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We consider the development of an efficient numerical method for the simulation of

microwave discharge plasmas. The method uses the idea of finite element patch and

can deal with very disparate length scales of the plasma. In this paper, the time-domain

Maxwell’s equations, which are coupled with the plasma transport equations via the

time-varying electron current density, are solved with a two-level Schwarz type algorithm

based on a variational formulation of the standard Yee scheme. The patch of finite

elements is used to calculate in an iterative manner the solution in the plasma region

where a better precision is required. This numerical approach provides the Yee scheme

with an efficient local-grid refinement capacity while preserving its stability. A numerical

analysis shows its accuracy and computational efficiency on nested Cartesian grids.

Simulation of a microwave breakdown in air under atmospheric pressure is then

performed and results are discussed. We believe that both the inherent versatility with

regard to the variational formulation and the efficiency of the proposed method can make

it particularly suitable in modeling of microwave discharge plasmas by providing more

insights of their nature and behavior.

Keywords: microwave discharge, electromagnetic wave-plasma interaction, plasma fluid model, finite elements,

domain decomposition, multiscale approach

1. INTRODUCTION

There is an increasing interest of microwave plasma sources at atmospheric pressure for medicine,
waste treatment and more specifically for aeronautic and space applications. Energy deposition by
microwave discharges has received significant interest in the past several decades as a promising
technique for aerodynamic flow control at high speed or plasma assisted combustion [1]. For
instance, recent experiences [2] have shown a dramatic reduction of the surface pressure coefficients
due to the strong interaction of a microwave discharge with aMach 3 incoming flow. In the domain
of space propulsion, a concept of rocket based on beamed energy propulsion [3] has been proposed
for an additional space launch system in the future. Solid rocket boosters are replaced bymicrowave
rocket in which thrust is generated through repetitively pulsed microwave detonation. Properties
of microwave plasma are also used in the plasma arrays with 2-D periodicity producing frequency
regions of forbidden propagation like band gaps in a photonic crystal [4].
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Modeling and numerical simulation are a fundamental step
to understand the various mechanisms of the formation of the
microwave discharge and how it interacts with the ambient gas.
Experiences carried out at MIT [5–8] have shown a microwave
breakdown in air at atmospheric pressure using a 110 GHz pulsed
gyratron in the microwave power range. Numerical simulations
based on a plasma fluid model coupled with Maxwell’s equations
have been able to reproduce many of the experimental features
in 2D [9–11] inlcuding the gas heating effects [12] and in
3D [13]. The spatial and time scales involved in the mutual
interaction of the microwave fields and plasma are particularly
disparate making the full simulation of such a non-linear
dynamics computationally expensive and often impracticable.
Indeed, to properly capture the typical plasma diffusion length,
the spatial step size needs to be very small with respect to
the wavelength (typically 5 or 10 times smaller) leading to
time steps on the order of 10−14 s. As such, an effort has to
be done to increase the performance of the simulation tools.
In microwave plasma modeling, the Maxwell’s equations are
generally solved by the Finite-Difference-Time-Domain (FDTD)
method using explicit time-integration techniques requiring
strong time step restrictions for stability. In the past, some
efforts haven been accomplished to reduce the computational
cost of the FDTD method by implicitly integrating in time the
dynamic fields [14]. However, the numerical diffusion of the
implicit technique produces a loss of accuracy in the results,
which may become significant in simulations over long time
scales. A multiscale strategy has to be developed to deal with
the different characteristic lengths. The FDTD methods are very
efficient from the computational point of view, but present strong
geometrical constraints and then, are not directly applicable to
sub-gridding. Several FDTD-adaptation techniques have been
proposed in the past. On the one hand, we find the space
time subgrids where each grid runs at a time step defined by
its own CFL stability limit while interpolations are connecting
the grids together [15, 16]. Differently, subgrids can run at the
time step of a coarse grid and the fine grids are stabilized by
means of either an unconditionally stable method such as the
Alternating-Direction-Implicit (ADI) FDTD method [17], or a
priori removal of unstable grid eigenmodes or filtering of unstable
spatial harmonics [18].

This paper presents an adaptation of the “method of finite
element patches” to electromagnetic wave propagation problems
and an application to simulation of microwave discharge. The
patch-based method is an efficient approach to deal with the
multiscale behavior of a problem and the coupling of different
models without any constraint of conformity between the
meshes. It is a Schwarz domain decomposition algorithm and
has been first proposed by Glowinski et al. [19] for linear
elliptic problems and then extended to derive diffusion [20].
It has similarities with the Chimera method [21], used by
the Computational Fluid Dynamics community, or with the
Arlequin method [22] for structural design. An extension to non-
linear elliptic problems has been also successfully proposed by
Brunet et al. [23] and applied to simulation of a plasma around
a negatively charged array of solar generator interconnects. In
this study, we derive the multiscale resolution algorithm for the

variational formulation of the standard Yee scheme [24] and
we evaluate its efficiency on standard grid configurations such
as nested Cartesian grids. The proposed patch-based approach
provides the finite-difference type scheme with the local-grid
refinement capacity while preserving its stability. Note that such
a method is not limited to the studied scheme, rather it can be
inherently extended to any other variational formulation, such as
Nedelec’s mixed finite element formulations [25], Discontinuous
Galerkin formulations [26, 27], etc. This indeed highlights one
of the main strengths of the proposed approach in microwave
discharge plasma modeling.

The paper is organized as follows. In section 2, the physical
model of microwave discharge plasma is presented. In section
3, the patch-based method is derived for the Yee scheme and
a theoretical estimate of its computational complexity is given.
In section 4, numerical experiments are presented to illustrate
the accuracy and the computational efficiency of the proposed
method in one dimension, for academic cases, and in two
dimensions, simulating a microwave breakdown in air under
atmospheric pressure.

2. PHYSICAL MODEL

The physical model describing the dynamics of microwave
streamers consists of plasma transport equations coupled with
Maxwell’s equations via the electron current density. Particularly,
microwave oscillations are described by Maxwell’s equations:

ǫ0
∂Ẽ

∂t
= ∇× H̃− J̃

µ0
∂H̃

∂t
= −∇×Ẽ (1)

where Ẽ(x, t) and H̃(x, t) are the electric and magnetic fields, ǫ0
and µ0 are the free space permittivity and permeability. J̃(x, t)
is the electron current density through which the coupling with
plasma dynamics is established:

J̃ = −eneṽe. (2)

In Equation (2), e, ne(x, t), and ṽe(x, t) are the electron charge,
density, and mean velocity, respectively. Due to the relatively
large ion mass the ion motion is neglected with respect to the
electron motion. The instantaneous electron velocity in Equation
(2) is determined by the approximate electron momentum
transfer equation:

∂ ṽe

∂t
= −

eẼ

me
− νmṽe, (3)

where me is the electron mass and νm the electron-neutral
momentum transfer frequency given by [28]

νm =

(

5.3× 109
Hz

Torr

)

p, (4)

Frontiers in Physics | www.frontiersin.org 2 March 2019 | Volume 7 | Article 26

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Arcese et al. Multiscale Method for Computational Electromagnetics

where νm is in s−1 and p is the gas pressure at ambient
temperature in Torr. It is important to note that Equation (3)
does not take the force exerted by the magnetic field into account.
As a matter of fact, in our conditions the magnetic term

(

ṽe × B̃
)

,

with B̃ = µ0H̃, is negligible with respect to the electric one Ẽ

since the mean electron velocity is much smaller than the speed
of light c, |ṽe| ≪ c, and the ratio |Ẽ|/|B̃| is of the same order of
c. The plasma is supposed to be quasi-neutral and its evolution
in time and space is obtained from a system of reaction-diffusion
equations on the electron density andmean energy averaged over
a microwave field period (note that only quantities varying over
the wave cycle are denoted with tilde)

∂ne
∂t

− ∇ · (Deff∇ne) = νeff ne − rn2e

∂nε
∂t

−
5

3
∇ · (Deff∇nε) = −ne(e < ṽe · Ẽ >TM +2). (5)

The right-hand side of the first equation represents the charged
particle production and losses. νeff is an effective electron impact
ionization frequency including ionization and attachment and
r is the electron-ion recombination coefficient. νeff depends
on the local electron distribution function and its macroscopic
description is obtained in this context by means of the local
mean energy approximation. Therefore, the effective ionization
coefficient is expressed as a non-linear function of the local mean
electron energy εe(x, t) which is obtained by the second equation
of system (5) through the intermediate variable, the energy
density nε = neεe. Note that the kinetic energy is neglected with
respect to the thermal energy so that εe = 3kBTe/2 (since the
electron distribution is not Maxwellian this equation defines the
electron temperature Te, with kB being the Boltzmann constant).
The right-hand side of this equation represents the energy gain
and losses during inelastic and elastic collisions (we consider in
this paper only collisions with molecules in the ground state) per
unit time by electrons under a varying electric field. Particularly,
the term −e < ṽe · Ẽ >TM expresses the mean energy gained
per unit time by an electron (it is averaged over the entire
microwave period TM = 2π/ω, with ω being the wave angular
frequency) and its value depends on the phase shift between the
instantaneous electron velocity and the microwave field

−e < ṽe · Ẽ >TM= −
e

TM

∫ t+TM

t
ṽe · Ẽdt. (6)

The mean power loss per electron is identified by

2 = νεεe (7)

where νε is the energy relaxation frequency and it takes into
account the rate coefficients related to elastic and inelastic
collisions. Note that in the local mean energy approximation
all rate and transport coefficients depend on εe as well as ω/N
(with N being the gas density). As a result, 2 is a non-linear
function of εe. The other transport coefficient of Equations (5),
Deff depends on the electron temperature Te as well as εe. Deff

is the effective diffusion coefficient and describes the plasma
diffusion. Its heuristically form, derived by [9] and [29], allows
to properly describe the transition from ambipolar (in the bulk of
plasma) to free diffusion (at its edge)

Deff =
αDe + Da

1+ α
(8)

with α = νiτM and τM is the Maxwell relaxation time given
by τM = ǫ0/(ene(µi + µe)). The free electron and ambipolar
diffusion coefficients are given by De = µekBTe/e and Da =

µikBTe/e, respectively. The electron mobility µe is related to the
electron-neutral collision frequency by µe = e/(meνm) and we
assume that µi is kept constant and equal to µe/200. Finally
regarding the recombination coefficient, r exhibits an electron
temperature dependence which is here simply expressed as r =

α×10−13(300/Te)
−1/2 m−3 s−1, with Te being in Kelvin and α =

0.1 (according to [10]). The mean electron energy dependence
of the rate coefficients, such as the effective ionization and the
energy relaxation frequency, and the transport coefficient are
obtained from solutions of the Boltzmann equation under a
uniform field. The BOLSIG+ solver [30] is used for this purpose
by employing the electron-neutral cross-section data set of Biagi
in the LXCat database [31]. Figure 1 shows a typical trend of the
reduced effective ionization frequency and the reduced energy
relaxation frequency used in the model for air as a function of the
mean electron energy for a given reduced wave frequency. In this
paper, the gas heating effects on the plasma discharge behavior
are neglected as we focus on the first stages of the streamer
dynamics after microwave breakdown in air at atmospheric
pressure (p = 760 Torr).

Note that the presented plasma fluid model is the
generalization of the simplified one employing the local effective
field approximation which has been demonstrated to provide
excellent results for microwave breakdown simulations under
various conditions [10, 13, 32]. More details on their physical
derivation and accuracy in conditions similar to those studied
in this paper (high-frequency microwave fields, breakdown
voltages, atmospheric pressure) can be found in [10, 11, 29].

3. NUMERICAL MODEL

The time-domain Maxwell’s equations coupled with the plasma
momentum transfer Equation (1, 2, 3) are solved with a two-
level iterative algorithm based on a finite element approximation
and an explicit leapfrog time-stepping technique using a
unique constant time step. The plasma fluid equations (5) are
solved using a second-order central difference scheme explicitly
integrated in time with an Euler scheme as presented in Arcese
et al. [11]. In such a discretization, the terms on the right-
hand side of Equations (5) are treated using an implicit time-
stepping technique as proposed by Hagelaar and Kroesen [33]
in order to avoid instabilities in the global resolution. Remark
that the time step 1tplasma related to Equations (5) is set equal
to the electromagnetic wave period TM that is much larger than
the time step 1t related to the augmented Maxwell system (1,
2, 3), as we have separated the time scales of the microwave
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FIGURE 1 | Reduced effective ionization frequency νeff /N (A) and reduced energy relaxation frequency νε/N (B) for air as function of the mean electron energy εe.

They are obtained at ω = 2π110× 109rad/s and p = 760 Torr from the BOLSIG+ solver using the Biagi input data.

oscillations and the plasma evolution. The microwave-plasma
coupling is hence described as follows: the microwave solution
obtained during one wave cycle over the global computational
domain (through the proposed multiscale method), consisting
of two nested Cartesian grids having different sizes and levels
of refinement, yields the time-average electron power absorption
which is injected in the fluid plasma model to simulate the
evolution of the plasma density over the next wave cycle in
the patch domain, corresponding to the finest grid. The plasma
density is then injected back into the microwave equations to
update the power absorption. Note that, in this paper we limit
ourselves to the case in which the plasma is only defined in the
patch domain because of the standard approximation scheme
employed for plasma equations. In the following sections, it is
presented the patch-based resolution algorithm for the treatment
of themicrowave fields. The shared-memory parallelization using
OpenMP is realized for the numerical solver.

3.1. Patch-Based Method for Solving the
Coupled Maxwell’s Equations and the
Momentum Transfer Equation
3.1.1. Overview
The patch technique was first introduced by Glowinski et al. [19]
to numerically solve elliptic problems with multiscale behavior
using multiple levels of not necessarily nested grids. It is a
finite element domain decomposition method with complete
overlapping and is similar to a Chimera method used in
Computational Fluid Dynamics [21]. Being compared to the Fast
Adaptive Composite grid method [34–36] (as it is based on a
multiplicative Schwarz algorithm) it offers much more flexibility
since no conformity between the meshes at the different scales is
required. Its iterative relaxed algorithm is straightforward. The
problem is successively solved on a coarse mesh covering the
whole computational domain and on a single or multiple patches
with finer meshes where a better accuracy is needed. Successive
corrections to the solution in the patches are thus calculated. A
detailed analysis of this method and its convergence properties

for linear elliptic problems is carried-out in Wagner [37] and a
fast converging variant of the method has been presented [38].
Its extension to a class of non-linear elliptic problems is also
studied in Brunet et al. [23]. Hereafter, we briefly introduce
such a method before extending it to electromagnetic wave
propagation problems.

Consider a linear elliptic problem on a domain� ⊂ R
n which

weak formulation can be written

〈

L(u)|ϕ
〉

=
〈

f |ϕ
〉

∀ϕ ∈ H1
0(�), (9)

where L(·) is a continuous, linear, symmetric, strongly elliptic
operator (with H1 being the standard Sobolev space) and f ∈

H−1(�) (as boundary conditions we are simply setting u = 0
on ∂�). Suppose the solution u of the problem varies rapidly
in a small sub-domain 3 ⊂ �, called patch (or in multiple
sub-domains) and varies slowly in � \ 3. We build a finite
dimensional subspace VH ⊂ H1

0(�) associated to a coarse mesh
on � and a subspace Vh ⊂ H1

0(�) associated to a finer mesh on
3. By setting then VHh = VH +Vh, we approximate the solution
u ∈ H1

0(�) of the continuous problem (9) with uHh ∈ VHh

which satisfies

〈

L(uHh)|ϕ
〉

=
〈

f |ϕ
〉

∀ϕ ∈ VHh. (10)

Note that such a problem is not trivial since it is generally
not possible to determine a finite element basis of the total
space VHh and hence to directly determine the solution uHh.
Therefore, the aim of the patch technique is to evaluate uHh
in an iterative manner only using the given basis VH and Vh.
The working principle of the algorithm is the following. It starts
solving the problem on the coarse mesh in order to have an initial
solution. At each iteration, it successively solves the residual of
the problem, Rn = f − L(un), on the patch mesh and the
coarse one. The global solution is then updated using a relaxation
parameter ωr . The optimal choice of this parameter depends on
the meshes and it allows to optimize the convergence rate of the
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algorithm [37]. The structure of the algorithm is presented in
Algorithm (1).

Algorithm 1: Patch algorithm when using only a single
patch.

Initialization: Find u0 = uH ∈ VH satisfying

〈

L(u0)|ϕ
〉

=
〈

f |ϕ
〉

∀ϕ ∈ VH ,

and choose ωr ∈ (0, 2)
for n = 1, 2, 3, · · · do

Find unh ∈ Vh satisfying

〈

L(unh)|ϕ
〉

=
〈

f |ϕ
〉

−
〈

L(un−1)|ϕ
〉

=
〈

Rn−1|ϕ
〉

∀ϕ ∈ Vh,

define

un−1/2 = un−1 + ωru
n
h

Find unH ∈ VH satisfying

〈

L(unH)|ϕ
〉

=
〈

f |ϕ
〉

−
〈

L(un−1/2)|ϕ
〉

=
〈

Rn−1/2|ϕ
〉

∀ϕ ∈ VH ,

define

un = un−1/2 + ωru
n
H

end

Note that the global solution corresponds to the sum of the
coarse one and the fine one that is u = uH + uh. The algorithm
consists in evaluating two successive corrections to the solution
in the patch and over the coarse domain. An extensive analysis
has shown the strong dependence of the speed convergence
of the algorithm (1) with respect to mainly the geometry of
meshes and their mutual positions, hence with respect to an
abstract angle between their respective finite element spaces,
and the relaxation [19]. One can distinguish different types
of grid configurations, from a boundary conforming case with
structured grids to a boundary non-conforming case with
unstructured grids, however for this study we only focus on
nested Cartesian grids.

3.1.2. Application to the Electromagnetic Wave

Propagation Problem
In order to extend the patch technique to our electromagnetic
wave propagation problem we first need to employ a weak
formulation for the discretization of Equations (1, 2, 3) and a
time-stepping technique for time integration. It has been proved
that the standard Yee scheme can be reformulated in terms of
finite elements on orthogonal meshes when using a mass-lump
technique [39]. Therefore, in this paper we make use of this

variational formulation coupled with an explicit leapfrog time-
stepping technique using a single constant time step. In the first
part of this section we give a detailed presentation of the above-
stated formulation, while in the last part we derive the related
patch algorithm. For the sake of presentation, we rewrite our
system of equations in a concise form (the tilde character is
neglected to lighten the notation) assuming a perfect conductor
as boundary of�

ǫ0
∂E

∂t
= ∇×H+ eneve in �× ]0,T[

µ0
∂H

∂t
= −∇×E in �× ]0,T[

∂ve

∂t
= −

eE

me
− νmve in �× ]0,T[

E× n = 0 on ∂�× ]0,T[, (11)

where t ∈]0,T[ and the initial conditions are such that

E(x, 0) = E0(x), H(x, 0) = H0(x), ve(x, 0) = 0 ∀x ∈ �.
(12)

Note that, as consequence of the boundary condition on the
electric field and the third equation in (11), the boundary
condition on the mean velocity is satisfied at any time as well,
ve × n = 0.

3.1.2.1. Mixed finite element formulation
In the first step of our mixed finite element approximation we
define a variational formulation of system (11). Of course, several
choices are possible, but we exactly opt for a formulation based
on the following functional spaces (in 3D):

(E, ve) ∈ H0(curl,�)×H0(curl,�)

H ∈ [L2(�)]3 (13)

whereH0(curl,�) =
{

φ ∈ H(curl,�) such thatφ × n = 0 on ∂�
}

is a closed subspace of the Hilbert space

H(curl,�) =
{

φ ∈ [L2(�)]3 such that∇ × φ ∈ [L2(�)]3
}

,

with L2(�) being the space of functions whose square is
integrable over � and n being the outward normal unit. Such
a particular choice is justified by the fact that the electric field
assumes a leading role in microwave plasma problems as it
drives the plasma dynamics unlike the magnetic field, therefore
more regularity on the E-field is required. Indeed, the above
formulation is such that E keeps its physical character (tangential
continuity) by belonging to H0(curl,�). Instead, a weakened
regularity is provided on H by seeking it in [L2(�)]3 which is
larger than H0(curl,�). Moreover, as the mean electron velocity
is directly linked to the electric field via an ordinary differential
equation in system (11), ve is consistently sought in the same
functional space of E.
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By multiplying the first and third Equation (11) by φ ∈

H0(curl,�) and φ̃ ∈ H0(curl,�), respectively, and the second
one by ψ ∈ [L2(�)]3 and then integrating by parts the stiffness
integral of the first equation (which corresponds to ∇ × H),
we obtain

ǫ0
∂

∂t

∫

�

E · φdx =

∫

�

H ·
(

∇×φ
)

dx+

∫

∂�

[n× (H× n)]·

(φ × n)dγ + e

∫

�

neve · φdx

µ0
∂

∂t

∫

�

H · ψdx = −

∫

�

(

∇×E
)

· ψdx

∂

∂t

∫

�

ve · φ̃dx = −
e

me

∫

�

E · φ̃dx−

∫

�

νmve · φ̃dx. (14)

According to the choice of the functional space H0(curl,�)
(which takes into account a medium with a perfectly conducting
boundary condition, i.e., E× n = 0 for the E-field) the boundary
term in the first Equation (14) vanishes since [n × (H × n)] ·
(φ × n) = H · (φ × n). As a result we obtain the following
variational problem:

Find (E(·, t),H(·, t), ve(·, t)) ∈ H0(curl,�) × [L2(�)]3 ×

H0(curl,�), ∀t ∈]0,T[ such that

ǫ0
∂

∂t

∫

�

E · φdx =

∫

�

H ·
(

∇×φ
)

dx+ e

∫

�

neve · φdx

∀φ ∈ H0(curl,�),

µ0
∂

∂t

∫

�

H · ψdx = −

∫

�

(

∇×E
)

· ψdx ∀ψ ∈ [L2(�)]3,

∂

∂t

∫

�

ve · φ̃dx = −
e

me

∫

�

E · φ̃dx−

∫

�

νmve · φ̃dx

∀φ̃ ∈ H0(curl,�), (15)

which are subject to the initial conditions (12). Let us remark
that the above formulation is a slight modification (an additional
ordinary differential equation on themean velocity appears as the
plasma density is non-zero) of the one analyzed by Monk [40]
for the standard Maxwell system where no additional boundary
condition on the magnetic field is necessary.

In a more compact form, the problem (15) appears as
Find u(·, t) ∈ V ≡ H0(curl,�) × [L2(�)]3 × H0(curl,�),

∀t ∈]0,T[ such that

<M
du

dt
|ϕ > =< Au|Ãϕ > + < M̃u|ϕ > ∀ϕ ∈ V

(16)

with the matricesM, M̃,A, and Ã being

M =





ǫ0 0 0
0 µ0 0
0 0 1



 ; M̃ =





0 0 ene
0 0 0

− e
me

0 −νm



 ;

A =





0 1 0
−∇× 0 0
0 0 0



 ; Ã =





∇× 0 0
0 1 0
0 0 0



 ,

the vectors u and ϕ being

u =





E

H

ve



 ; ϕ =





φ

ψ

φ̃



 ,

and where < ·|· > here denotes the standard scalar product
on L2(�).

Now, we choose conforming finite elements based on the
first family of Nedelec’s edge elements [25] in order to build the
finite dimensional approximation space Vh such that Vh ⊂ V.
Particularly, we focus on mass-lumped spectral elements having
a cubic shape in which the basis function space is defined as a
tensor product of 1D polynomial spaces. Considering a cubic
mesh of �, Th, in which the characteristic dimension of each
element is h, the approximation space is thus identified by Vh =

Srh,0 ×Dr
h × Srh,0 where, for this specific case

Srh,0 =
{

φh ∈ H0(curl,�) s.t. φh|K ∈ Qr−1,r,r × Qr,r−1,r

×Qr,r,r−1, ∀K ∈ Th
}

Dr
h =

{

ψh ∈ [L2(�)]3 s.t. ψh|K ∈ Qr,r−1,r−1 × Qr−1,r,r−1

×Qr−1,r−1,r , ∀K ∈ Th
}

(17)

with Ql,m,n being the space of polynomials of maximum degree l
in x, m in y and n in z defined on the 3D element K ∈ Th. The
semi-discrete variational formulation can be then written as

Find uh(·, t) ∈ Vh, ∀t ∈]0,T[ such that

<M
duh
dt

|ϕ > =< Auh|Ãϕ > + < M̃uh|ϕ > ∀ϕ ∈ Vh

(18)

uh(x, 0) = u0h(x),

where the approximated solution uh reads as

uh(x, t) =
N
∑

i=1

uih(t)ϕ
i(x), (19)

with ϕi and uih being the vector-valued basis function and
the degree of freedom for uh, respectively, and N being the
dimension of Vh. Remark that we use a general notation in (19),
but actually the degrees of freedom for Eh,Hh, and ve,h are located
on the mesh elements in a nodal way accounting for the tensor
character of the polynomial spaces (17) [39].
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By substituting (19) in Equation (18), we can express the
problem in a matrix form in which the mass (Mh, M̃h) and the
stiffness (Ah) matrices are identified

Mh
dUh

dt
= (Ah + M̃h)Uh, (20)

and where Uhi (t) = uih(t), Mh, M̃h and Ah are matrices with
coefficients, respectively

Mhi,j =<Mϕi|ϕj >; M̃hi,j =< M̃ϕi|ϕj >; Ahi,j =< Aϕi|Ãϕj > .

(21)

Previous works have proved that the proposed space
approximation exactly provides the Yee scheme on orthogonal
meshes with hexahedral elements [39]. This is indeed possible
by choosing the degree of polynomials r = 1 and making use
of a mass-lumping technique (which means that the above
mass matrices reduce to block-diagonal matrices on the specific
elements) as well as an explicit leapfrog time-stepping scheme. In
what follows, we benefit of such a space approximation in order
to derive the two-level resolution algorithm.

3.1.2.2. Approximation in time
We recognize that the semi-discrete problem (18) has
the same form of (10) however, the bilinear form
< L(·)|ϕ > consists here of a temporal part and a spatial
one, particularly

< L(uh)|ϕ >=<M
duh
dt

|ϕ > − < Auh|Ãϕ > − < M̃uh|ϕ > .

(22)
In this paper, we choose a second-order accurate explicit leapfrog
time-integration technique which is the same provided by
the standard Yee scheme. In particular, the electromagnetic
and mean electron velocity fields are staggered so that the
E-field is updated midway during each time-step between
successive updates of the H-field and ve-field in order to
provide no dissipation in the numerical wave propagation. By
denoting tn = n1t with n ∈ N and 1t the time step
chosen for time discretization, the system (18) thus reads in a
matrix form as





Mǫ0
h 0 0

−1tAE
h Mµ0

h 0

−1tME
h 0 Mve

h − 1t
2 Mνm

h





Un+1
h =





Mǫ0
h 1tAH

h 1tMve/E
h

0 Mµ0

h 0

0 0 Mve
h + 1t

2 Mνm
h



Un
h (23)

where Un
h and Un+1

h are the successive time approximations of
Uh(t). Let us underline that such a time-stepping notation
translates into the leapfrog time arrangement of the
electromagnetic and the velocity field as follows: at Un

h it is

associated the quantities Enh , H
n+1/2
h , and vn+1/2

e,h estimated at

times tn, tn+1/2 and tn+1/2, respectively, whereasU
n+1
h designates

the quantities En+1
h , Hn+3/2

h , and vn+3/2
e,h estimated at times tn+1,

tn+3/2, and tn+3/2, respectively.
The stiffness and mass (which have all a block-diagonal

structure according to the above space approximation)
matrices appearing in the scheme are defined by following
the same notation of the previous section, hence their
coefficients read as

Mǫ0
hi,j

=< ǫ0φ
i|φj >; Mµ0

hi,j
=< µ0ψ

i|ψ j >; Mve
hi,j

=< φ̃
i
|φ̃

j
>;

ME
hi,j

= − <

(

e

me

)

φi|φ̃
j
>; Mve/E

hi,j
=< (ene)φ̃

i
|φj >;

Mνm
hi,j

= − < νmφ̃
i
|φ̃

j
>;

AE
hi,j

= − < ∇ × φi|ψ j >; AH
hi,j

=< ψ i|∇ × φj >,

with AE
h = −

(

AH
h

)T
. Note that the coupling between

E and ve is integrated explicitly using the same leapfrog
arrangement while the source term of the equation on ve,
corresponding to the neutral collision frequency contribution,
is treated implicitly using a central discretization in order
to alleviate the global stability condition. To figure out
how electromagnetic and velocity fields are staggered both
in space and time in the proposed scheme on a Cartesian
mesh, we rewrite (23) for the simplified 2D transverse-electric
(TE) case:

ǫ0E
n+1
x,(i+1/2,j) = ǫ0E

n
x,(i+1/2,j) +

1t

1y

(

Hn+1/2
z,(i+1/2,j+1/2)

− Hn+1/2
z,(i+1/2,j−1/2)

)

+ e1tne,(i+1/2,j+1/2)v
n+1/2
e,x,(i+1/2,j),

ǫ0E
n+1
y,(i,j+1/2)

= ǫ0E
n
y,(i,j+1/2) −

1t

1x

(

Hn+1/2
z,(i+1/2,j+1/2)

−Hn+1/2
z,(i−1/2,j+1/2)

)

+ e1tne,(i+1/2,j+1/2)v
n+1/2
e,y,(i,j+1/2)

,

µ0H
n+3/2
z,(i+1/2,j+1/2)

= µ0H
n+1/2
z,(i+1/2,j+1/2)

−1t

[(

En+1
y,(i+1,j+1/2)

− En+1
y,(i,j+1/2)

1x

)

−

(

En+1
x,(i+1/2,j+1)

− En+1
x,(i+1/2,j)

1y

)]

,

vn+3/2
e,x,(i+1/2,j)(1+

1t

2
νm) = vn+1/2

e,x,(i+1/2,j) −
e1t

me
En+1
x,(i+1/2,j)

−
1t

2
νmv

n+1/2
e,x,(i+1/2,j),

vn+3/2
e,y,(i,j+1/2)

(1+
1t

2
νm) = vn+1/2

e,y,(i,j+1/2)
−

e1t

me
En+1
y,(i,j+1/2)

−
1t

2
νmv

n+1/2
e,y,(i,j+1/2)

, (24)

where 1x and 1y are the spatial steps chosen for the spatial
discretization such that the grid coordinates are xi = i1x
and yj = j1y with (i, j) ∈ N. Such a time-stepping
scheme is generally more practical compared to an implicit
version, however, it mandates an upper bound on the time-
step to ensure numerical stability. Through a discrete energy
estimate, based on the analysis of [14], we obtain the stability
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condition related to our scheme. The constraint on the time step
is the following:

1t ≤ 1
2 min

((

c

√

1

1x2
+

1

1y2

)−1

,
(

ωp
)−1

)

(25)

with ωp = maxi,j
(

(e2ne,(i+1/2,j+1/2))/(ǫ0me)
)1/2

the plasma
frequency. One can remark that in our case the value of the
plasma frequency (even for plasma densities reaching values of
1022 m−3) is such that its contribution on the stability condition
is negligible with respect to the first argument of the minimum in
(25) which is exactly the condition provided by the Yee scheme
for the Maxwell’s equations having no electron current terms.

3.1.2.3. Derivation of the patch method for the Yee scheme
At this step, we derive the patchmethod for the introduced space-
time approximation. The system (23) is written in the following
concise form

(Ih −1tR+h −1tL+h )U
n+1
h = (Ih +1tR−h +1tL−h )U

n
h (26)

with

Ih =





Mǫ0
h 0 0

0 Mµ0

h 0

0 0 Mve
h



 ; R+h =





0 0 0

AE
h 0 0

0 0 0



 ;

R−h =





0 AH
h 0

0 0 0
0 0 0



 ;

L+h =





0 0 0
0 0 0

ME
h 0 1

2M
νm
h



 ; L−h =





0 0 Mve/E
h

0 0 0

0 0 1
2M

νm
h



 (27)

being the matrices associated to the approximation space Vh.
By introducing now two finite dimensional spaces VH and

Vh associated to a coarse mesh on � and a fine mesh on 3,
respectively, such as VH + Vh = VHh ⊂ V, as defined in section
3.1.1, the numerical solutionUHh of problem (26) defined onVHh

is approximated as Uh + UH = UHh ∈ VHh through the iterative
Algorithm (2), where n and p are the indexes concerning the time
and the iterative advancement, respectively.

The convergence is checked on the L2-norm error of the
discrete energy between two successive iterations. Let us stress
that the above algorithm is for a two-level configuration where
only a single patch is introduced into the global domain as
the cases studied in this paper (see numerical results in section
4). Its extension to multiple patches is straightforward [19]
and will be the object of future works. Figure 2 illustrates how
electromagnetic and velocity fields and plasma variables are
spatially located in our computational domain.

Note that in the above algorithm some transformation
matrices, i.e., the matrices having the double subscript Hh (or
hH), appear on the right-hand side of equations of the problems
defined both on the coarse and the fine domain. These enable

Algorithm 2: Patch algorithm applied to the weak
formulation of the Yee scheme when using only a single
patch.

Initialization: Set U0
Hh = U0

H , with U0
H = UH(t = 0) ∈ VH ,

U0
h = 0, with U0

h ∈ Vh and choose ωr ∈ (0, 2)

for n = 0, 1, 2, · · · do

Set U0,n
h = 0 and U0,n

H = Un
H

for p = 1, 2, 3, · · · do

Find Ũh ∈ Vh satisfying

(Ih −1tR+h −1tL+h )Ũh = (Ih +1tR−h +1tL−h )U
n
h

−
[

(IHh −1tR+Hh −1tL+Hh)U
p−1,n
H

− (IHh +1tR−Hh +1tL−Hh)U
n
H

]

define

U
p,n
h = (1− ωr)U

p−1,n
h + ωrŨh

Find ŨH ∈ VH satisfying

(IH −1tR+H −1tL+H)ŨH = (IH +1tR−H +1tL−H)U
n
H

−
[

(IhH −1tR+hH −1tL+hH)U
p,n
h

− (IhH +1tR−hH +1tL−hH)U
n
h

]

define

U
p,n
H = (1− ωr)U

p−1,n
H + ωrŨH

end

At convergence: Un+1
Hh = Un+1

h + Un+1
H , with

Un+1
H = U

p,n
H and Un+1

h = U
p,n
h

end

the corrections to the solution defined on a grid by projecting
the solution defined and just calculated on the other grid. They
mathematically correspond to the mixed term scalar products,
wherein the basis functions of both fine and coarse subspaces
appear. For instance, looking at the term IHh, the coefficients of
the related mass matrixMǫ0

Hh read

Mǫ0
Hhi,j

=< ǫ0φ
i
H |φ

j
h >,

and the same, but in the opposite way, holds for the term
IhH . Remark that all vector-valued basis functions belonging
to the fine subspace Vh are by definition prolonged to the
coarse subspace VH hence, they vanish on the boundaries of the
patch domain.
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FIGURE 2 | Simplified plan view of a 2D computational domain containing a

single patch. The Cartesian grids are nested and the fine one (which is inside

the central coarse cell) has a spatial refinement factor of 2:1. E- and ve-field

are represented by circles, H-field is represented by squares and plasma

variables (i.e., ne, εe, νeff , etc.) are represented by red crosses. Full and empty

circles (or squares) denote the coarse and the fine grid, respectively.

The relaxation parameter ωr provides a particular flexibility to
the algorithm with respect to the conformity between the coarse
and the fine discretization [37]. This feature makes the patch
method rather suitable for adaptive mesh refinements. Indeed,
in case of refinement/derefinement (conforming or not) one can
increase/decrease the dimension of the related approximation
spaces (or change their mutual intersection as well) and hence
calculating/deleting the related coupling terms while optimizing
the convergence by means of relaxation. However, in this paper
we focus on conforming grid constellations setting the relaxation
parameter to a constant value, ωr = 1. As a concluding remark,
we highlight that the standard Yee scheme preserves a discrete
energy when no electron currents are present in the Maxwell’s
equations and for perfectly conducting boundary conditions.
As such, we expect to hold the same property in the patch
version of the scheme (since a weak formulation is employed
for discretization) which guarantees the stability (see numerical
results in section 4.1.2).

3.2. Computational Complexity Analysis of
the Patch Technique
In this section, we analyze the efficiency from a performance
point of view of the proposed patch-based scheme for the
treatment of the electromagnetic fields. A theoretical estimate of
the expected performance gain with respect to the standard Yee
scheme is given.

Let us consider a computational domain having a
characteristic length L which is discretized into a uniform mesh
of N points in order to properly resolve the finest characteristic
length of the wave propagation problem. The grid spatial step is
identified with h. The computational complexity of the standard
Yee scheme in solving on such a grid the D-dimension problem
per time step is O(ND). Now, by focusing on a computational
domain containing a local patch having a characteristic length
Lp, we define the total number of points in the patch grid as
Nf = N/α, with α = L/Lp, in order to ensure the same spatial
step h of the previous uniformly refined mesh, and the total
number of points in the coarse grid as Nc = N/β , with β = H/h
and H being the coarse spatial step. We also define the number
of iterations needed for convergence by the patch algorithm per
time step as k. According to this notation, the computational

cost of the patch-based scheme is O(kND(1/αD + 1/βD))
and consequently, the performance gain between the two
approaches results

η =
[

k
( 1

αD
+

1

βD

)]−1
. (28)

One can readily remark that the patch version of the Yee scheme
can exhibit important gains with respect to the standard one
without patches at a given k for large values of the parameters
α and β (note that α > 1 and β > 1 generally). Of course,
the number of iterations for convergence k depends on the
characteristics of the patch and coarsemeshes and on the physical
problem as well. However, for the 1D and 2D cases analyzed in
this paper, k is on the order of few tens and appears to slightly
vary with the patch refinement (see the numerical results in
section 4). We also recognize that this gain is more important
at higher dimensions, i.e., in 2D and even more in 3D, as α
and β are to the power of the problem dimension D. Therefore,
given a D-dimension problem significant gains of performance
can be reached by choosing α with the same order of magnitude
of β and much larger than unity. These configurations exactly
correspond to problems presenting strong multiscale behaviors
as it occurs in our case concerning the dynamics of microwave
streamers. As a practical example: in our case the main lengths
characterizing the physics are the wavelength of the high-
frequency microwave, that is approximately fewmillimeters (e.g.,
2.7 mm for a wave frequency of 110 GHz), and the propagation
front length of plasma, which at atmospheric pressure and in
conditions analyzed in this paper (see the 2D numerical results
in section 4) is approximately 10 µm. By setting L = 2.7 mm
and supposing that the plasma front is sufficiently contained in
the patch, hence setting for instance Lp = 50 µm, we choose the
ratio of the coarse and the fine spatial grid equal to the ratio of
these characteristic lengths such as α = β = 54. In the 2D case
and for a given k ranging from 5 to 20, we thus expect interesting
theoretical performance gains varying from one to two orders of
magnitude, namely from 72.9 to 291.6.

4. NUMERICAL RESULTS

In this section, we assess the efficiency of the proposed multiscale
method for the wave propagation problem in microwave
discharge plasma. Simplified settings are first analyzed in 1D,
then 2D simulations of a more realistic case, such as the
microwave breakdown in air, are performed. In both cases, the
computational domain consists of two nested Cartesian grids: a
coarse grid covering the global domain and a fine one covering
a small region of that domain wherein the plasma properties
are evaluated.

4.1. One-Dimensional Simulations
4.1.1. Interpretation of the Patch Results
As explained above, in the patch technique the global numerical
solution is given by the sum of the solution evaluated on the
coarse domain and the one evaluated in the patch. Practically,
the recovering of the global solution is possible through a simply
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interpolation of the coarse/fine solution or both on a given grid.
One can remark that by definition the fine solution is defined over
the global domain (as the coarse solution), but it is zero outside
the patch. In order to illustrate how these solutions appear in a
classic numerical experiment, we present the case of propagation
of a modulated Gaussian pulse through a static plasma behaving
as a conductor (the plasma density is overcritical and follows
a Gaussian profile with a maximum density of 1022 m−3). The
patch sufficiently contains the plasma density profile and it is
located in the center of the coarse domain which has perfect
boundary conditions. In this case, the plasma dynamics is not
resolved as we consider a constant density plasma structure. In
Figure 3, one can easily check the solution of the electric field (in
black solid line) on the global computational domain obtained by
the fine and coarse solutions (in red dashed and dash-dotted blue
lines, respectively).

4.1.2. Numerical Analysis
It is interesting to investigate the quality of the numerical solution
when introducing a well-suited local patch having different
refinements. For doing this, we consider a simplified version of

the Maxwell problem (15) with a stiff source term. Specifically,
the test case consists of an 1D standing wave formation (the wave
frequency is f = 110 GHz) in a cavity, with perfectly conducting
walls, wherein a static plasma with overcritical density (the
plasma density follows a Gaussian profile with maximum n0 =

5 × 1022 m−3 and standard deviation σ = 4 × 10−5 m)
is introduced. For comparisons with an "exact" solution we
simplify the problem (15) by considering only the Maxwell’s
equations with a current density term, within the mean electron
velocity is simply set as ve = µeE and no longer governed
by the presented ordinary differential equation. An ad hoc
source term, consistent with the standing wave solution, is thus
introduced on the right-hand side of these simplified equations.
In particular, the source term related to the E-field equation
(the one related to the H-field equation is set equal to zero) in
1D reads as

fE(x, t) = −en0µeE0 exp

(

−
(x− x0)

2

2σ 2

)

sin
(

2πkxx
)

cos
(

2π ft
)

,

(29)

FIGURE 3 | Time evolution of the electric field concerning the 1D propagation of a modulated Gaussian pulse through a static plasma [particularly, the field at different

times from (A)–(D)]. The Gaussian pulse width is large enough to see about 3 cycles of modulation. The plasma density is a Gaussian with maximum 1022 m−3 (with

standard deviation of 10−5 m) in the center of patch identified by two vertical lines in the figures. The patch is about 13 times smaller than the coarse domain and the

refinement ratio between coarse and fine grids is equal to H/h = 10, with h and H being the spatial fine and coarse steps, respectively. The global solution of the

electric field is represented with a black solid line, the solutions calculated on the coarse and fine grids are in blue dash-dotted and red dashed lines, respectively.
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FIGURE 4 | Electric field of the considered 1D standing wave having the

frequency equal to 110 GHz (A). Example of the 1D computational domain

(with perfect electrical conductor, PEC, boundary conditions) consisting of two

nested Cartesian grids (B). The patch is 10 times smaller than the coarse

domain having the size equal to the wavelength λ, L = λ = 2.725× 10−3 m.

where E0 = 1 V/m, kx = f /c, parameters e and µe

are defined as in section (2) and x0 is the mean of the
plasma Gaussian distribution such that the exact solution to
the problem is given by E = E0 sin

(

2πkxx
)

cos
(

2π ft
)

and
H = ǫ0

(

f /kx
)

E0 cos
(

2πkxx
)

sin
(

2π ft
)

. The peak of the plasma
density profile is located in the first quarter of the computational
domain, i.e., on the first wave anti-node, where a local patch is
applied in order to get a better precision of the solution. The
patch size is kept constant and 10 times smaller than the size of
the coarse domain. Figure 4 gives a schematic representation of
the computational domain and the 1D standing wave solution.
Because of the stiffness of the introduced source term, we expect
that, by progressively refining themesh (locally or uniformly), the
numerical solution tends to the exact one.

Figure 5 reports the relative error of the calculated electric
field EHh (on the global domain) to the exact one E for three
different coarse spatial steps H, H = λ/80, λ/160, λ/320 (with
λ being the wavelength of the standing wave of Figure 4), and for
different levels of patch refinement, H/h = 1, 2, 4, 8, 16, 32 (with
h being the spatial fine step). Firstly, we remark that for a given,
constant coarse spatial step the global error reduces with patch
refinement, in particular, it reduces by approximately two orders
of magnitude for an important refinement H/h = 32 (e.g., for
H = λ/80, the error trend is represented with the red dashed
line in Figure 5). This improvement of the solution accuracy
with patch refinement is however bounded for a fixed H, as the
error in the domain with coarse discretization dominates and the
global error stagnates. In such a case, a better global precision
can be obtained through a further refinement of the coarse grid.
Figure 5 shows the global improvement of the solution accuracy
between the cases with H = λ/80 (red dashed line), H = λ/160
(blue dashed line) and H = λ/320 (black dashed line). Note
that the error when using a patch, with a given refinement, is
considerably the same compared to the case without a patch,
presenting the same refinement everywhere. This can be verified
in Figure 5, by, e.g., comparing the error obtained in the case
without patch, represented with the black circle (where H =

λ/320 and H/h = 1) and the one related to the case with patch,
represented with the blue cross (whereH = λ/160 andH/h = 2)

FIGURE 5 | The L2-norm relative error of the global numerical solution of the

electric field EHh to the exact electric field E, ||EHh − E||L2 /||E||L2 , as function

of the fine and the coarse spatial step, h and H, respectively. The refinement

level of the coarse grid varies between three values: H = λ/80, λ/160, λ/320.

Concerning the patch, the refinement level varies from H/h = 1 to H/h = 32.

The computational domain and the patch size are the same of the case in

Figure 4.

TABLE 1 | The performance gain between the patch method and the standard

one (without patch and with the same level of refinement everywhere) for the case

of Figure 5 (black dashed line, H = λ/320) estimated using formula (28), with k

being the average number of iterations needed for convergence in the patch

algorithm per wave cycle (kmax and kmin are the maximum and the minimum

number of iterations, respectively), α = 10, β = 2, 4, 8, 16, 32 and D = 1.

H/h 2 4 8 16 32

k 8.7 6.5 4.9 4.5 4.3

[kmax , kmin] [16, 2] [10, 2] [7, 2] [7, 2] [6, 2]

η 0.19 0.44 0.91 1.37 1.77

or with the red diamond (where H = λ/80 and H/h = 4).
From these results, it is evident that the local patch shows its
usefulness as long as the solution is well approached by the coarse
grid. Furthermore, we point out the that the presence of the patch
does not affect the consistency of the proposed finite element
scheme. The latter indeed preserves the convergence order of
the Yee finite-difference type scheme, which is second-order
accurate both in space and time, for several patch refinements
(the rate of convergence two for the L2-norm related to the
electric field can be checked in Figure 5). For all presented cases,
we have numerically assessed the algorithm stability through the
estimation of the discrete electromagnetic energy.

Concerning the theoretical performance gain, a slightly
advantage is expected when using the patch method compared
to the standard one (without patch and with the same level of
refinement everywhere) for important refinements (see Table 1).
This is because the gain is limited by the coarse-fine characteristic
lengths ratio α as the analysis in section 3.2 suggests. In higher
dimension, the performance gain is more important at lower
refinement ratios (see 2D numerical results in section 4.2).
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4.2. Two-Dimensional Simulations of
Microwave Breakdown in Air
4.2.1. Simulation Conditions
Considering the 2D case for the numerical model presented in
section 3, we simulate the formation of a microwave streamer
at the antinode of a standing wave created by the intersection
of two identical waves having a TE polarization with opposed
wave vectors. These simulations correspond to the experiments of
[41, 42] in which two-mirror microwave resonator has been used
to focus the electromagnetic power in a small volume. A plasma
discharge has been initiated because of the larger electric field
with respect to the critical one for breakdown, and propagated in
the direction of the electric field’s polarization. The mechanism
responsible of the plasma evolution, which is a combination of
diffusion and strong ionization at the streamer tips due to the
local enhancement of the electric field, has been demonstrated
by detailed numerical experiments [32]. The authors have used
an explicit formulation of the FDTD method, i.e., the standard
Yee scheme, for the related plasma-EM (electromagnetic waves)
model. An implicit formulation (i.e. ADI) for solving the
Maxwell’s equations in the same model has been proposed as well
to reduce the huge computational cost required by the explicit
formulation in 2D [14]. The configuration of our simulation is
similar to the above-mentioned numerical experiments and can
be summarized as follows:

• TE mode y-polarized plane waves with opposite x-directed
wave vectors of amplitude E0 = 2.5 MV/m and frequency
f = 110 GHz each, forming a stationary wave having a
maximum rms (root mean squared) field Erms = 3.5 MV/m
(which is larger than the critical field for breakdown in air at
atmospheric pressure, Ec = 2.5 MV/m),

• atmospheric pressure, p = 760 Torr,
• initial plasma density of a Gaussian profile with maximum of

1015 m−3 in the center of the simulation domain and standard
deviation of 6× 10−5 m,

• computational domain, having dimension λ × λ, is divided
into a scattered field (SF) and a total field (TF) domain
in order to inject the waves. A local patch, having a fixed
size such that α2 = (L/Lp)2 = 10.07 (the patch size is
kept constant during the simulation), is introduced into the
domain and centered on the peak of the initial plasma density
profile, which is set to zero in the coarse domain outside
the patch. Convolutional perfectly matching layer (CPML)
absorbing boundary conditions are thus implemented in
order to minimize reflections into the global domain
(see Figure 6A),

• nested Cartesian grids, as shown in Figure 6B, having the
coarse spatial step H = λ/100 and the patch steps h = H/4
and h = H/10,

• stopping criterion on the discrete electromagnetic energy (in
the iterative patch algorithm) set to 10−5. The relaxation
parameter ωr is set equal to 1.

Note that the plasma dynamics is resolved in the patch domain
as the plasma density is supposed only defined on the patch
grid. In this study, the size of patch is chosen large enough
to capture the multiscale features of the plasma and the
electromagnetic solution.

4.2.2. Results
Figure 7A exhibits the evolution of plasma density at different
times obtained by the patch-based approach for a refinement
H/h = 10 and the standard one when no patch is used (H/h =

1). The initial plasma starts to grow due to the overcritical
field first uniformly. When its density is no longer negligible
with respect to the cut-off density (which in our conditions is
approximately 8.6× 1020 m−3 [32]), the plasma starts to interact
with the electromagnetic field of the standing wave by behaving
as a conductor. Due to polarization effects, the electric field is
enhanced at the poles of the plasmoid in the field polarization
direction leading to an increase of the ionization in those regions.

FIGURE 6 | Schematic representation of the 2D computational domain (A) and illustration of the used grid constellation (B) nested Cartesian grids.
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FIGURE 7 | Contour plots showing the evolution of plasma density (A) in a

microwave streamer from 20 to 110 ns without (top) and with patch H/h = 10

(bottom) in the patched region. The initial plasma density is a Gaussian with

maximum 1015 m−3 in the center of the simulation domain and standard

deviation 6× 10−5 m. The maximum densities at the successive times are (the

color scale is normalized at each time for the upper and lower plots),

respectively 1.39× 1017, 1.05× 1021, 3.29× 1021, and 4.38× 1021 m−3.

Contour plot showing the plasma density (B) at 110 ns in the reference case,

without patch, having a uniform refinement of the whole computational

domain, Href = H/10 (with Href being the step of the uniformly spaced grid),

obtained in conditions of (A). The color scale is the same of the contour plot

related to 110 ns in (A).

The plasmoid thus elongates faster in the field direction forming
a microwave streamer. The electromagnetic energy is no longer
absorbed by the plasma as its density becomes overcritical, as
it occurs in the streamer center. The stronger reflection of the
waves causes a decrease of the rms field below to the critical
field leading to decay of the plasma density in those regions.
The results obtained by locally refining the region containing
the plasma shows remarkably differences on the plasma density
distribution compared to the case without patch. This is mainly
due to a better resolution of the density gradients in the plasma
front when increasing the refinement, which become extremely
sharp when the streamer is formed (the differences are more
important in Figure 7A at times 80 ns and 110 ns with respect to
previous times where the plasma density gradients are smoother).
This discrepancy in resolving the characteristic diffusion length

FIGURE 8 | Contour plots showing the rms electric field distribution at 110 ns

without (Left), with (Middle) patch H/h = 10 and for the reference case

(Right) obtained in conditions of Figure 7 in the patched region. The color

scale is between the minimum value of 2.38 MV/m and the maximum value of

5.05 MV/m (the scale is normalized for the three cases).

of the plasma front leads to significant differences on the rms
electric field distribution as well (see Figure 8). For the coarser
grid an erroneous estimation of the plasma density is exhibited
(see Figure 9A).

Therefore, we recognize the efficiency of the local patch in
improving the accuracy of the solution, both on the plasma
density and on the electric field, as the refinement is increased.
Note that the simulation results corresponding to the case with
patch (h = H/10) are remarkably similar to results obtained in
the case, without patch, on a mesh with the same fine refinement
everywhere (and with the same CFL number), Href = H/10
(with Href being the step of the uniformly spaced grid), here
refereed to as reference case (see Figure 7B for the plasma
profile and Figure 8 for the rms electric field distribution both
estimated at 110 ns). A more quantitative comparison is given
in Figure 9 where the profiles of plasma density and rms electric
field along the streamer axis at 110 ns are obtained in the case
with patch and in the reference case. The results are in excellent
agreement: the error, between the patch method and the standard
FDTDmethod, concerning the plasma density and the streamer’s
elongation is less than 1%, whereas the rms electric field error is
less than 2% (see Table 2).

From a performance point of view, the theoretical gain
expected when using the local patch with a refinement of
H/h = 10 is about 15% compared to the case having a uniform
refinement (of the same level) of the whole computational
domain (see Table 3) according to the computational complexity
analysis of section 3.2, as the average number of iterations to
cope with the iterative patch algorithm is about k = 7.92
(here k corresponds to the average of all iterations needed for
convergence over all wave periods of the simulation). Note
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FIGURE 9 | Profile of plasma density (A) and rms electric field (B) along the streamer axis, corresponding to conditions of Figure 7 at 110 ns, without (blue solid line)

and with (black solid line) patch H/h = 10 and for the reference case (red solid line with circles).

TABLE 2 | Streamer’s length (in units of λ), maximum plasma density (in m−3) and

maximum rms electric field (in MV/m) at 110 ns for the case using the local patch

and the reference case corresponding to conditions of Figure 7.

Case with patch Reference case

h = H/10 Href = H/10

Streamer’s length (λ) 0.629 0.633

Maximum plasma density (×1021m−3) 4.37 4.38

Maximum rms electric field (MV/m) 4.97 5.05

TABLE 3 | The performance gain between the patch method and the standard

one (without patch) for the case of Figure 7 estimated using formula (28) with k

being the average number of iterations needed for convergence by the patch

algorithm over all wave periods (kmax and kmin are the maximum and the

minimum number of iterations, respectively), α = 3.1740, β = 4, 10 and D = 2

(see section 3.2).

H/h 4 10

k 13.04 7.92

[kmax , kmin] [25, 2] [15, 2]

η 0.474 1.155

that the configuration here analyzed is not the optimal one,
as the patched region is sized to contain the whole developed
microwave streamer. In so doing, the patch characteristic length
becomes important with respect to the coarse grid step, i.e.,
Lp ≈ λ/3 >> λ/100 ≡ H, and we cannot expect important
performance gains by considerably refining the patch (e.g., by
one order of magnitude, as estimated in section 3.2) since the
characteristic lengths ratio α dominates the refinement ratio β .

In our case, it is clear that the optimal configuration
would be to only localize the patch on the plasma front
where plasma density gradients are sharp and the electric
field rapidly varies (e.g., in reference to condition of Figure 9,
by locally refining regions around the streamer tips and
leaving a coarser grid elsewhere). Practically, it would
mean to add multiple patches having different refinement
levels into the domain and adapt their size dynamically

in order to follow the plasma evolution. This however is
beyond the scope of this paper in which we introduce the
patch-based approach and analyze its efficiency on more
standard configurations.

5. CONCLUSION AND PERSPECTIVES

We have proposed a new method for numerically solving
electromagnetic wave propagation problems in plasma having
a strong multiscale behavior such as the microwave discharge
plasma modeling. The method is derived for a particular finite
element formulation of the Maxwell’s equations, which are
coupled with the plasma transport equations via the time-varying
electron current density, advanced in time with an explicit
leapfrog time-stepping technique using a single constant time
step. The resolution algorithm uses a patch of finite elements to
calculate in an iterative manner the solution in the plasma region
where a better precision is required. Numerical experiments
have been performed demonstrating the usefulness of the patch
technique on simplified configurations such as two-level nested
Cartesian grid constellations. The application of a local well-
suited patch considerably improves the solution precision while
preserving the stability and the second-order accuracy of the
Yee finite-element type scheme. The proposed method has been
validated with 2D simulations of a microwave breakdown in air
at atmospheric pressure.

However, a much better computational efficiency of the
method can be provided by using patches adequately sized and
refined around the propagation front of plasma. An adaptive
version of the proposed algorithm is readily derivable as it is :

• Particularly flexible with respect to the conformity of
the meshes,

• Extensible by definition to multiple patches having different
level of refinements,

• Inherently adaptable to parallel computing due
to the independence of problems defined on
non-overlapping patches.
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Further improvements on the time-stepping technique can
be envisaged as well by employing a time integration using
local time steps (e.g., by combining explicit and implicit
time-stepping schemes). Moreover, a deep understanding of
the convergence properties of the iterative algorithm for the
electromagnetic wave propagation problem necessitates and
they will be studied in future works. We conclude that
both the inherent versatility and the particular efficiency
of the proposed method can make it suitable to properly
simulate the dynamics of microwave plasma discharges in
fully three dimensions by providing more insights of their
nature and behavior. This, of course, would allow the
estimation of their applicability in the context of aerodynamic
flow control.
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