+ik)−1
1+ik

]

.

Example 4.2. Consider the generalized fractional order space-
time advection-dispersion equation

0D
γ ,µ,ν
ρ,ω,t (u (x, t)) = −Dxu (x, t) + u′1

λ
2 (u (x, t)) , (34)

with the initial condition

E
−γ (1−ν)

ρ, (1−ν)(1−µ),ω,0+u (x, 0+) = δ (x) , (35)

Here δ(x) is Dirac-delta function and boundary condition

lim
|x|→∞

u (x, t) = 0, t > 0, (36)

The solution of (34) can be obtained by same technique as we
applied in proof of Theorem 3.1

u (x, t) =
∑∞

n=0

tν(1−µ)+nµ−1

2π

∫ ∞

−∞
e−ikx

(

ik− µ′∣
∣k

∣

∣

λ
)n

E
γ (n−ν)

ρ, ν(1−µ)+nµ

(

ωtρ
)

dk. (37)

SPECIAL CASES

Some interesting special cases of Theorem 3.1 are enumerated
below:

If we set γ = 0, in (14), then Hilfer-Prabhakar derivative
reduces to Hilfer derivative (12), and the Theorem 3.1 reduces to:

(I). Consider the generalized fractional order space-time
advection-dispersion equation of Cauchy type

0D
µ,ν
t (u (x, t)) = −ηDxu (x, t) + ς1

λ
2 (u (x, t)) , (38)

where (0 < λ ≤ 2) , x ∈ R, t ∈ R+, µ ∈ (0, 1) , ν ∈ [0, 1] ,
with initial condition

I
(1−ν)(1−µ)
0+ u (x, 0+) = g (x) , x ∈ R, (39)

and boundary condition

lim
|x|→∞

u (x, t) = 0, t > 0. (40)

For obtaining the solution of (38), follow same procedure as
we used in the proof of theorem 3.1, and use (13), after little
simplification, obtain the following

u (x, t) =
tν(1−µ)+µ−1

2π

∫ ∞

−∞
e−ikxg

(

k
)

E1µ, ν(1−µ)+µ

((

iηk− ς
∣

∣k
∣

∣

λ
)

tµ
)

dk . (41)

Again, use convolution theorem of the Fourier transform to (41),
then we get solution of (38), in term of Green’s function as

u (x, t) =
∫ ∞

−∞
G

(

x− k, t
)

g
(

k
)

dk.

Here Green’s function is given as

G (x, t) =
tν(1−µ)+µ−1

2π

∫ ∞

−∞
e−ikxE1µ, ν(1−µ)+µ

((

iηk− ς
∣

∣k
∣

∣

λ
)

tµ
)

dk.

If we set ν = 1 in (12), then Hilfer fractional derivative reduces
to Caputo fractional derivative operator (10) and the equation
(38), yields the following:

(II). Consider the generalized fractional order space-time
advection-dispersion equation of Cauchy type
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0D
µ
t (u (x, t)) = −ηDxu (x, t) + ς1

λ
2 (u (x, t)) , (42)

where (0 < λ ≤ 2) , x ∈ R, t ∈ R+, µ ∈ (0, 1) ,
with initial condition

u (x, 0+) = g (x) , x ∈ R, (43)

and boundary condition

lim
|x|→∞

u (x, t) = 0, t > 0. (44)

For obtaining the solution of (42), follow same procedure as
we used in the proof of theorem 3.1, and use (11), after little
simplification, obtain the following

u (x, t) =
1

2π

∫ ∞

−∞
e−ikxg

(

k
)

E1µ, 1

((

iηk− ς
∣

∣k
∣

∣

λ
)

tµ
)

dk. (45)

Again, use convolution theorem of the Fourier transform to (45)
then we get solution of (42), in term of Green’s function as

u (x, t) =
∫ ∞

−∞
G

(

x− k, t
)

g
(

k
)

dk.

Here Green’s function is given as

G (x, t) =
1

2π

∫ ∞

−∞
e−ikxE1µ, 1

((

iηk− ς
∣

∣k
∣

∣

λ
)

tµ
)

dk.

(III). On giving suitable value to the parameters involved in
Theorem 3.1, we can obtained same results, earlier given by
Haung and Liu [14], Haubold et al. [15], Saxena et al. [16], and
Agarwal et al. [17].

CONCLUSION

In this paper, we have presented a solution of generalized space-
time fractional advection-dispersion equation. The solution has
been developed in terms of Mittag-Leffler function with the help
of Sumudu transform and Fourier transform. We can develop
the efficient numerical techniques to find solution of various
fractional partial differential equations arising in various fields by
considering these analytic solutions as base. For future research,
the methodology presented in this paper can serve as a good
working template to solve any fractional advection-dispersion
equations in higher dimensions.
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