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Formal explanations of the dynamics of free and heavy tops are considered to be known

for centuries. However, intuitive understanding of their unexpected behavior is still a

challenge. In this paper, we present elementary force based explanations of precession

of heavy symmetric tops, derived in inertial and non-inertial reference frames. Simple

calculations are enabled by amodel equivalent to a spinning top, namely a square-formed

tube carrying a streaming ideal fluid or a frictionless chain. Precession in a combined,

gravitational and magnetic field is also discussed.
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1. INTRODUCTION

Interpreting the wobble of a torque-free spinning plate, the rise of a tippe top, as well as
the precession of a fast spinning wheel suspended at the extremity of its axle and exposed to
gravitational or electromagnetic torque, inspired the brightest researchers during the past centuries.
Although the mathematical treatment of these phenomena is known, their intuitive understanding
is not trivial [1–6]. Some mainstream textbooks provide simplified experimental configurations
(e.g., dumbbells) to offer a more comprehensible explanation [7, 8]. However, none of these reveals
the interplay of the forces responsible for these counterintuitive behaviors. Such a description
would be of pivotal importance, since forces, in contrast to conservation laws, are closer to our
everyday experience. Deeper understanding of torque-induced precession would be particularly
important for teaching a series of its applications, like the gyroscope, electron spin resonance (ESR)
[9] and nuclear magnetic resonance (NMR) [10, 11]. Moreover, the mathematical frameworks
describing the motion of spinning tops and that for the equilibrium shape of idealized bent and
twisted rods are analogous. This similarity is referred to as the Kirchhoff kinetic analogy (see
Supplementary Section III).

Here we provide an intuitive and simple explanation of the torque-induced precession. After
a short recapitulation of the underlaying concepts, we introduce and quantify the square wheel
model. Our model relies on a square-shaped rigid tube with a heavy fluid or chain in its interior,
which is allowed to circulate smoothly and without resistance in the closed loop determined by
the rigid tube. This flow generates an angular momentum enabling the comparison of the novel
configuration to the classical heavy tops which are symmetric, spinning objects. More importantly,
the square-shaped tubing facilitates an intuitive and elementary quantification of the external
couple of forces (in the inertial, laboratory frame) or the couple of inertial forces (in two types
of rotating frames) which counteract the gravitational torque and prevent the top from tumbling
down.

Spinning symmetric tops are prolonged or oblated bodies with a cylindrical or discrete
rotational symmetry, whirling around their symmetry axis en, having one point fixed, or at least
restricted to move on a surface [12]. The symmetry axis coincides with the principal axle having the
smallest or highest moment of inertia, while the two further principal moments of inertia associated
with the perpendicular principal axes (e⊥) have the same magnitude. One of the characteristic
phenomena exhibited by spinning tops is precession. This term is used to refer to several phenomena
having different physical origins. Conversely, in different fields of science and engineering, the very
same event may be called precession, wobbling or nutation [7, 8, 13, 14].
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Torque-free precession occurs when no external couple
of forces is acting on the top; its symmetry axis will sweep
around the mantle of a cone with opening angle ϑ , hereinafter
nutation angle, while the total angular momentum L of the
system, which determines the axis of the cone, is conserved [15–
19] (see Supplementary Section II.B). The mainstream physics
literature refers to the rotation around the precessing symmetry
axis as spinning while to the rotation around the steady
axis defined by the angular momentum as precession. Note
that different points of a freely precessing body are subjected
to acceleration which varies in space and time, therefore
mechanical tensions will arise within precessing free tops. This
phenomenon has a major importance in planetary physics [20]
(see Supplementary Section II.D).

Torque-induced precession (Figure 1) takes place if a
spinning top is exposed to a couple of forces (also referred to
as moment or torque) [7, 22–30]. Tops with an axis having
a cylindrical or at least a third order discrete rotational
symmetry, spinning around this axis and exposed to a torque
follow a regular trajectory (see Supplementary Section II.E).
Here the smooth change of the precession angle of the
spinning (and symmetry) axis, that is, the precession, can
be accompanied by nutation, a regular “nodding" of the
nutation angle. It is important to mention that asymmetric
tops will typically show chaotic behavior [31]. Presence of
dissipation can lead to exotic dynamics like the inversion
of the tippe top [5, 32]. We only investigate the pure
precession (steady nutation angle) of symmetric tops
exposed to a torque (“heavy” tops), where dissipation is
neglected.

1.1. Giroscopic Precession Essentials
Depending on the initial conditions and parameters, torque-
induced (gyroscopic) precession can show dynamics with various
complexity. Accordingly, its mathematical description demands
tools of different levels of advancement [7, 22, 33–35].

In the mainstream approach the classical spinning top is
parameterized by the Euler angles, namely the nutation angle ϑ ,
the precession angle ϕ, and spin angle, ψ (Figure 1A). Without
restricting generality, we can assume that the top is suspended
in a pivotal point such that it can rotate freely, and the torque
is of gravitational origin, and the corresponding force acts along
the vertical axis. The nutation-free case, when ϑ is constant, can
easily be treated by the Newton-Euler equation in the laboratory
frame [36]. This relationship states that the torque N acting on a
top determines the rate of change of its total angular momentum
L, namely dL/dt = N. The symmetry axis of the top will revolve
around the vertical by a uniform precession angular frequency,
ωp = dϕ/dt [37, 38], while the spinning angular frequency is
ωs = dψ/dt.

Deriving the equations of the general motion for the
symmetric heavy top can be accomplished by several approaches.
Besides the torque method relying on the Newton-Euler
equations, Euler’s equations or the toolkit of the analytical
mechanics can also be applied [29, 30, 39]. Most derivations
use a special decomposition of the angular momentum and
angular frequency vectors. For the nutation-free case, these lead

to a relationship involving ωp, the gravitational torque mgH,
the principal moments of inertia In and I⊥, as well as ϑ and
ωs, namely

(I⊥ − In)ω
2
p cosϑ − Inωpωs +mgH = 0 , ϑ /∈ {0,π} , (1)

where m is the mass of the top, H is the distance of the
top’s center of mass from the pivotal point and the inertial
moments are also calculated relative to this point [7] (see also
Supplementary Figure 5).

The interplay of the parameters can lead to various behavior.
The quadratic nature of (1) would generally yield two solutions
in ωp. Figure 1C summarizes the main features of this equation
[40]. Note that this phase diagram can be “palpated” by a heavy
top where the spinning and precession angular frequencies are
independently controlled, while the nutation angle is free to alter
[41].

For a prolated top, i.e., I⊥ > In, one can read from Figure 1C

that for ϑ < π/2 (the symmetry axis “points upwards”) no
dynamically stable solutions exist below a critical value of ωs (or
ωp). If two solutions exist, they are referred to as “slow” and “fast”
precession [23, 25]. For ϑ > π/2 the different signs of the two
solutions represent precessions in the two opposite directions.
The ϑ = π/2 case leads to a linear equation with a unique
solution.

An approximate linear solution can be achieved for 0 <

ϑ < π/2 range if assuming that the angular momentum
of the precession, Lp (or equivalently, L⊥) gives a negligible
contribution to the total angular momentum L (see Figure 1B).
More precisely, we neglect its contribution to the alteration of L,
that is, dL ≈ dLs = ωsInden. This common approximation holds
in the limit of large spin frequencies when ωs/ωp≫ 1 enabling to
neglect the first term on the left of (1), and yielding a single “slow
precession" solution ωp = mgH/Ls = mgH/Inωs.

In the general case nutation, that is, the periodic variation
of the nutation angle, ϑ , will also occur. Although Newtonian
methods could also account for nutation [7], this phenomenon
can be less tediously treated by recurring to the toolkit of
analytical mechanics [24, 30, 39, 42] finally leading to equations
with elliptic functions [43].

1.2. Attempts for Intuitive Explanations So
Far
Precessing heavy tops show several dynamical features
which may seem paradoxical at a first glance (see
Supplementary Section II.F). There have been several attempts
for an intuitive explanation of the torque-induced precession.
However, none of them provides a simple and easily quantifiable
explanation of the “mysterious" torque which counteracts the
external one. The main point of our paper is to present an
almost trivial and intuitive model of the pure, torque-induced
precession based on forces instead of conservation laws.

An early effort made to interpret the torque-induced
precession is presented in the seminal book of Klein and
Sommerfeld [44]. They introduced the concept of “deviation
resistance" (also referred as deviation torque), that is the torque
counteracting the external (gravitational) one, and determined
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FIGURE 1 | (color online) Precession of a heavy symmetric top. (A) focuses on angular frequencies, while (B) on angular momenta. The index lab specifies the axis of

the laboratory (inertial) reference frame. Quantities associated with precession are marked by p, those with spinning by s, and the ones related to the symmetry axis

and the principal axes perpendicular to it, by n and ⊥, respectively. (C) Interdependence of the orientation ϑ , precession ωp, and spin ωs of a heavy top, described by

Equation (1). The lines represent constant nutation angle (ϑ ) curves. Intersections of the curves with a horizontal line show the allowed value(s) for the precession

angular frequency ωp. Note that for ϑ ∈ {0,π} ωp and ωs cannot be distinguished [21].

its connection to the centrifugal and Coriolis forces [44–46].
Feynman proposed an explanation by observing that the paths
obtained by projecting the trajectories of the point of a spinning
and precessing top onto the horizontal plane swept by the
symmetry axis. These paths are curved, what requires the
presence of pairs of radial forces [47], but the idea has not
been quantified (for an analytic and numeric approach, see the
Supplementary Section I.A).

For a simple case, namely four identical masses on a
crossbar, Barker calculated the change of the orientation of their
velocities resulting from combined spinning and precession, and
determined the overall torque required by the corresponding
accelerations [48, 49]. Snider computed, using Coriolis forces,
the torque distribution and the overall torque required to
make a spinning ring to precess [50]. Usubamatov derived
the distribution of centrifugal forces, and their overall torque
counteracting gravity for a spinning and precessing disk [51].

Widely used mainstream textbooks also struggle to offer some
intuitive approaches. For example, Morin [7] and Kleppner and
Kolenkow [8] analyze the effect of impulses applied to a dumbbell
or to a spinning top in free fall. However, all of the attempts listed
above either rely on pretty laborious calculations, or do not catch
some important aspects of the precession. As such, the need for
an intuitive and easy-to-quantify model, accounting for the most
relevant aspect of precession, has not yet been fulfilled.

2. THE SQUARE WHEEL MODEL

2.1. Model Outline
The dynamic equilibrium of a spinning and precessing top will
be discussed by determining the forces and torques acting on it,
rather than considering the Newton-Euler equation. Performing
quantitative investigations would be simpler if very special top
shapes could be considered. The rigidity of the classical top
limits choosing the right geometry. Let us, however, substitute
the spinning wheel (Figure 2A) by the flow of an ideal and
incompressible fluid with streamlines strictly parallel to a closed
and rigid tube, or by an ideally flexible, frictionless chain running

along a fixed and closed trajectory (Figures 2B,C). In this way, we
can generate the same angular momenta as with a wheel, while a
flow or chain loop can be reshaped such that it greatly simplifies
calculations (see Supplementary Section I.B). The dynamics of
the classical top and our proposed square wheel arrangement
are uniquely determined by the torque acting on them, and
their angular momentum vector. Therefore the systems can
be regarded as being dynamically equivalent if the torques
and angular momenta for the two systems are the same. The
angular momentum has two components associated with the
two types of motion: circulation about a symmetry axis and
rotation about a fixed vertical axis. Note that the shape of
the proposed system, which determines the trajectory of the
ideal chain or fluid, is also fixed. However, for a noncircular
hoop, unlike for the rotationally symmetric rigid bodies, the
distances between the symmetry axis and the mass elements
moving on a closed trajectory are not constant. As such the
above hybrid model combines a rigid support and an ideally
flexible component generating the angular momentum, the fluid
or chain.

This model has been introduced in 1945 by Rood [52] but was
forgotten by the Physics community, and has been re-discovered

later [53]. Up to this time, inertial properties of liquids circulated

in tubings of various shapes were explored only for technological
purposes, namely, measuring liquid flow speed [54, 55].

Let us consider a wheel with radius r, whose mass m is
entirely concentrated in a thin hoop (Figure 2A). When spinning
with angular frequency ωs (without rotating around the vertical
shaft), the wheel has a spinning angular momentum of Ls =

r2mωsen, where en is the unit vector along the axis of the
wheel (Figure 1A). Obviously, the angular momentum would
not change if the wheel did not spin, but the heavy hoop
was replaced by a massless tube containing an ideal fluid or
frictionless chain flowing with v = rωs and having mass m (see
Supplementary Section I.A). Moreover, the circular tube could
be reshaped into a square (Figure 2B).

If the hoop -with the circulating fluid or chain- rotates around
the vertical (e.g., it precesses), the total angular momentum will
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FIGURE 2 | (color online) Simple models of a heavy top. v represent the flow velocities relative to the center of mass. (A) Spinning wheel with an angular momentum

Ls = mr2ωs where v = rωs (B) Square wheel with an angular momentum Ls = mvh generated by a heavy, ideal fluid flowing, or an ideally flexible, frictionless chain

running in a square-shaped hoop. This model allows the straightforward analytic treatment of the problem in inertial and precessing reference frames. (C) Bent square

wheel model of a heavy top providing circular trajectories for the chain or fluid particles in the upper and lower segments of the hoop. This approach allows a simple

intuitive understanding of the precession in inertial and body (connected to the fluid/chain) reference frames.

acquire a component Lp along the z-axis, therefore its total
angular momentum reads L = Ls + Lp.

This shape enables the simple featuring of the forces acting
on it during precession, and the subsequent calculations will also
become technically less demanding. It can easily be shown that a
square wheel having side length 2h, containing an ideal fluid or
chain with mass m and flow speed v, has an angular momentum
Ls = mvh with respect to its center [56].

Some aspects of the model can further be simplified if
we consider a square wheel bent in a way that its upper
and lower segments form arcs of radius H (Figure 2C).
For example, in the case of a precessing (rotating around
the vertical axis) flat square wheel, the chain/fluid elements
will follow complicated cycloidal orbits. Such orbits can
even lead to outward-pointing centripetal forces (see
Supplementary Figure 1). For a precessing bent square
wheel with the curvature radius equaling the axis length H, only
circular orbits are allowed for the circulating mass elements
in the horizontal hoop segments, and therefore the centripetal
force will always point inward. The angular momenta can
be calculated for various shapes using Stokes’ theorem (see
Supplementary Section I.C).

Interpretation of the forces present in the system depends
on the choice of the reference frame. A comparative analysis
of the forces and torques in the laboratory (inertial), as well as
in two kinds of rotating (non-inertial) reference frames will be
considered, where different real and inertial forces play a role.
In this paper, we will restrict ourselves to the nutation-free and
ϑ = π/2 case. Thus, the nutation angle is constant, the spin angle
is irrelevant for the square wheel model (the movement of the
chain or fluid elements is characterized by their speed), and only
the precession angle has a role of a dynamic variable. In order
to present easy analytic calculations or intuitive explanations
in different reference frames, we will use the flat and the bent
square wheel models as well. While analytical calculations are
facilitated by the flat geometry, within a qualitative, intuition
based approach the role and action of forces are easier to grasp
in the bent square wheel model (see section 2.5). We assume that
the rigid support of the fluid or chain including the axis touching
the suspension point O are massless.

Note that the forces arising at the corners of the square wheel,
making the circulating chain or fluid elements change direction,
are internal forces with reflection symmetries. Therefore they
can be disregarded while describing the global dynamics of the
system.

2.2. Preliminaries
First, we recapitulate the forces acting on a material point
which is fixed or is moving on a horizontal and rotating
platform. We also consider the forces acting on the platform
itself. If there is no vertical acceleration, the gravitational force
G acting on the material point, and the supporting force
acting from the support back on the material point, cancel (see
Supplementary Figures 10 and 11).

In the laboratory (inertial) reference frame only real forces
are present. The material point is accelerated (kept on a circular
orbit) by the centripetal force FCP. The action-reaction pair of the
centripetal force will be referred to as the reactive central force,
RC. This force represents the action of the accelerating body on
the platform.

In the non-inertial, rotating reference frame attached to the
platform, the forces acting on the body cancel. The centrifugal
force, FCF , is a fictitious force acting on the body, which does
not have an action-reaction pair. This is canceled by the real
constraint force, TCF also referred to as the central force, which
pulls the body toward the center. The action-reaction pair of TCF ,
acting on the platform, is the reactive central force RC.

If the material point is not fixed to the rotating platform, but
forced to perform a rectilinear uniform motion with respect to
the platform, the dynamics can be conveniently described from
the non-inertial, rotating reference frame. In this frame, two
inertial forces act on the body, namely the centrifugal, FCF , and
Coriolis force, FCOR. These inertial forces are balanced out by
real constraint forces referred to as TCF and TCOR. The action-
reaction counterpart of these real forces, acting on the platform,
are the reactive central force, RC, and the reactive Coriolis force,
RCOR. The sum of these two forces can be referred as the reactive
force R.

In the non-inertial, comoving reference frame attached to
a non-axial point of the spinning top, or to a circulating mass

Frontiers in Physics | www.frontiersin.org 4 February 2019 | Volume 7 | Article 5

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Hantz and Lázár Precession Intuitively Explained

TABLE 1 | Forces and conservation laws in various reference frames.

Inertial frame

(section 2.3)

Precessing frame

(section 2.6)

Comoving frames

(section 2.5)

Forces acting on fluid/chain elements Centripetal force FCP
gravitational force G

Constraint force TG

TG +G = 0

Centrifugal force FCF
real constraint force TCF

TCF + FCF = 0

Coriolis force FCOR

real constraint force TCOR

TCOR + FCOR = 0

gravitational force G

constraint force TG

TG +G = 0

Centrifugal force FCF
real constraint force TCF

TCF + FCF = 0

gravitational force G

constraint force TG

TG +G = 0

Forces acting on the support Reactive central force RC
weight of the fluid/chain G

forces in O

−G− RC

Reactive central force RC
reactive Coriolis force RCOR

weight of the fluid/chain G

forces in O

−G− RC − RCOR

Reactive central force RC
weight of the fluid/chain G

forces in O

−G− RC

Dynamics of L
dL

dt
= NG

NCP = NG

(Analogy: ma = F)

L = const

NG + Ndev = 0

(Analogy: F+ Fi = 0)

Complicated relationship

Components of L Lp = const;

dLs

dt
= NG

Lp = 0;

Ls = const

Complicated relationship

Only the nutation-free case is considered. TCF ,TCOR, and TG denote constraint forces. For the inertial (laboratory) system NCP denotes the torque of the centripetal forces, while for the

precessing frame, Ndev is the deviation torque. The forces in various reference frames are shown in Figures 3, 4 (Inertial frame), Figure 6 (Precessing frame) and Figure 5 (Comoving

frames), as well as in the Supplementary Figures 11, 12. To illustrate the relationship the dynamics of the angular momentum L and the external torque NG, analogous relations from

a translationally accelerating system are presented in row 4. Here F represents an external force, while F i the inertial force and a the linear acceleration.

element of the square wheel, the fictitious centrifugal forces FCF ,
their “canceling" real constraint forces TCF , as well as the action-
reaction pairs RC are present. Note that the magnitude of these
forces are not the same as for the rotating (precessing) reference
frame.

Table 1 offers an overview of the reference frame dependent
interpretation of the forces acting on, and the angular
momentum of the square wheel system. In this table, the forces
acting on the elements of the fluid or chain, as well as those acting
on the support, are separately marked. Note that the net force
(including the forces present in the pivotal (suspension) point
O) and net torque acting on the support has to vanish, since the
support itself is considered to be massless.

2.3. Inertial Reference Frame, Intuitive
Treatment
Conceptually, the inertial frame allows the simplest, intuitive
explanation of the gyroscopic precession. A straightforward
treatment can be conducted by computing the contribution of
torques acting on the support. Since the support is assumed to be
massless the net torque acting on it has to vanish.

Let us consider a bent square wheel, with the radius
of curvature, H, equaling the length of the axis attached

to it (see Figure 2). We study the configuration with the
angular momentum of the top pointing outwards. As previously
mentioned, in this paper we only treat the simple case when the
symmetry axis of the top makes a right angle with the vertical
(ϑ = π/2). Therefore the chain/fluid in the square wheel
circulates such that in the upper segment its absolute velocity
(measured in the laboratory frame) is reduced while in the lower
is increased due to the precession marked by ωp.

The centripetal forces keeping the chain or fluid on the
curved trajectory have larger magnitude in the lower, and smaller
magnitude in the upper fluid or chain segment. Accordingly
the reactive central force acting outwards on the lower support
segment will also have a higher magnitude than the one acting,
also outwards, on the upper segment (see Figure 3). Therefore,
two external torques will act on the support: one,NG, originating
from the weight of the chain or fluid, while the other one,
NRC , is raised by two reactive central forces, having different
magnitudes and acting on the upper and lower square wheel
segments.

The pair of reactive central forces will exert a torque on O which
can counterbalance the torque of the weight. It can easily be shown
that the side segments of the square wheel do not contribute to
the “lifting" torque. This is the essence of the gyroscopic effect
phrased in the inertial reference frame.
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Note that the square wheel model also provides an intuitive
understanding on the sequence of events happening when a
spinning top hanged on its axis extremity is released. During the
fall a pair of forces will arise in the vertical segments which will
lead to a transient angular acceleration around the vertical and
precession is initiated.

2.4. Inertial Reference Frame, Analytic
Treatment
Simple analytic treatment of the problem from the inertial
reference frame is allowed by the flat square wheel model
(Figure 4C). We consider only the case when the nutation
angle is right angle, that is, ϑ = π/2. Equilibrium conditions
are computed considering the forces and torque acting on the
support. The result of the calculation is the precession angular
frequency.

For speed, acceleration and distance measured in the inertial
(laboratory) frame we use the “lab” index. Note that plain
v denotes the speed of the fluid/chain measured from the
precessing reference frame.

The speed, v
up/low

lab
, and centripetal acceleration, a

up/low

lab
, of a

chain/fluid mass element, dm, in the upper and lower segments
at positions rup/low = H + δ ± h, viewed from the laboratory

frame reads v
up/low

lab
= ωp × rup/low ± v, while the centripetal

accelerations are

a
up/low

lab
= ωp × v

up/low

lab
+

d

dt

∣

∣

∣

∣

lab

(±v) = ωp × (ωp × rup/low)

+2ωp × (±v) . (2)

Henceforth, when the ± (or ∓) signs appear in formulae
pertaining to both the upper and lower wheel segments these are
to be associated in order, i.e., + to upper, − to lower (or vice
versa). Here we made use of the fact that the rate of change of
the flow velocity v “bound" to the precessing wheel is:

d

dt

∣

∣

∣

∣

lab

v = ωp × v , (3)

pointing outwards, along the axis of the square wheel.
The force keeping a mass element on its trajectory is

dF
up/low
CP = dm a

up/low

lab
, while the force acting from the mass

element on the support reads dR
up/low
C = −dF

up/low
CP (see

Figures 4A,B). The torque of the reactive forces exerted by
chain/fluid mass elements with mass dm located in symmetric
positions on the upper and lower support segments reads

dN
up/low
RC

= −dm · rup/low × a
up/low

lab
. Since the symmetry of the

square leads to the cancellation of the contributions through δ we

have dN
up/low
RC

= −dm · (±h)× [2ωp× (±v)] = −2dm ·h× (ωp×

v), which is independent of the position along the horizontal
segments. Finally, the overall torque acting on the support,
obtained by integrating along the two horizontal segments, reads
NRC = −m · h × (ωp × v). This torque points into a direction
opposite to that of the gravitational torque NG = mH × g.

FIGURE 3 | (color online) The bent square wheel model, viewed from the

laboratory (inertial) reference frame (see section 2.3). (A) The axis of length H

precesses in the horizontal plane with angular frequency ωp. The velocities of

the chain/fluid mass elements, measured from the laboratory frame (green

arrows), have lower magnitude in the upper segment (where the speed of the

chain/fluid elements subtracts from that of the surrounding support), and

higher magnitude in the lower segment (where these speeds add up). (B)

Constraint forces act on the chain/fluid elements (black continuous lines) while

reactive forces act on the support (green dotted lines). Note the lower

magnitude of the forces acting in the upper segment. Blue arrows represent

the chain/fluid velocities measured from the precessing frame, which are

identical around the support. Notation of forces (see section 2.2): FCP -

centripetal, RC - reactive central. The pair of forces, RC, act on the support

and generate the “lifting" torque counterbalancing the gravitational one.

The condition for the dynamic equilibrium of the support is
NG + NRC = 0, that is,mgH = mhωpv, leading to

ωp =
mgH

mhv
=

NG

Ls
. (4)

Here we mention that an alternative interpretation of the forces
in the inertial frame, relying on the d’Alembert principle, may
also be instructive. Note also that for the “tilted” configuration
when ϑ 6= π/2, the calculations become tedious, but some
conclusions are summarized in Supplementary Section I.D.

2.5. “Comoving” (or “Fluid/Chain”)
Reference Frame
In this approach, we compute the forces and torque acting on
the upper and lower square wheel segments from the reference
frames moving together with the circulating chain or fluid (for
the case when the nutation angle is right, i.e., ϑ = π/2). The
equilibrium condition demands vanishing net torque acting on
the fluid or chain, that is NG + Ndev=0, where Ndev is the torque
raised by the pair of centrifugal forces in the upper and lower
square wheel segments, respectively. The precession angular
frequency can immediately be obtained as before. The flat square
wheel model enables an analytic solution leading to identical
results to the one presented in section 2.4. Every circulating mass
(fluid/chain) element will have an associated reference frame
wherein the mass element is at rest. These individual comoving
reference frames have different distances from, and orientations
with respect to the precession axis. Centrifugal forces, as well as
the corresponding reactive central forces have to be computed for
all of these reference frames individually. This complicates the
calculation of the net deviation torque.
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FIGURE 4 | (color online) Flat square wheel model of a heavy top in gravitational field with acceleration g, viewed from the laboratory (inertial) reference frame (see

section 2.3). Absolute values of the chain/fluid velocities in the horizontal segments, with respect to the square wheel, are marked with blue. (A,B) Centripetal forces,

FCP, acting on the fluid or chain in the middle of the horizontal segments marked by black continuous lines, reactive central forces, RC, acting on the corresponding

support segments are marked by dotted green lines. Note that depending on the ratio of ωp and v, these can point in the same or in opposite directions (see also

Supplementary Figure 1). (C) Sketch for the calculations of the torques raising in the symmetric points marked by rup and rlow (see Equations 2, 3).

In this case, though we have to settle with an approximation.
It is more intuitive to apply for the bent square wheel model
[21, 57] (Figure 2C). This circular setup facilitates the calculation
of the individual centrifugal forces. However, for estimating the
net torque we perform the approximation h ≪ H. In this case,
when summing up the elementary centrifugal forces arising in the
upper and lower segments, we consider them as being parallel to
each other and the axis of the bent square wheel (Figure 5).

The angular velocities of the individual reference frames in the
bent upper and lower segments areωup/low = ωp∓v/H. If h≪H,
the relevant component of the reactive central (and centrifugal)

forces become F
up/low
CF ≈ (m/4)(v∓ ωpH)2/H. The vertical fluid

or chain segments will not contribute to the deviation torque.
After adding the contribution from both horizontal segments,
the net deviation torque will result in Ndev ≈ mhvωp. Since the
equilibrium condition reads Ndev + NG = 0, this leads to the
dynamic equilibrium condition expressed also by Equation (4).

2.6. Precessing Reference Frame
It is especially instructive to determine the torque in a reference
frame precessing together with the center of mass of a flat

square wheel (see Figure 6). In this frame, the velocities of the
chain/fluid elements in the wheel segments will trace straight
trajectories with a uniform speed. As a consequence, besides the
centrifugal forces, Coriolis forces will also arise. The equilibrium
sets when the net torque acting on the fluid or chain disappears,
that is, Ndev + NG = 0. As we will see, only Coriolis forces in
the upper and lower segments will contribute to the deviation
torque.

In the case of a flat square wheel having the nutation angleϑ =

π/2 the lateral and horizontal wheel segments have a symmetric
arrangement. As centrifugal forces do not depend on speed their
torques cancel. Therefore, only the Coriolis forces will contribute
to the deviation torque. Their magnitude on the upper and lower
segments is the same, but they point in opposite directions. Note
that the net reactive force raising on these segments can point
radially inwards or outwards as well, depending on the relative
magnitude of the Coriolis and centrifugal forces.

FIGURE 5 | (color online) Relevant forces in the bent square wheel model

viewed from the comoving reference frames, that of the chain/fluid elements

moving in the upper and lower horizontal square wheel segments (see section

2.5). Notation of forces (see section 2.2 for the nomenclature): FCF , centrifugal

force; TCF , central force, both acting on the fluid or chain; RC, reactive central

force acting on the support.

For the vertical segments, the Coriolis forces are zero as the
chain/fluid velocities are parallel to the rotation axis, ωp. In the
upper and lower segments we have v ⊥ ωp and

F
up/low
COR = ±

m

4
(2ωp × v) = ∓

m

2
ωpven ,

where v stands for the flow velocity in the lower segment and en is
the unit vector pointing from the pivotal point toward the center
of the wheel. The deviation torque exerted on the suspension
point O will therefore be

Ndev = mωpvhek = Lsωpek ,
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FIGURE 6 | (color online) Relevant forces in the flat square wheel model in the

precessing reference frame (bound to the axis of the square wheel). Red

broken lines denote the inertial forces acting on the fluid/chain, while green

dotted ones the reactive forces acting on the support. (A) Lower flow speed,

when the centrifugal force dominates over the Coriolis force, yielding an

outward pointing net inertial force. (B) Higher flow speed, when the Coriolis

force dominates over the centrifugal force, and an inward pointing net inertial

force will result. Notation of forces (see section 2.2 for the nomenclature): FCF
- centrifugal, FCOR - Coriolis, R - reactive (see section 2.6).

where ek = en× ez is horizontal and orthogonal to the symmetry
axis. We obtain, without any approximation, the equilibrium
condition expressed by Equation (4).

The precessing reference frame allows the analysis, with
some approximation, of the “oblique” (ϑ 6= π/2) case as
well. Since the calculations are tedious, we just remark two
important conclusions. First, the point of application of the
resultant of the centrifugal forces will not be anymore the center
of the square wheel. Second, surprisingly, the chain/fluid moving
in the oblique square wheel segments will not contribute to
the deviation torque counteracting the gravitational one. This
finding allows the construction of a “top” consisting only of
horizontal square wheel segments with a gas or a fluid streaming
therein. Supplementary Figure 3 shows the schematic structure
and functioning of a device that demonstrates the lifting torque
of the forces arising in the horizontal segments.

2.7. Including Electromagnetic Interactions
The precession of bodies having, besides an angular momentum,
an additional magnetic moment, bear special importance: the
interaction of the magnetic moment with an external magnetic
field will also contribute to the torque. Therefore, the precession
will be altered compared to the purely gravitational case.

In the following, we examine a generalized square wheel
model involved in both gravitational and electromagnetic
interactions. Our model consists of a square wheel, where the
chain/fluid flow having a velocity v carries an additional electric
current I. This structure is placed in uniform magnetic B and
gravitational g fields (see Figure 7).

We assume that switching to a reference frame rotating
(precessing) withωp the Lorentz force will not change (relativistic
effects are neglected) [58]. The calculations rely on the formal
similarity between the expression of the Coriolis and the Lorentz
force [59, 60].

The Coriolis force acting on a chain/fluid element reads
dFCOR = −2 · dm · ωp × v, while current elements in an external

FIGURE 7 | (color online) Square wheel model where the chain/fluid flow

having velocity v carries an additional electric current I. The system is placed in

a combined magnetic B and gravitational g field, and investigated from the

reference frame precessing with ωp. Besided the Coriolis forces FCOR, Lorentz

forces FLOR also contribute to the canceling of the gravitational torque (see

section 2.7).

magnetic field are subject to a Lorentz force dFLOR = I · dl × B,
where dl represents the length of the current element. Therefore,
the sum of the Lorentz forces acting on the upper and lower

square wheel segments will be F
up/low
LOR = ∓2hIBen (see Figure 7).

Their torque exerted on the suspension point O can be expressed
as NLOR = 2(2hIB)he⊥ = µBe⊥, where µ = 4h2I = AI is the
magnetic moment of the circuit, while A represents its area.

If we disregard nutation, the dynamic equilibrium establishes
when the magnetic, deviation and gravitational torque cancel
each other, that is 4h2IB + mωpvh − mgH = 0, which finally
leads to

ωp =
mgH − 4h2IB

mvh
=

NG − µB

Ls
=

NG − NLOR

Ls

where NG is the gravitational torque. Note that in the case where
µB = mgH, the magnetic and the gravitational torque may
cancel each other even in the absence of angular momentum and
precession.

3. CONCLUSION

In this paper we quantified the square wheel model of spinning
tops. Although there were several attempts to find an intuitive,
force-based explanation of the phenomenon of precession these
approaches are not simultaneously simple, quantitative and
intuitive [7, 8, 47, 48, 51, 52]. Circular tops do not allow
easy calculations, dumbbells are oversimplified, while the first,
forgotten paper of the square wheel model did not provide any
quantification.

The proposed model consists of a heavy chain or fluid
which frictionlessly circulates in a closed loop determined by
a square-shaped tube, and therefore an angular momentum
will arise. This model allows the explanation and quantitative
treatment of gyroscopic precession by simply derived forces
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which maintain the top “against gravity.” These forces were
interpreted in the laboratory (inertial), as well as in two types or
rotating (non-inertial) reference frames. Our approach is more
intuitive than the classical explanation relying on the Newton-
Euler equation on the alteration of the angular momentum.
We discussed an extended model as well, where the flow
carries an electric current and an external magnetic field is
also present besides the gravitational one. These thoughts
contribute to the better and more intuitive understanding
of the difficult, but intriguing problem of the precession of
heavy tops, which is the ground for understanding various
phenomena ranging from mechanical gyroscopes to magnetic
resonance. Note that variants of the square wheel model can be
applied to intuitively explain the dynamics of free tops as well
(see Supplementary Sections II.I and J).
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