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We study the random walk of a particle in a compartmentalized environment, as realized

in biological samples or solid state compounds. Each compartment is characterized by

its length L and the boundaries transmittance T. We identify two relevant spatio-temporal

scales that provide alternative descriptions of the dynamics: (i) the microscale, in which

the particle position is monitored at constant time intervals; and (ii) the mesoscale, in

which it is monitored only when the particle crosses a boundary between compartments.

Both descriptions provide—by construction—the same long time behavior. The analytical

description obtained at the proposed mesoscale allows for a complete characterization

of the complex movement at the microscale, thus representing a fruitful approach for

this kind of systems. We show that the presence of disorder in the transmittance is a

necessary condition to induce anomalous diffusion, whereas the spatial heterogeneity

reduces the degree of subdiffusion and, in some cases, can even compensate for the

disorder induced by the stochastic transmittance.

Keywords: random walk, anomalous diffusion, stochastic processes, complex systems, barriers

1. INTRODUCTION

The characterization of the diffusive behavior in complex environments is crucial in many fields,
ranging from biology [1], via physics and chemistry, to geology [2]. Recently, it has been shown
that a large number of systems display anomalous diffusion associated to spatial and/or energetic
disorder of the environment. Often, the motion of particles in such systems has been shown to be
subdiffusive, i.e.,

〈

x2(t)
〉

∼ tσ with anomalous exponent 0 < σ < 1. The characterization of this
movement provides important information on the disorder of the media and on the laws governing
the system [3]. The advances in this field have been mainly driven by developments in fluorescence
microscopy, which enable us to record movies of single particles diffusing in living matter, with a
spatial precision of a few nanometers at the millisecond time scale [4].

The presence of barriers that prevent the particles to freely diffuse in the environments is
a general mechanism used to explain subdiffusion [5]. Indeed, there exists a plethora of works
treating the effect of these barriers in various forms, from local maxima in potential landscapes [6]
to thin slices of poorly diffusive materials [7]. Recently, an analytical approach has been proposed
for sufficiently regular geometries [8]. Recent experimental observations in cellular biology have
shown that the actin cytoskeleton acts as a compartmentalization scaffold for proteins diffusing
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in the plasma membrane [9, 10], hence stressing the importance
of studying the motion in such environments. Moreover,
the evidence of the occurrence of ergodic and non-ergodic
processes in the diffusion of biomolecules [11] has triggered the
description of models in which geometric and energetic disorders
coexist [12, 13].

In this article, we study a general barrier model, where a
particle performs an unbiased random walk through a complex
environment made by a mesh of compartments separated by
barriers with random transmittance. A schematic of the system
is shown in Figure 1. We show that even though the particle
performs a Brownian motion within each compartment, the
stochasticity of the barrier’s transmittance induces anomalous
diffusion for the overall movement. We also explore the effect
of the stochasticity in the length of the compartments, showing
that it generally increase the anomalous exponent, up to restoring
normal diffusion.

In order to study the behavior of the particle, we propose
a coarse-graining approach transforming the rather complex
walk of the particle (mainly due to the interaction with the
boundaries) into two very well known theoretical models
describing anomalous diffusion: continuous time random walks
and Lévy walks. The former, introduced by Montroll and
Weiss [14], consists in a random walk where the time between
successive steps is a stochastic value. Similarly, a Lévy Walk [15]
consists in a random walk where not only the step time is
a stochastic variable, but also its length. For a comprehensive
introduction to both models, we refer the readers to Klafter and
Sokolov [16] and Zaburdaev et al. [17].

In the most general description of our system, we show
how the walk of the particle can be mapped into a Lévy

FIGURE 1 | Schematic of the system. (A) Example of a one dimensional

compartmentalized environment, with compartment size L and boundary

transmittance T. Higher boundaries represent lower transmittance. For

simplicity we plot the meshwork as formed by the segments of a line. (B)

Motion of the particle in such environment. The dark line represents the

microscale description of the motion and the green one indicates its

mesoscale description, in this case a Lévy walk with steps given by their

length and flight time (L, t).

walk with rests, where flight times depend on the step size.
In our system, the steps and rests are not alternate but have
complementary probabilities at each event. We show how the
existing theory for a Lévy walk with rests can be extended
to study such kind of walk. We determine the relationship
between the stochasticity of the environment and the anomalous
diffusion of the particle by solving different configurations of our
system, characterized by fixed or random compartment sizes and
boundary transmittances.

2. MATERIALS AND METHODS

The motion takes place on an environment characterized by a set
of compartments with size {Li}

N
i=1, with N ≫ 1 and Li ∈ [1,∞).

We treat the size of the compartments as a stochastic variable,
following the probability distribution function (PDF) g(L). The
compartments form a meshwork with unbounded connectivity,
which we assume to be always sufficiently large such to make
very unlikely that the particle returns to the same compartment
after leaving it. The boundary between the compartments is
partially reflective, i.e., a particle reaching a boundary has a
finite probability T of moving through the boundary to the next
compartment and a complementary probability R = 1 − T
of being reflected. The transmittance of each segment {Ti}

N
i=1,

T ∈ (0, 1] is a random variable drawn from the PDF q(T).
For the sake of simplicity, we focus on the case where

the compartments consist in one-dimensional segments (see
Figure 1A). The extension of this theory to two- or three-
dimensional supports, like circles or spheres, is conceptually
straightforward but more elaborated and geometry-dependent,
since it requires the determination of the stochastic time that
the particle spends in each support. The particle performs
an unbiased, discrete, random walk through the environment,
temporarily confined between the boundaries until it is
transmitted to the next compartment.

The motion of particles in disordered media has been
thoroughly studied in the past [18]. The usual approach is
to explicitly solve the diffusion equation for the system under
study. For instance, such direct approach has been recently
applied to subdiffusive particles through the barrier separating
two liquids [19]. However, when considering systems like the
one presented above, where both the boundary transmittance and
compartment length are stochastic variables, the direct approach
is complicated and does not lead to exact analytical results.
Therefore, we use an alternative method to solve the motion of
the particle through such a system. First, we distinguish between
a microscale description, in which the position of the particle
is monitored at constant times << L2/D with D being the
diffusivity, and a mesoscale description, in which the position is
sampled at times subordinated to the exit from a compartment.
We note here that, by definition, the asymptotic behavior of
the motion of the particle coincides on both scales. Therefore,
studying the movement at the mesoscale provides a correct
description of the movement at long times.

In the mesoscale description, the microscopic walk of the
particle (represented by the black line in the same figure) is
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reduced to a collection of lengths (Li) and times (ti) traveled to
exit the compartments, as shown by the green line of Figure 1B.
As a matter of fact, the length traveled by the particle in each step
corresponds to the size of the compartment itself. The flight time
ti is the stochastic time the particle spent bouncing between the
boundaries before being transmitted to next compartment. In our
case, this time is related to the transmittance T and length L of
the compartment through the conditional probability φ(t|T, L).
One can then write the joint probability for the particle to be
in a compartment of length L and boundary transmittance T at
time t as

ψ(t, L,T) = φ(t|T, L)g(L)q(T). (1)

Once inside a compartment, the particle has two options: leaving
through the same boundary through which it entered, or through
the opposite one. Since our approach monitors the particle
only when exiting a boundary, in the latter case, the particle
has traveled a distance equal to the size of the compartment.
However, in the former, the particle is not effectively moving,
since it occupies the same position when entering and exiting
the compartment. This translates into a rest with duration equal
to the time taken to exit the compartment. Therefore, after
entering each compartment, the particle has a probability of
resting ϕr(L,T) and the complementary probability of walking
ϕw(L,T) = 1− ϕr(L,T).

Through this coarse-graining approach, we convert the
microscale walk into a Lévy walk with rests, with flight times
depending on the jump length [20]. Previous works have
extensively studied such kind of walks, both with alternating
walks and rests [16] or with an equal probability of resting and
walking [17]. However, our system shows a substantial difference,
since it displays different probabilities of resting or walking,
ϕr + ϕw = 1, that can be used to calculate the PDFs of walk
[ψw(t)] and rest times [ψr(t)] as

ψw(r)(t)=

∫ ∞

1
dL

∫ 1

0
ϕw(r)(L,T)ψ(t, L,T)dT, (2)

and, in the spirit of Zaburdaev et al. [17], to derive the density of
particles at position x and time t in the Fourier–Laplace space

P6(k, s) =

∫ 1

0
P6,T(k, s,T)dT, (3)

where

P6,T(k, s,T) = (4)

9r(s)P0(k)+
{

ϕw(x,T)9(x, s,T)
}

k
ψr(s)P0(k)

1− {ϕr(x,T))ψ(x, s,T)}kψr(s)
.

Here, P0(x) corresponds to the initial distribution of particles,
9(t) =

∫ ∞

t ψ(t′)dt′ to the survival probability, i.e., the
probability of not jumping until time t, 9(x, t,T) =
∫ ∞

t ψ(x, t′,T)dt′ to the PDF of the displacement of the walker
during the last uncompleted step, and {f (x)}k to the Fourier
transform of f (x). For constant step/rest probabilities, e.g., ϕw =

ϕr = 1/2, Equation (4) leads to the known result for the Lévy
walk with rests [17].

However, when the previous condition is not fulfilled, solving
Equation (4) requires the calculation of ϕw(L,T). A case in which
ϕw(L,T) is easily solvable is when the boundaries are completely
transmitting, i.e., q(T) = δ(T − 1). In that case, one finds

ϕw(L,T = 1) = ϕw(L) = 1−
L

L+ 1
∼ L−1. (5)

For T 6= 1, obtaining an analytical expression for ϕw(L,T) is
a challenging task [21]. A trick commonly used to avoid this
difficulty consists in considering an annealed system [18], i.e.,
assuming that each time the particle exits a compartment, it
reappears at the center of the next one. In this case, the particle
will always travel a distance Li/2 to escape the ith-segment,
independently on the exit side, hence eliminating the presence
of rests. In this case ϕw(L,T) = 1 ∀L,T and the motion of the
particle is then a Lévy walk with flying times depending on the
jump length [20]. This is also analogous to the case in which, once
the particle enters a compartment, it cannot cross again the same
edge it entered from and thus will always travel a distance Li. For
this reason, in the following we will refer to this approximation
as the osmotic approach, in contrast with the general case that we
name non-osmotic.

From now on we will focus on the osmotic approach, which
allows for a thorough theoretical description in the different
configurations considered. In the osmotic approach, Equation (4)
takes the much simpler form

P
(OA)
6 =

9(k, s)

1− ψ(k, s)
, (6)

where ψ(k, s)=
∫ 1
0ψ(k, s,T)dT.

To characterize the motion of the particle, we will use
the mean squared displacement (MSD), defined as

〈

x2(t)
〉

=

−P′′(k, s)|k=0, which can be rewritten as Massignan et al. [22]

〈

x2(s)
〉

=

∫ 1

0
dT

[

−ψ ′′(k, s)|k=0

s[1− ψw(s)]
+

−9 ′′(k, s)|k=0

1− ψw(s)

]

. (7)

As we will show later through numerical simulations of the
microscopic walk, in spite of the simpler description, the osmotic
approach displays the same long time behavior as the non-
osmotic one.

3. RESULTS

In the following, we will use the method described above to
solve the motion of the particle in different configurations of the
system. We will first consider the case in which each boundary
has a different transmittance, drawn stochastically from the PDF
q(T), but all the compartments have equal length. We will then
briefly comment about the case in which the stochasticity is only
present in the compartment length. Last, we will consider the case
where both the length and boundary transmittance are random
variables. For each case, we will give the analytical solutions of
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the mesoscopic walk and compare it to numerical simulations of
the microscopic description.

The form of the conditional probability of the exit time
given a compartment of size L and transmittance T is common
to all the cases. A reasonable assumption based on the
Brownian motion is that, independently on the expression of
this conditional probability, it should give an average time
for exiting a compartment 〈t〉 which depends on the length
as L2. We can further assume that the dependence on T is
such that 〈t〉 ∝ (L/T)2. We checked that this behavior is
consistent with the numerical results for a collection of T and
L, finding that the average exit time follows an exponential
behavior, ∝ exp−tL2/T2, for large L and small T. For all
cases numerically considered, even when the distribution did not
match an exponential behavior, we found a quadratic dependence
on L/T. Therefore, we assume the simplest distribution which
produces the expected behavior of the average exit time, which is

φ(t|T, L) ∼ δ(t − (L/T)2). (8)

This form of the conditional time also has the advantage of
simplifying the analytical expressions and, as we discuss below,
allows us to correctly model the microscopic motion in all the
cases considered. The analytical calculation of this conditional
probability falls beyond the scope of this work. We note that
previous works have focused in the investigation on the exit
time in similar structures [23, 24], but do not provide a
useful expression for our particular system nor a practical way
to derive it.

We will now consider the case in which the boundaries have
all the same transmittance, i.e., q(T) = δ(T − T̄), with T̄ ∈ (0, 1].
We will consider that each compartment has a different length,
retrieved from the PDF

g(L) = βL−1−β . (9)

Our first step is to calculate the distribution of flight times, which
is done by convolving Equation (1) over all possible values of L

ψL(t) =

∫ ∞

1
φ(t|L, T̄)g(L)dL ∝ t−1−β/2. (10)

Using this result and Equations (1) and (7), we find that
〈

x2(t)
〉

∼

t ∀ T, i.e., the particle performs normal diffusion. Therefore,
the stochasticity of the compartment length does not imply any
effect on the MSD and, indeed, similar results are obtained when
using regular compartment size.We would like to emphasize that
this result holds for any finite T different from zero. In fact, as
shown in Lapeyre [25], for T = 0 subdiffusion occurs. In the
presence of transmitting boundary, there is no mechanism that
confines the particle for pathologically long times, so particles
diffuse normally in the asymptotic limit.

A very different result arises when considering disordered
boundary transmittances {Ti}

N
i=1 distributed according to a

power law PDF

q(T) = α

(

1

T

)1−α

. (11)

We first analyze the case in which the compartments have all the
same size, i.e., the lengths {Li}

N
i=1 are distributed according to the

PDF g(L) = δ(L − L̄), where L̄ ∈ [1,∞). We refer to this system
as the spatially ordered case. In the osmotic approach, the walk
consists on a collection of steps of size L̄ with flight times drawn
from the PDF

ψ(t) =

∫ 1

0
φ(t|L̄,T)q(T)dT ∝ t−1−α/2. (12)

As all the steps have equal length, the walk reduces to a
continuous time random walk with waiting time PDF given by
Meroz et al. [12]. Thus, in the spatially ordered case the MSD is
given by Charalambous et al. [26]

〈

x2(t)
〉(SO) t→∞

−−−→ tα/2, (13)

showing that the particle undergoes subdiffusive motion for
0 < α < 1. In Figure 2A we show the numerical results
corresponding to MSD calculated for a single value of α = 0.2
and different values of L̄ by using the microscale description
for the spatially ordered case. The plot shows that the motion
is initially Brownian and become subdiffusive at longer times.
The time at which the onset of subdiffusion occurs increases as L̄
grows, corresponding to the time needed to reach the boundary,
of a compartment. The asymptotic value of the MSD for any
L̄ is given by Muñoz Gil et al. [13]. This is a first indication
that anomalous diffusion can only be obtained by considering
stochastic boundary transmittance with a heavy-tail PDF. In the
spatially ordered case, the distribution of transmittances of the
media can be directly inferred from the asymptotic behavior of
the MSD of the particle.

We will now consider the case where both compartment
length and boundary transmittance are stochastic variables. As
stated before, this situation can be modeled at the mesoscale
as a Lévy walk with flight times depending on the step size.
We consider that the transmittances are distributed according
to Equation (11) and the compartment lengths as described by
Equation (9). Following the method used to derive Equation (12),
we can calculate the PDF of flight times by convolving the
conditional probability φ(t|T, L) with Equations (11) and (9), to
find

ψf (t) ∝ t−1−γ , with γ =

{

α if β > α,

β if β < α.
(14)

By using the previous result and Equation (1) we can determine
the MSD through its Laplace transform as in Equation (7). In the
time domain we find

〈

x2(t)
〉(SD) t→∞

−−−→ t
1
2 (2−β+γ ). (15)

The values of the MSD exponent σ = 1
2 (2− β + γ ) obtained for

different values of α and β are shown in Figure 2B. In Figure 2C

we further show the values of the MSD exponent calculated from
numerical simulations for the microscale description of the walk
(dashed lines) and the theoretical value given by Equation (15).
The numerical calculation and the theoretical prediction show
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FIGURE 2 | (A) MSD of a particle moving in an system of compartments of

equal length and boundary transmittances distributed following (11), with

α = 0.2. All curves are calculated for the microscale and tend to the predicted

subdiffusive motion given by (13). A larger L leads to a larger time for the onset

of subdiffusion to occur. The dashed bottom line corresponds to the

mesoscale and coincides with the theoretical prediction. (B) Value of the

exponent of the MSD in a system with stochastic compartment sizes and

boundary transmittance, given by (15). (C) Comparison between the predicted

results of the previous case and numerical simulations of the microscopic walk

(dashed lines).

a good agreement. It can be noticed that, when α > β (and
thus γ = β), the particle movement is normally diffusive (see
Equation (15) and Figures 2B,C). Therefore, the stochasticity
in the length of the segments is capable of compensating for
the disorder that would be induced by the stochasticity in
transmittance, that would generate a subdiffusive motion with
anomalous exponent σ = α/2 in the case the segments lengths
were regular. In addition, for β > α, the motion is subdiffusive,
but with a higher anomalous exponent as compared to the case
in which the lengths were regular. Therefore, in this case the two
disorders compete, producing a weaker subdiffusion.

4. DISCUSSION

In this article, we introduce a coarse-graining method that we use
to study diffusion through complex environments. This method
is useful to study systems in which the microscopic behavior of
the particles is too involved to be described analytically. To obtain
a description of the motion in such cases, we propose a procedure
that allows one to transform the microscopic walk into well-
known theoretical models, such as Lévy Walks or continuous
time random walks. The coarse-grained transformation maps
the original walk performed at the microscale into a simplified
movement at a larger scale (which we term mesoscale) that

captures the relevant properties of the environment. This allows
for a complete analytical characterization of the diffusion in terms
its observables, such as the mean square displacement.

To illustrate the use of the proposed method, we consider the
diffusion in an environment consisting of compartments with
random sizes and/or transmittances. To resolve the diffusion
of the system at the microscale, one needs to consider the
complex interaction of the particle with the boundary of each
compartment. For some simple systems, e.g., when all the
compartments have the same size, it is possible to get an
analytical solution of the microscale motion. In this cases, we
show that a heavy-tailed distribution of boundary transmittance
is a necessary requirement to induce subdiffusion. However,
for more intricate spatially-disordered environments, it is often
difficult to obtain an analytical solution at the microscale.
This is the scenario where our method allows to get insights
on the motion while neglecting microscopic details. As an
example, we demonstrate that when the compartments length is
a stochastic variable, geometric disorder alone cannot generate
subdiffusion. However, it can affect the one generated by the
heterogeneity in the boundary transmittance. Namely, increasing
the geometric disorder reduces the degree of subdiffusion, as it
increases the value of the anomalous exponent toward one. We
thus fully characterize the mean-square displacement exponent
as a function of the parameters controlling the heavy-tailed
distributions of both the lengths and barrier heights.

The model presented in this article might be a useful
framework to interpret diffusion in a variety of systems
composed of compartment of varying size and barriers. A striking
example of such kind of system is provided by eukaryotic
cells, highly compartmentalized at different spatial scales to
provide optimal conditions to perform specific functions [27].
The presence of compartments has been shown to affect the
diffusion of transmembrane proteins in the plasma membrane,
e.g., as a consequence of a self-similar actin network acting as
semipermeable barrier [9].

An interesting outlook of our model could consist in the
possibility of its further generalization, as to include previously
proposed models for diffusion in complex environment. For
example, our approach shares important features with the
previously proposed comb model [28]. In fact, the comb model
can be considered as a continuous-time random walk with
stochastic waiting time, the latter derived from first-passage
time. This system can be analyzed through our coarse-grained
approach upon conversion of the waiting time distribution into
a stochastic transmittance. The realization of the comb model
including convective terms [29], could be further implemented in
our approach, e.g., through the use of asymmetric transmittance.
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