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Time-dependent Hartree-Fock (TDHF) theory has been a powerful tool in describing

a variety of complex nuclear dynamics microscopically without empirical parameters.

In this contribution, recent advances in nuclear dynamics studies employing TDHF

and its extensions are briefly reviewed, in line with the study of multinucleon transfer

(MNT) reactions. The latter lies at the core of this Research Topic, whose application

for the production of extremely neutron-rich nuclei has been extensively discussed in

recent years. Having in mind the ongoing theoretical developments, it is envisaged how

microscopic theories may contribute to the future MNT study.

Keywords: low-energy heavy-ion reactions, multinucleon transfer, quasifission, fusion, neutron-rich nuclei, TDHF,
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1. INTRODUCTION

Multinucleon transfer (MNT) reactions may be a promising means to produce yet-unknown,
neutron-rich unstable nuclei, whose production is difficult by other methods. This possibility
makes the study of MNT both fascinating and important. For instance, besides the fundamental
interest in nuclear structures such as shell evolution [1] and shape transitions [2, 3], properties of
extremely neutron-rich nuclei are crucial to fully understanding the detailed scenario of r-process
nucleosynthesis [4]. Needless to say, the historic detection of gravitational waves from a merger of
two neutron stars, GW170817 [5], together with radiation from a short γ -ray burst, GRB 170817A
[6], followed by a kilonova [7] makes it a timely and imperative task to unveil inherent properties of
the nuclei far away from stability. Furthermore, the superheavy nuclei produced so far are neutron-
deficient ones, and the predicted island of stability has not yet been reached [8, 9]. The production
of neutron-rich superheavy nuclei in the island is highly desired, as it would provide a new stringent
constraint formicroscopic theories. Therefore, the study ofMNT reactions is listed as one of the key
subjects at the current and future RI beam facilities, such as RIBF (RIKEN, Japan) [10], HIRFL-CSR
and HIAF (IMP, China)1, RAON (RISP, Korea) [11], DRIB (FLNR, Russia)2, SPIRAL2 (GANIL,
France) [12], FAIR (GSI, Germany)3, SPES (INFN, Italy)4, FRIB (MSU, USA) [13], and so on.

This review briefly digests recent advances of microscopic reaction theories to stimulate new
ideas for the future study of MNT reactions. In section 2, the theoretical framework of TDHF is
succinctly recalled. In section 3, the current status of theMNT study with TDHF is given. In section
4, recent advances of theoretical approaches are outlined, along with a discussion on possible future
applications. The article is concluded in section 5. The readers are intended to refer to other articles
in this Research Topic for discussions on experimental as well as other theoretical studies.

1http://english.imp.cas.cn/Home2017/
2http://flerovlab.jinr.ru/flnr/dribs.html
3https://fair-center.eu/
4https://web.infn.it/spes/
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2. THE TDHF THEORY

The TDHF theory was first proposed by Dirac [14] and its
application to nuclear physics started in the 1970s [15–22].
The TDHF theory can be formally derived based on the time-
dependent variational principle (various derivations can be found
in a recent review [23]). In TDHF, the wave function is a
Slater determinant for all times, and the Pauli principle is thus
automatically ensured. The TDHF equations read as follows:

ih̄
∂φi(rσq, t)

∂t
= ĥ[ρ(t)]φi(rσq, t), (1)

where φi(rσq, t) is the single-particle wave function of ith

nucleon at position r with spin σ and isospin q. ĥ[ρ(t)] = δE
δρ

is the single-particle Hamiltonian with ρ being the one-body
density. E[ρ] is the total energy, which may be regarded as an
energy density functional (EDF) in the context of time-dependent
density functional theory (TDDFT)5 [27–31]. The EDF is
constructed so as to reproduce static properties of finite nuclei in
a wide mass region and also the basic nuclear matter properties
(see e.g., [32–35] and references therein). There is no adjustable
parameter in TDHF, once an EDF is given. The non-linearity

arises because ĥ[ρ(t)] contains the mean-field potential which
depends on densities generated by all the nucleons, e.g., ρ(r, t) =∑

i,σ ,q |φi(rσq, t)|
2. Such non-linear couplings between single-

particle and collective degrees of freedom give rise to the so-called
one-body dissipation mechanism (known as wall-and-window
formulas [36]). Note that as is evident from a derivation of
TDHF from the lowest order truncation of the Bogoliubov-Born-
Green-Kirkwood-Yvon (BBGKY) hierarchy [23], where two-
body correlations are neglected, two-body dissipations associated
with nucleon-nucleon collisions are absent in TDHF. They are,
however, expected to play a minor role at low energy due to the
Pauli exclusion principle.

TDHF is notably versatile—by changing initial condition,
external potential, boundary condition, etc., one can study a
wide variety of phenomena: not only collective excitations in
the linear response regime [37–46], where TDHF is formally
equivalent to the random phase approximation (RPA), but
also induced fission [47–52], dynamics of exotic configurations
like α-chain structure [53], toroidal nucleus [54, 55], nuclear
pasta formation [56–59], as well as heavy-ion reactions, such
as nucleon transfer [60–74], quasifission (QF) [75–87], and
fusion [88–104], and so on (see [22, 23, 26, 31, 105, 106], for
review papers).

In the case of heavy-ion reactions, the initial wave function
is composed of projectile and target nuclei in their ground
state, which is obtained by self-consistently solving the static
Hartree-Fock equations [ih̄∂/∂t→ εi in Equation 1]. Those wave

5 Here a local EDF (like Skyrme) has been assumed, which makes the TDHF

Equation (1) local in space, as it is currently used in most practical applications. In

general, E =
∫
E(r)dr is composed of various local densities, Eξ ≡ {ρ, τ , . . . }, and

the TDHF Equation (1) should read: ih̄
∂φi(rσq,t)

∂t =
∫ ∑

k
δE[Eξ (r′ ,t)]
δξk(r

′ ,t)
δξk(r

′ ,t)
δφ∗

i (rσq,t)
dr′ =

∑
σ ′ ĥ

(q)
σσ ′ (r, t)φi(rσ

′q, t). In such a case, the single-particle Hamiltonian can have

spin dependence as well as differential operators (for the explicit form, see, e.g.,

[24–26]).

functions are placed in a computational box, with a sufficiently
large relative distance, boosted with a proper relativemomentum.
The time evolution according to Equation (1) then allows us
to follow reaction dynamics in real space and real time. As
the theory deals with the single-particle wave functions of
nucleons, not only dynamic effects such as nucleon transfer
and internal excitations, but also structural effects such as
static/dynamic shell effects and shape evolution are naturally
incorporated into the description. Spin-orbit coupling is known
to play an important role in energy dissipation processes in
heavy-ion reactions [107–110]. The effects of the tensor term
on nuclear dynamics were also investigated recently [101, 111–
114]. TDHF enables us to study rich and complex physics
of low-energy heavy-ion reactions from nucleonic degrees
of freedom.

3. TDHF THEORY FOR MULTINUCLEON
TRANSFER REACTIONS

3.1. Multinucleon Transfer Reactions
The MNT reaction may be regarded as a non-equilibrium
quantum transport process of nucleons during a collision.
With the help of the particle-number projection technique
[64], transfer probabilities can be deduced from a TDHF wave
function after collision. In Sekizawa and Yabana [65, 66], a
range of reactions at energies around the Coulomb barrier
were studied within TDHF, for which precise experimental data
are available [115–118]. Those reactions are characterized by
different neutron-to-proton ratios, N/Z, and charge product,
ZPZT. TDHF identified two distinct transfer mechanisms: (1)
a fast isospin equilibration process and (2) transfer of many
nucleons associated with dynamics of neck formation and its
breaking. The neck breaking dynamics emerge at small impact
parameters, especially in reactions with a large ZPZT (& 1,600).
The latter may be regarded as a precursor to QF, where the system
starts evolving toward the mass equilibrium. Comparisons with
measured cross sections showed that TDHF works fairly well
in accuracy comparable to other model predictions. However,
effects of secondary neutron evaporation become substantial,
when many protons are transferred. Combining TDHF with a
statistical compound-nucleus deexcitation model, GEMINI++
[119], it became possible to compute production cross sections
after secondary deexcitation processes. With the method,
dubbed TDHF+GEMINI, it was shown that the inclusion of
deexcitation effects substantially improves agreement with the
experimental data [72] (see Figures 1A,B). (For more details,
see, e.g., [69, 72]).

The description is still, however, not perfect, especially for
channels where both neutrons and protons are removed. It would
be improved when one includes missing one-body fluctuations
into the description (cf. section 4.2). Nevertheless, TDHF may
be used, taking advantage of its non-empirical nature, to explore
the optimal or novel reaction mechanism for producing new
neutron-rich unstable nuclei, at least qualitatively. Recently,
other groups have also implemented TDHF+GEMINI: e.g.
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FIGURE 1 | Results of TDHF calculations for the 64Ni+238U reaction at Ec.m. ≈ 307 MeV are shown as an illustrative example. (A) Production cross sections for

various proton transfer channels [indicated by (±xp), where plus (minus) sign corresponds to transfer from 238U to 64Ni (vise versa)] as a function of the mass number

of the reaction products. Red points are the experimental data [120], red-filled histograms are cross sections for primary products by TDHF [70], and blue histograms

are cross sections for secondary products by TDHF+GEMINI [72]. For comparison, cross sections by a semi-classical model, GRAZING6, including neutron

evaporation effects, are also shown by green shaded histograms. (B) This picture exhibits the time evolution of the density in the reaction plane in a peripheral collision

(b=5.5 fm), where MNT processes shown in (A) take place. Elapsed time in the simulation is indicated in zeptoseconds (1 zs = 10−21 s). (C) Correlation between the

total kinetic energy (TKE) and the mass number A of the outgoing fragments. The left figure (a) shows results of TDHF calculations [70], while the right figure (b) shows

the experimental data [121]. (D) Same as (B), but for a smaller impact parameter (b=2 fm), where QF processes shown in (C) take place. In the figure, x-, y-, and

z-direction indicate the orientation of deformed 238U [70]. In this way, TDHF can describe both peripheral and damped collisions in a unified way. Figures were

reprinted from Sekizawa and Yabana [70] and Sekizawa [72].

production of N = 126 neutron-rich nuclei was investigated for
the 132Sn+208Pb reaction [122].

3.2. Quasifission Processes
To synthesize the heaviest elements and also to explore the
predicted island of stability, it is crucial to establish deep
understanding of the main competitive process, the quasifission.
The QF process is characterized by a large amount of mass
transfer, full energy dissipation, and a long contact time (typically
several to tens of zeptoseconds). The characteristic observables
of QF are correlations between fragment masses with scattering
angles, known as mass-angle distribution (MAD), or with the
total kinetic energy (TKE) of outgoing fragments, sometimes
calledmass-energy distribution (MED) (see e.g., [121, 123–126]).
In recent applications of TDHF, it has been shown that TDHF
can quantitatively describe main QF dynamics, consistent with
experimental observations [70, 78, 80, 81] (see Figures 1C,D).
An intriguing indication is that in collisions involving an actinide
nucleus, TKE becomes larger (smaller energy dissipation) for

6Website of Nuclear Reactions Video (NRV) Project. Available online at: http://nrv.

jinr.ru/nrv/webnrv/grazing/

tip collisions as compared to side collisions [70, 84], perhaps
due to shell effects of 208Pb [127]. This may be in contrast to
the naive consideration, where one expects a compact shape at
scission for side collisions, which would result in larger TKE for
side collisions.

The revival of interest in theMNT reactionwas initiated by the
seminal work by Zagrebaev andGreiner [128–137]. In their work,
the importance of shell effects inMNTprocesses was emphasized.
For example, in the 238U+248Cm reaction, 238U tends to evolve
toward doubly-magic 208Pb, giving the rest of the 30 nucleons to
the heavier partner, resulting in the production of transcurium
nuclei as primary reaction products. The latter process is called
inverse (anti-symmetrizing) QF (IQF), since the ordinary QF
drives the system toward the mass equilibrium. Clearly, it is
essential to correctly include static and dynamic effects of nuclear
shells to describe IQF. The IQF was also observed in TDHF. In
Kedziora and Simenel [76], a typical “tip-on-side" orientation
in collisions of two actinide nuclei, 232Th+250Cf, was found to
result in IQF, where about 15 nucleons in the tip of 232Th were
transferred to the side of 250Cf. Another type of IQF was reported
in Sekizawa [73], where complex surface vibration modes are
induced in tip collisions of 238U+124Sn at energies well above the
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Coulomb barrier, which resulted in an abrupt development of a
neck, forming a smaller subsystem, leading to transfer of around
27 nucleons from 124Sn to 238U.

An important message here is that those IQF processes emerge
as a main reaction outcome in TDHF. Since larger effects of
fluctuations and correlations, that give rise to a wider fragment
mass distribution, are expected in such damped collisions [105,
138–140], novel IQF processes may pave new pathways to
unexplored territories in the nuclear chat far away from stability.

4. NEW TECHNIQUES AND EXTENSIONS

4.1. Extraction of Macroscopic Physical
Ingredients
The potential energy surface in a colliding nuclear system is
often a key ingredient in phenomenological approaches. With
the constrained Hartree-Fock technique [141], one can compute
the adiabatic potential energy in a composite system. However,
it differs, in general, from the potential in the entrance channel
of a collision, where incident-energy-dependent dynamic effects
come into play. Such a dynamic potential should be derived from
microscopic theories, e.g., TDHF, where dynamic effects such as
shape deformation (or necking), nucleon transfer, and inelastic
excitations through the one-body dissipation mechanism are
naturally taken into account. A method named dissipative-
dynamics TDHF (DD-TDHF) [82, 142, 143] allows us to extract
from TDHF not only a dynamic potential, but also a friction
coefficient, based on a mapping of TDHF trajectories onto a
set of classical equations of motion. Density-constrained TDHF
(DC-TDHF) [88] is another way to extract a potential. In the
latter approach, the density distribution obtained from TDHF
is used as a constraint for Hartree-Fock calculations, leading to
an adiabatic potential along the TDHF dynamical trajectory (see
e.g., [53, 89–101], for various applications). Energy dependence
as well as transition from dynamic to adiabatic potentials may
be important as well. Later, the idea of the density constraint
was also applied to extract a bare (without density distortion)
potential taking full account of the Pauli exclusion principle,
which is named density-constrained frozen Hartree-Fock (DC-
FHF) [144]. Such a bare potential can be applied to, e.g., coupled-
channel calculations for fusion reactions [145, 146]. Indeed,
such a connection was established, where excitation energies of
low-lying collective excitations were also determined by TDHF
[147]. This is a remarkable example of building a bridge between
elaborated macroscopic or phenomenological frameworks and
those rooted with microscopic degrees of freedom, that may
enhance predictability of the former.

4.2. Balian-Vénéroni Variational Principle
and TDRPA
While there are, of course, limitations inherent in TDHF (e.g.,
the absence of many-body correlations, deterministic nature
as well as spurious cross-channel couplings due to the single
mean-field description [141]), some of them can nowadays be
overcome with extended approaches. One such approach can be
obtained from the variational principle of Balian and Vénéroni

[148, 149]. The Balian-Vénéroni variational principle enables
us to control the variational space according to not only the
state in the Schrödinger picture, but also to the observable in
the Heisenberg picture. For instance, a variation optimized for
a Slater determinant and a one-body observable derives the
TDHF equations [105]. By extending the variational space for
fluctuations of a one-body observable, one obtains a formula that
includes effects of one-body fluctuations on top of the TDHF
mean-field trajectory, which may be regarded as time-dependent
RPA (TDRPA). It has recently been shown that the description
of the width of fragment mass distributions in deep-inelastic
collisions, which is severely underestimated in TDHF [17, 18,
150], is substantially improved [151, 152], or even quantitatively
agrees with experimental data [153], in TDRPA. It implies that
one-body dissipation and fluctuations described by TDHF and
TDRPA, respectively, are the predominant mechanisms in deep-
inelastic collisions. Here, caution is required: the TDRPA formula
in the present form can only be applied to symmetric reactions
[153]. To overcome this difficulty, one may extend the derivation
based on the Balian-Vénéroni variational principle to include
higher-order corrections, or derive a formula generalized for
asymmetric reactions from, e.g., the stochastic mean-field (SMF)
theory [154, 155], fromwhich one can derive the TDRPA formula
in the small fluctuation limit [154]. Note that effects of two-
body correlations were also indicated by the time-dependent
density-matrix (TDDM) approach [156–160].

4.3. Stochastic Extensions
Another limitation of TDHF lies in its deterministic nature.
To correctly describe abundant reaction outcomes as observed
experimentally, one may need to introduce quantal, collisional,
or thermal fluctuations that induce bifurcations of dynamics,
leading to, in the end, minor processes apart from the
TDHF mean-field trajectory. In the SMF approach, extensively
developed by Ayik and his coworkers [138–140, 154, 155, 161–
169], initial fluctuations are introduced in a stochastic manner,
which gives rise to an ensemble of final states after dynamic
evolutions. For the MNT study, the SMF description can be
cast into the Fokker-Planck equations, where transport (drift
and diffusion) coefficients are determined by the single-particle
orbitals in TDHF. In Yilmaz et al. [169], the SMF approach
was also applied to the Ni+Ni reaction, showing quantitative
agreement with experimental data [153], comparable to TDRPA.
Recently, Bulgac et al. [170] proposed another way to introduce
stochasticity bymeans of external potentials which are random in
both space and time. Themethod was applied to describe induced
fission processes, with a simplified orbital-free approach, getting
a sufficient width of the fission fragment mass distribution [170].
Further applications of those approaches may be promising for
exploring optimal reactions, especially for producing the most
exotic isotopes, where correct description of rare processes may
be essential.

4.4. Inclusion of Pairing
Despite the known importance of pairing in nuclear structure
studies, the effect of pairing on nuclear reaction dynamics has
rarely been investigated thus far. While the BCS approximation
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has been employed to date [171–174], inclusion of dynamic
effects of pairing became possible only quite recently with
top-tier supercomputers. One may naively expect that
pairing in the nucleus is so fragile and it would only affect
tunneling phenomena below the Coulomb barrier, where clear
effects of nucleon-nucleon correlations were indeed observed
experimentally [62, 175–177]. To the contrary, Magierski et al.
[178–180] found unexpectedly large effects associated with the
relative phase (or gauge angles) of colliding superfluid nuclei on
the reaction outcomes, such as TKE and fusion cross section. In
this context, experimental fusion cross sections were analyzed,
which indicates fusion barrier width may be increased by the
superfluid effect [181]. In the work by Magierski et al., a local
formulation of superfluid TDDFT, known as time-dependent
superfluid local density approximation (TDSLDA) (see e.g.,
[182–185]), was employed, which is formally similar to the
time-dependent Hartree-Fock-Bogoliubov (TDHFB) approach
[141]. The TDSLDA has been extensively developed by Bulgac
and his coworkers, which was successfully applied to the unitary
Fermi gas [186–191], finite nuclei [178, 192–196], as well as
interiors of neutron stars [197]. Hashimoto has developed a
Gogny TDHFB code that works with a 2D harmonic oscillator
and 1D-Lagrange-mesh hybrid basis [198], which could be
applied for head-on collisions [199, 200]. Qualitatively, the
same effects of the relative phase as reported in Magierski
et al. [178] were observed with their code. We have just
entered a new era in which dynamic effects of pairing can
be fully incorporated with microscopic nuclear dynamics
studies. With the aforementioned sophisticated approaches
with the usage of top-tier supercomputers, the dynamic effects
of pairing in MNT and QF processes will be unveiled in the
near future.

4.5. Remarks on Other Theoretical
Approaches
There are many models that have been developed so far for the
study of MNT, such as the semi-classical model, like GRAZING
[201–205]4,7 or CWKB [116–118, 206], the dinuclear system
(DNS) model [207–221], the improved quantum molecular
dynamics (ImQMD) model [222–225], and the Langevin model
[128–137, 226, 227]. There are pros and cons in each of
those approaches. For instance, on the one hand, the semi-
classical model can describe successive transfer processes at
peripheral collisions, while on the other hand it misses deep-
inelastic components at small impact parameters. In contrast,
the DNS model is capable of describing the dynamic evolution
of a composite system, according to a master equation with a
potential energy (including shell effects) for mass asymmetry and
deformation of the subsystem, that gives rise to a probability
distribution for massive nucleon transfer as well as fusion. By
construction, however, the latter model assumes a formation
of a “di-nucleus” in a potential pocket, and thus it misses
(quasi)elastic components at large impact parameters. A simple
addition of those model predictions, DNS+GRAZING, was
considered in the literature [228, 229]. The ImQMD model

7http://personalpages.to.infn.it/~nanni/grazing/

is applicable for both peripheral and damped collisions. By
taking into account stochastic nucleon-nucleon collisions, it
provides distributions of observables accumulated in a number
of simulations. To the author’s knowledge, however, the spin-
orbit interaction has been neglected in ImQMD, which prevents
a proper description of shell effects in MNT and QF processes.
The elaborated Langevin model [226] may be promising in
describing complex processes ofMNT,QF and fusion, in a unified
way. The model contains, however, various parameters that
have to be tuned carefully to reproduce available experimental
data [226].

A possible future task is to non-empirically determine model
ingredients based on microscopic theories: potential energy
surface with respect to an arbitrary set of variables, drift,
diffusion, and friction coefficients, etc., can be derived from
the microscopic approaches, which may lead to, e.g., kind of a
TDHF+Langevin approach.

5. SUMMARY AND PROSPECT

Production of neutron-rich heavy nuclei is listed as one of
the high-priority subjects of nuclear science today. In this
contribution, recent advances in the MNT study, especially
those based on microscopic dynamic theories, have been
briefly reviewed. The traditional TDHF approach has shown
remarkable successes in describing a variety of phenomena
in nuclear systems. It has been shown that TDHF is capable
of describing the main reaction channels, not only MNT
processes in peripheral collisions but also deep-inelastic and
QF processes in damped collisions, positioning it as a good
starting point for building a fully microscopic theory for low-
energy heavy-ion reactions. Moreover, the inclusion of one-body
fluctuations significantly improves quantitative agreements of the
width of fragment mass distributions with experimental data.
With the use of top-tier supercomputers, studies of dynamic
effects of pairing have just been started. One of the great
advantages of microscopic approaches is their non-empirical
nature—one may explore novel pathways toward the dreamed-
of production of yet-unknown neutron-rich nuclei. Another
possible future direction is to use microscopic approaches to
determine phenomenological parameters in other theoretical
models. It may be the time to combine knowledge obtained with
different approaches to construct the most reliable framework
to lead future experiments to the successful production of
extremely neutron-rich nuclei, the farthest from the continent
of stability.
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