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A simple model is introduced for the fields of a chirped laser pulse. As an application,

dynamics of laser-acceleration of a single electron by the fields of a pulse, with a sin
4

envelope, is investigated. Multi-GeV energy gains from interaction with pulses of peak

intensity I0 ∼ 1020 W/cm2, are reported.
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1. INTRODUCTION

Chirped pulse amplification (CPA) has revolutionized laser technology, elevating the output powers
to the petawatt regime in the past thirty years or so [1, 2] and possibly beyond that soon [3]. Chirped
optical pulses have many applications, especially in fiber-optic communication [4]. More recent
applications include cooling of a mirror in cavity optomechanics [5]. Chirped pulses in acoustic
and radar signal processing [6, 7] have a much longer history.

Chirped laser pulses have been employed in theoretical laser-acceleration investigations for
some time now [8–11], but only a few experiments have shown some evidence of vacuum laser
acceleration using few-cycle laser pulses [12, 13], let alone chirped few-cycle pulses. In any case,
results based on the one-dimensional model, to be introduced in this paper, may be compared to
those stemming from the full three-dimensional calculations, only qualitatively.

Popular models of chirping the frequency, ω, of a wave include letting ω = ω0 + bt (a linear
chirp) in which the parameter b has the unit of s−2, t is the time, and ω0 is the initial frequency (at
t=0) [14–17]. Likewise, a quadratic chirp is obtained by taking ω = ω0 + bt2, in which b has a
unit of s−3, or ω = ω0 + b1t+ b2t

2, with b1 and b2 having the units s
−2 and s−3, respectively, and

so on.
In some recent applications, chirping the frequency of a laser pulse, of frequency ω0

and wavenumber k0 and propagating along the z-direction, has been modeled by replacing
η = ω0t − k0z with η + bη2 (linear, with b a dimensionless parameter) and quadratic
(η → η + bη3). This work adopts the approach based on the variable η [18–21].

So, to model the relevant experimental situation and account for the chirp, time dependence in
the frequency has been altered by hand, directly by adding terms which contain the time t and chirp
parameters, or indirectly through changing η. This seems to work quite well, for a linear chirp, to
model what transpires when a laser pulse is, for example, passed through a linear medium of the
right properties, including the right index of refraction. The model we put forward in this work
accounts for all orders of chirp in a unified way and employing a single parameter, thus lowering
the degree of arbitrariness in describing the chirp. It allows for the use of non-linear media to
produce chirps of orders above the linear, which stands a good chance of opening the door for
more novel applications in the field. Precise control over the temporal chirp of ultrashort pulses is
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possible today employing devices such as acousto-optic
programmable dispersive filters, which are capable of tailoring
the spectral phase- and amplitude-phase to several orders [22].

Some background material, of direct relevance to this work,
is briefly reviewed in section 2, before the fields of a chirped
laser pulse are introduced in section 3. Dynamics of a single
electron subjected to the chirped pulse will be discussed in section
4. Finally, a summary and our main conclusions will be given
in section FF 5.

2. BACKGROUND

In a typical textbook exercise on electromagnetic waves, one is
asked to show that any well-behaved function f (η) satisfies the
full set of Maxwell’s equations in a vacuum, exactly [23]. Based
on this, the following qualify for adequately representing the
linearly-polarized transverse fields of an un-chirped pulse (in SI
units) [24]

E(η) = x̂E0 sin(ϕ0 + η) sin4
( η

2N

)

, (1)

B(η) = ŷ
E0

c
sin(ϕ0 + η) sin4

( η

2N

)

, (2)

where ϕ0 is an initial phase, E0 is a constant amplitude, c is the
speed of light in vacuum, and x̂ and ŷ are unit vectors in the
(transverse) x− and y−directions, respectively. For a few-cycle
pulse, ϕ0 serves as the carrier envelope phase (CEP). The fields in
Equations (1, 2) are non-zero only for η ∈ [0, 2Nπ], in which N
(giving the number of η−cycles in the pulse) is an integer chosen
to ensure that the fields vanish at η = 0 and η = 2Nπ . The
intensity of such a pulse will be calculated as the time-average of
the Poynting vector in the focal plane. With µ0 and ε0 standing,
respectively, for the permeability and permittivity of free space,
the pulse intensity may be calculated from

I0 =
ω0

2πN

∫ 2πN/ω0

0

(

S · ẑ|z=0

)

dt; S =
1

µ0
E× B,

=
35

28

[

1−
3225

π

(2N − 5)!

(2N + 4)!
sin(4πN)

]

cε0E
2
0. (3)

For our purposes in this work, the number of field cycles (in
η) will be N ≥ 3, for which the electric field amplitude will be
given by

E0 = 16

√

I0

35cε0
. (4)

Our aim in this paper is to introduce a simple model for chirping
the frequency of the fields given by Equations (1, 2) and to
employ the chirped fields in investigating the dynamics of a single
electron subjected to the pulse they represent. The chirped fields
will be discussed briefly in the next section.

3. THE CHIRPED FIELDS

The starting point is the observation that, when one lets

η →
η

1− bη
= η + bη2 + b2η3 + · · · , (5)

in the argument of the sin oscillation in Equations (1, 2) one gets
what resembles a linear chirp, a quadratic chirp, and so on, if the
series is truncated at the second term, at the third term, . . . etc.,
respectively. The expansion in (5) is valid so long as |bη| < 1.
So, provided this convergence condition is adhered to faithfully,
the fields

E(η) = x̂E0 sin

(

ϕ0 +
η

1− bη

)

sin4
( η

2N

)

, (6)

B(η) = ŷ
E0

c
sin

(

ϕ0 +
η

1− bη

)

sin4
( η

2N

)

, (7)

can be employed as chirped counterparts for (1) and (2). These
fields also satisfy the full set of Maxwell’s equations, exactly. Note
that the model depends upon a single dimensionless parameter,
b. A chirp, modeled in this fashion, destroys the symmetry of the
un-chirped oscillation merely slightly, but sensitively enough to
circumvent the Lawson-Woodward theorem [25–28] and result
in net electron acceleration, as will be shown in the next section.

Equations (6, 7) have not been produced rigorously. Rather,
they have been constructed with the aim of encompassing linear
chirp along with higher-order chirps in a single equation. In
principle, they also lead to electron dynamics that can be handled
analytically, and to results that may be interpreted easily. The
choice expressed by Equation (5) is not unique. The above-
mentioned goals can be achieved by other alternative, but not
totally unrelated, models such as exponential, logarithmic, and
power chirps [29].

4. SINGLE ELECTRON DYNAMICS

Next the dynamics of a single electron (mass m and charge
−e) injected along +z, the propagation direction of the pulse,
is investigated. Without any loss of generality, the assumption
is made here that the front of the pulse will catch up with the
electron exactly at t = 0, and precisely at the instant it is
at the origin of coordinates. This assumption may be difficult
to realize experimentally, in which case the delay between the
particle and the front of the pulse must be taken into account.
This merely results in a set of initial conditions different from
the ones employed below, if the above assumption is made. In
this model, we assume no laser-electron timing jitter. That is,
we select an electron injection phase for the chirped electric
field to evidence the potential theoretical energy gain a single
electronmay experience. In practical terms, if we consider optical
wavelengths (e.g., λ ∼ 1 µm) to achieve the high intensity
regime presented here, we would require the injection phase
error to be ∼ λ/10 or smaller, or equivalently, lower than ∼

300 attoseconds for a single electron. These timing error levels
are currently achievable using any general self-injected scheme

Frontiers in Physics | www.frontiersin.org 2 February 2019 | Volume 7 | Article 2

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Salamin and Carbajo Modeling Chirped Lasers for Electron Acceleration

because the electron originates from a process triggered by the
same accelerating laser fields.

Assuming no delay, the electron will have the relativistic
injection kinetic energy K0 = (γ0 − 1)mc2, where γ0 =

(1 − β2
0 )

−1/2 and β0 is the injection (initial) speed scaled by c.
The relativistic Newton-Lorentz equations of motion (or energy-
momentum transfer equations) of the electron may be combined
to give

dβ

dt
=

e

γmc

[

β(β · E)− (E+ cβ × B)
]

, (8)

where γ = (1− β2)−1/2 is the Lorentz factor of the electron and
β is its velocity vector scaled by c. Equation (8) possess analytic,
but admittedly cumbersome, solutions for linear and quadratic
chirps, in terms of Fresnel cosine and sine integral functions
[20, 21]. Beyond that, resorting to numerical methods seems
inevitable, which will be done in this work. The vector Equation
(8) is equivalent to three component (coupled) differential
equations. Our numerical calculations employ a Runge-Kutta-
based Mathematica code developed by one of us and used
over the years [18–21] to solve problems involving laser-matter
interactions. Note that, in principle, a single integration of
Equation (8) yields the Lorentz factor γ of the electron (or its
energy scaled by the rest energy mc2) which then may be used to
find the kinetic energy K = (γ − 1)mc2. A second integration,
employing the appropriate initial conditions, then yields the
particle trajectory.

Some examples are taken up next. Specifically, dynamics of
a single electron injected with initial kinetic energy K0 ∼ 2
MeV (γ0 = 5) and subsequently submitted to a laser pulse of
N cycles in η, and whose intensity is I0, will be discussed. The
tacit assumption is made here that the electrons are produced, by
whatever means, outside the region of interaction with the laser
and subsequently guided to where they interact as described.

Behavior of the exit kinetic energy of the electron, following
interaction with the laser pulse, as a function of the chirp
parameter, is shown in Figure 1. The rows are for N = 3, 4,
and 5, respectively, and the columns are for I0 = 1020 and
1021 W/cm2, respectively. Note first that the range of b values
decreases with increasing N, reflecting the role played by the
convergence condition |bη| < 1. Second, the exit kinetic energy
Kexit → K0 in the limit of b → 0, implying zero gain by the
electron, as predicted by the Lawson-Woodward theorem [25–
27]. Due to the fact that K ∝ I0, the values of Kexit in (d)-(f) are
10 times the corresponding values in (a)-(c). Finally, note that the
exit kinetic energy values are sensitive to variations in b.

In Figure 2, the un-chirped and chirped normalized electric
fields are shown together for a pulse of 5 cycles in η. It is clear
that the symmetry of the pulse is partially destroyed by chirping.
Corresponding positive and negative parts, of each oscillation in
η, are no longer identical. Thus, for example, the acceleration
which results from interaction of an electron with a negative
part of an oscillation, does not get canceled by the deceleration
resulting from interaction with the corresponding, but no longer
identical, positive part. The end result is, therefore, one of net

FIGURE 1 | (Color online) (A–C) Exit kinetic energy of a single electron injected

axially for interaction with a 1020 W/cm2 chirped pulse containing 3, 4, and 5

η-cycles, respectively, vs. the chirp parameter b. The electron is assumed to

have been injected axially with kinetic energy K0 ∼ 2 MeV (γ0 = 5) and

ϕ0 = 0. (D–F) Same as (A–C), respectively, but for pulse peak intensity

I0 = 1021 W/cm2.

FIGURE 2 | (Color online) Scaled electric field, Ex/E0, vs. the number of

η−cycles for the un-chirped (black, b = 0) and chirped (blue, b = −0.038)

pulses. The graphs have been produced using λ = 1 µm and ϕ0 = 0.

acceleration or, equivalently, net energy gain by the electron from
the pulse.

The example of single-electron acceleration by a 5-cycle
chirped pulse, with a chirp parameter b = −0.038, is analyzed
further by studying Figures 3, 4. Evolution of the kinetic energy
of the electron, with η, is shown in Figure 3. The interaction
results in a gain of 2.482 GeV by the electron. The comments
presented in the previous paragraph are further supported by
Figure 3B, which displays the normalized electric field seen
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FIGURE 3 | (Color online) (A) Evolution of the electron kinetic energy with η

during interaction with a 1020 W/cm2 chirped pulse (b = −0.038) of

wavelength λ = 1 µm, ϕ0 = 0, and containing 5 cycles in η. (B) The

normalized electric field seen by the electron during interaction with the pulse.

(C) The transcendental relation connecting the laboratory time t with η. The

electron is injected axially with kinetic energy K0 ∼ 2 MeV (γ0 = 5). Front of

the pulse is assumed to have caught up with the electron at t = 0, at the origin

of coordinates.

by the electron during interaction with the pulse, including
the correlation between the lack of symmetry of the field and
the net energy gain by the electron. Note that, viewed as a
function of η, the time t = η/ω0 + z(η)/c. This is obviously a
transcendental equation that can best be shown graphically. The
t vs. η relationship is shown in Figure 3C. From this figure, the
total laboratory time of laser-particle interaction is less than 0.446
ns, for the parameters used. This interaction time is equivalent to
about 133796 T, where T = λ/c is the laser period.

5. CONCLUDING REMARKS

Moving on to Figure 4, more interesting information may be
extracted regarding the example just considered. Figure 4A is
similar to Figure 3A, except here the kinetic energy evolution is
shown as a function of the excursion distance along the direction
of propagation of the pulse. First, note the obvious correlation
between the two curves displayed in Figures 3A, 4A. Second,
during the electron interaction with the pulse, its trajectory
extends an axial distance 1z ∼ 13.38 cm. Its exit kinetic energy,
in this particular example, is equivalent to an energy gain of
roughly 1K ≡ Kexit − K0 ∼ 2.480 GeV. These numbers predict
an energy gradient of 1K/1z ∼ 18.533 GeV/m, or more than

FIGURE 4 | (Color online) (A) Same as Figure 3A, except here the kinetic

energy evolution is plotted against the axial excursion distance, z.

(B) Trajectory of the same electron in the xz−plane (the polarization plane).

FIGURE 5 | (Color online) Same as Figure 4, albeit for acceleration from rest

(γ0 = 1).

185 times the natural limit (∼ 100 MeV/m) on the performance
of the corresponding conventional (linear) electron accelerator.

Figure 4B shows the actual trajectory of the electron in the
example subject of the discussion above. It is a typical 2D
trajectory one would expect for an electron interacting with a
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linearly-polarized laser pulse. Effect of the x−polarized electric
field is obvious in accelerating the electron transversely, relative
to the pulse propagation direction. At the same time the forward
excursion made by the electron is quite substantial. Once the
electron is left behind the pulse, it follows a straight line trajectory
whose direction is the same as the direction of its final (exit)
momentum vector. For the example at hand, the scattering angle
is about θ ∼ tan−1[βx(ηf )/βz(ηf )] ∼ 0.37◦, with the direction of
propagation of the pulse.

We acknowledge that, for the results presented above,
the interaction lengths and times between a (semi)relativistic
electron and a laser are very long compared to what can
currently be achieved with Fourier optics in free-space, in order
to achieve such relativistic intensity levels. One possible avenue of
investigation to overcome this challenge is the use of spatially and
spectrally shaped beams, tailored to abruptly focus and defocus
from high on-axis intensity [30]. A single electron at rest would
naturally exhibit much shorter interaction lengths that are more
realistic under conventional Fourier optics. In Figure 5 results
similar to those of Figure 4 are displayed, but for an electron
accelerated from rest (β0 = 0, γ0 = 1). According to Figure 5A

the electron gets accelerated from rest to a kinetic energy ∼ 251
MeV, over an axial excursion distance of 1z ∼ 1.36 mm, and
4.56 ps interaction time. These numbers yield an acceleration
gradient of 183.8 GeV/m, ten times that of the case displayed
in Figure 4. From Figure 5B one also reads that the maximum
transverse excursion of the electron is about 26.7µm. Finally, the
scattering angle of the electron accelerated from rest is roughly
3.7◦.

Attention in this work has been focused on a somewhat
generalized model for chirping the frequency of a plane-wave
laser pulse of finite axial extension. The un-chirped linearly-
polarized electric field of the pulse is a simple sin oscillation under
a sin4 pulse envelope. This representation is quite idealized.

A more realistic model ought to take into account the finite
extension of the pulse in both space and time. Despite the
observation that the pulse has a finite spatial extension in the axial
(propagation) direction, it is still plane-wave in character in the
transverse plane. This only strengthens the case for the need to
adopt a more realistic model for description of the fields of the
laser pulse [31–33].

The model also ignores existence of the axial field components
and the Gouy phase [34]. These are important pulse attributes
that must be included in any proper description of the fields of a
high-power, tightly-focused and ultra-short laser pulse [31–33].

Finally, the examples employed to demonstrate utility of our
model for the chirped fields have been limited to free-space
electron acceleration, employing laser field intensities of about
1021 W/cm2. For these reasons, radiation-reaction effects have
been ignored. Proper account of the radiation-reaction effects
requires resort to quantum electrodynamical methods, which fall
beyond the scope of the present work. Recent calculations have
demonstrated that such effects can be significant in plasma-based
laser acceleration of electrons, when the laser intensity employed
exceeds 1023 W/cm2 [35].
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