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In this work, the coupled nonlinear Fokas-Liu system which is a special type of KdV

equation is studied using the invariant subspace method (ISM). The method determines

an invariant subspace and construct the exact solutions of the nonlinear partial differential

equations (NPDEs) by reducing them to ordinary differential equations (ODEs). As a

result of the calculations, polynomial and logarithmic function solutions of the equation

are derived. Further more, the ansatz approached is utilized to derive the topological,

non-topological and other singular soliton solutions of the system. Numerical simulation

off the obtained results are shown.

Keywords: invariant subspace method, soliton, ansatz, coupled nonlinear Fokas-Liu system, numerical

simulation

1. INTRODUCTION

As vastly known, NPDEs are commonly applied to describe a lot of relevant dynamic processes
and phenomena in mechanics, biology, physics, chemistry, etc. [1]. The solutions of NPDEs may
provide a significant information for scientists and engineers. The ISM, proposed in Galaktionov
[2] and modified in Ma [3], is one of strongest techniques to derive the solutions of NPDEs.
The technique involve several invariant subspaces which are defined as subspaces of solutions
to linear ODEs have been utilized to solve special NPDEs [3]. In Shen et al. [4], Zhu and Qu
[5], and Song et al. [6], the maximal dimensions of invariant subspaces for studying n system of
NPDEs has been reported. On the other hand, the ansatz technique is a powerful technique used
in deriving the soliton solutions of NPDEs. The approach is based upon substituting an ansatz
directly into the equation. The method has been used to obtain the solutions of several NPDEs
[7–10]. In the last few decades, several powerful integration approaches have utilized to study
many equations [11–19].

In this paper, we aim to study Equation (3) using the ISM [4–6]. Then, we will classify the soliton
solutions of the equation by utilizing the the powerful ansatz approach [7, 8].
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2. MODEL DESCRIPTION

Fokas and Liu [20] introduced a system of integrable KdV system.
The system in it’s original form is given by







































ut + υx + (3β1 + 2β4)β3uux + (2+ β4β1)β2(uυ)x

+β1β3υυx + (β1 + β4)β2uxxx + (1+ β4β1)β2υxxx = 0,

υt + ux + (2+ 3β1β4)β3υυx + (β1 + 2β4)β3(uυ)x

+β1β3β4uux + (β1 + β4)β2β4uxxx + (1+ β1β4)β2β4υxxx

= 0.

(1)
Gurses and Karasu [12] further simplified Equation (1) by
considering a linear transformation of the form

u = m1r + n1 s, υ = m2r + n2s, (2)

where m1,m2, n1 and n2 are arbitrary constants, s and r new
dynamical variables, qi = (s, r). On properly choosing the
constants, the coupled nonlinear Fokas-Liu system Equation (1)
is reduced to a simpler form represented by:

{

ut = auux + (υu)x + bυx,

υt = cux + fuux + dυx + 3υυx + eυxxx,
(3)

with transformation parameters given by Baskonus et al. [15]:

m2 =
β1 + β4

1+ β1β4
m1, n2

β4n1

δβ3
,

n1 = −
1

δβ3
, δ = β1(1+ β

2
4 )+ 2β4. (4)

In Equation (3), u is the elevation of the water wave, υ is the
surface velocity of water along x-direction [15]. The parameters
a, b, c, e, f , d are constants. The only condition on the parameters
a, b, c, e, f , d is given by c = fb. This guarantees the integrability
of the above system.

3. THE INVARIANT SUBSPACE METHOD

Let us give a brief account of the ISM [6]

u1t = F1(x, u1, u2, . . . , u1k1 , u
2
k1
),

u2t = F2(x, u1, u2, . . . , u1k2 , u
2
k2
).

(5)

The operator F1 ≡ F1[u1, u2] and F2 ≡ F1[u1, u2] are smooth
functions with orders k1 and k2, namely

(

F1
u1
k1

)2

+

(

F1
u2
k1

)2

6= 0,

(

F2
u1
k2

)2

+

(

F2
u2
k2

)2

6= 0. (6)

In the above and subsequent sections, we will apply the following
notation

u
q
0 = uq(x, t), u

q
j =

∂uq(x, t)

∂xj
, q = 1, 2; j = 1, 2, . . . (7)

LetW be a new linear subspaceW1
n1

×W
2
n2
, where

W
q
nq = L{f1(x)

q, . . . , fnq (x)
q} =

nq
∑

i=1

λ
q
j fj(x)

q, q = 1, 2 (8)

and f1(x)
q, . . . , fnq (x)

q are linearly independent. If the vector

operator F = (F1, F2) satisfies the condition

F :W
1
n1

×W
2
n2

→ W
1
n1

×W
2
n2
, (9)

i.e.,

Fq :W
1
n1

×W
2
n2

→ W
q
nq , q = 1, 2 (10)

satisfies

Fq

[

n1
∑

j=1

λ1j f
1
j (x),

n2
∑

j=1

λ2j fj(x)
2

]

=

nq
∑

j=1

ψ
q
j (λ

1
1, . . . , λ

1
n1
, λ21, . . . , λ

2
n2
)f

q
j (x). (11)

Then the vector operator F admit an invariant subspace given by
W . If the subspace W is being admitted by the operator F, then
Equation (5) has a solution given by

uq =

nq
∑

j=1

λ
q
j (t)fj(x)

q, q = 1, 2, (12)

with λ
q
j (t) being functions of t satisfying the following ODEs

dλ
q
j (t)

dt
= ψ

q
j (λ

1
1(t), . . . , λ

1
n1
(t), λ21(t), . . . , λ

2
n2
(t)) q = 1, 2.

(13)
SupposeW

q
nq = L{f

q
1 (x), . . . , f

q
nq (x)} is generated by the solutions

of the linear nqth-order ODEs

L
q[y] = y

(nq)
q + a

q
nq−1(x)y

(nq−1) + · · ·

+ a
q
1(x)y

′
q + a

q
0(x)yq = 0, q = 1, 2. (14)

Thus, the invariant conditions represented by

L
q[Fq[u1, u2]]

∣

∣

[H1]∩[H2]
= 0, q = 1, 2 (15)

one can denote by [Hq] the equation L
q[uq] = 0 and

its differentials w.r.t x. Once one determined the maximal
dimension, then the complete classification and exact solutions
of the equation can be investigated. From Equation (15)
representing the invariant condition, the estimation has been
determined in Shen et al. [4].

Theorem 3.1. Let F = (F1, F2) be a nonlinear vector and be
coupled. We can assume without loss of generality (k1 ≥ k2). If the
operator F admits the invariant subspace W1

n1
×W

2
n2
(n1 ≥ n2 >

0), then there holds n1 − n2 ≤ k2, n1 ≤ 2(k1 + k2)+ 1.
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In theorem 2.1, the operator F is couple meaning

(

F1
u20

)2

+

(

F1
u21

)2

+ · · · +

(

F1
u2
k1

)2

6= 0,

(

F2
u20

)2

+

(

F2
u21

)2

+ · · · +

(

F2
u2
k1

)2

6= 0.

(16)

F represents a nonlinear vector, i.e., for certain i0, j0, l0 ∈ {1, 2},
p0, q0 ∈ {0, 1, . . . , ki0}, there holds

∂Fi0

∂u
j0
p0∂u

l0
q0

6= 0. (17)

In the case of k1 = k2, the estimation of maximal dimension is
given in Zhu and Qu [5]. Next, we consider the case 0 < n1 < n2.
We give the following results from Song et al. [6] in a more
general form which we shall apply in the next section.

4. APPLICATION TO THE COUPLED
NONLINEAR FOKAS-LIU SYSTEM

In this section, we will construct the invariant subspace and
solutions of Equation (3). Let us take an invariant subspace
W2,2 = W

1
2 ×W

2
2 defined by

L
1[y1] = y

′′

1 + a1y
′

1 + a0y1 = 0,

L
2[y2] = y

′′

2 + b1y
′

2 + b0y2 = 0.
(18)

where a0, a1, b0, and b1 are constants to be determined. The
corresponding invariance conditions are given by

(D2F + a1DF + a0F)
∣

∣

u∈W1
2 ,v∈W

2
2
= 0,

(D2G+ b1DG+ b0G)
∣

∣

u∈W1
2 ,v∈W

2
2
= 0,

(19)

where
{

ut = F = auux + (υu)x + bυx,

υt = G = cux + fuux + dυx + 3υυx + eυxxx.
(20)

Substitute the expressions for F and G into the above equations,
we obtain an overdetermined system of algebraic expressions
which can be solved in general to obtain the invariant conditions
given by

a0 = 0, a1 = 0, b0 = 0, b1 = 0, b = b, c = c, f = f . (21)

Therefore, Equation (14) reduces to

L
1[y1] = y

′′

1 = 0,

L
2[y2] = y

′′

2 = 0.
(22)

Thus, we get W
1
2 = span{1, x} and W

2
2 = span{1, x}. This

invariant subspace takes the exact solution of Equation (3) as

u(x, t) = λ3(t)+ xλ4(t),

υ(x, t) = λ1(t)+ xλ2(t).
(23)

where λi(t), i = 1, 2, 3 are unknown function to be determined.
Putting Equation (23) into Equation (3), we acquire the following
system of ODEs:



















−2λ3(t)λ1(t)+ λ
′

3(t) = 0,

−λ3(t)
2f − 3λ1(t)

2 + λ
′

1(t) = 0,

−λ4(t)λ1(t)− λ3(t)λ2(t)− aλ3(t)− bλ1(t)+ λ
′

4(t) = 0,

−λ4(t)λ3(t)f − cλ3(t)− 3λ1(t)λ2(t)− dλ1(t)+ λ
′

2(t) = 0.

(24)
Solving Equation (24), we acquire

λ1(t) =
−1

3t + c3
,

λ2(t) =
−d(−3t + c3)+ 3c2

−3t + c+ 3
,

λ3(t) = 0,

λ4(t) = −b+
c1

(−3t + c3)
1
3

. (25)

Subsequently, we obtain the following algebraic function solution

u(x, t) = −bx+
xc1

(−3t + c3)
1
3

,

υ(x, t) =
−1

3t + c3
+

x(−d(−3t + c3)+ 3c2)

−3t + c3
. (26)

where ci(i = 1, . . . , 3) are arbitrary constants.

5. ANSATZ APPROACH

In this section, we will utilize the ansatz approach to derive
the topological, non-topological and singular soliton solutions of
Equation (3).

5.1. Non Topological Solitons
The non topological soliton solution of Equation (3) can be
represented by the following ansatz:

u(x, t) = σ1sech
p1τ , v(x, t) = σ2sech

p2τ , (27)

where τ = η(x− vt), σ1, σ2, p1 and p2 are to be determined later.
η is the wave number of the soliton. Putting Equation (27) into
Equation (3), we obtain















































































vηsech1+p1 (τ ) sinh(τ )p1ρ1 + aηsech1+2p1 (τ ) sinh
p
1(τ )ρ

2
1+

bηsech1+p2 (τ ) sinh(τ )p2ρ2 + ηsech
1+p1+p2 (τ ) sinh(τ )p1ρ1ρ2+

ηsech1+p1+p2 (τ ) sinh(τ )p2ρ1ρ2 = 0,

cηsech1+p1 (τ ) sinh(τ )p1ρ1 + f ηsech1+2p1 (τ ) sinh(τ )p1ρ
2
1+

dηsech1+p2 (τ ) sinh(τ )p2ρ2+ vηsech)1+p2 (τ ) sinh(τ )p2ρ2−

2eη3sech1+p2 (τ ) sinh(τ )p2ρ2+ 2eη3sech3+p2 (τ ) sinh(τ )3p2ρ2−

3eη3sech1+p2 (τ ) sinh(τ )p22ρ2+ 3eη3sech3+p2 (τ ) sinh(τ )3p22ρ2+

eη3sech3+p2 (τ ) sinh(τ )3p32ρ2+ 3ηsech1+2p2 (τ ) sinh(τ )p2ρ
2
2

= 0.

(28)
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FIGURE 1 | Surface profile of the algebraic functions solutions A and B mathematically represented by Equation (26) by setting c1 = 0.5, c2 = −0.2, c3 = 0.2,d = 2.

Upon equating the exponents in p1 and p2, we acquire

3+ p2 = 1+ p1 + p2, (29)

3+ p2 = 1+ 2p2, (30)

thus, we obtain p1 = p2 = 2. Putting into Equation (28), we
acquire


















































2vηsech(τ )2ρ1 tanh(τ )+ 2aηsech4(τ )ρ21 tanh(τ )+

2bηsech2(τ )ρ2 tanh(τ )+ 4ηsech4(τ )ρ1ρ2 tanh(τ ) = 0,

2cηsech2(τ )ρ1 tanh(τ )+ 2f ηsech4(τ )ρ21 tanh(τ )+

2dηsech2(τ )ρ2 tanh(τ )+ 2vηsech2(τ )ρ2 tanh(τ )+

8eη3sech2(τ )ρ2 tanh(τ )− 24eη3sech4(τ )ρ2 tanh(τ )+

6ηsech4(τ )ρ22 tanh(τ ) = 0.

(31)
After making some algebraic computations, we obtain the
following soliton parameters:

v =
ab

2
, η =

1

2

√

−a2b+ 4c− 2ad

2ae
,

ρ1 =
3
(

a2b− 4c+ 2ad
)

3a2 + 4f
, ρ2 = −

aρ1

2
. (32)

The non-topological soliton solutions of Equation (3) are
given by























u(x, t) =
3(a2b−4c+2ad)

3a2+4f
sech2

[

1
2

√

−a2b+4c−2ad
2ae

(

− 1
2abt + x

)

]

,

v(x, t) = −
3a(a2b−4c+2ad)

2(3a2+4f )
sech2

[

1
2

√

−a2b+4c−2a
2ea

(

− 1
2abt + x

)

]

.

(33)

5.2. Topological Solitons
The non topological soliton solution of Equation (3) can be
represented by the following ansatz:

u(x, t) = σ1tanh
p1τ , v(x, t) = σ2tanh

p2τ , (34)

where τ = η(x− vt). Putting Equation (34) into Equation (3), we
obtain















































































− vηcsch(τ )sechp1 (τ )ρ1 tanh(τ )
p1 − aηcsch(τ )sech(τ )p1ρ

2
1 tanh

2p1 (τ )−

bηcsch(τ )sechp2 (τ )ρ2 tanh
p2 (τ )− ηcsch(τ )sechp1 (τ )ρ1ρ2 tanh

p1+p2 (τ )−

ηcsch(τ )sech(τ )p2ρ1ρ2 tanh)
p1+p2 (τ ) = 0,

− cηcsch(τ )sech(τ )p1ρ1 tanh
p1 (τ )− f ηcsch(τ )sech(τ )p1ρ

2
1 tanh

2p1 (τ )−

dηcsch(τ )sech(τ )p2ρ2 tanh
p2 (τ )− vηcsch(τ )sech(τ )p2ρ2 tanh

p2 (τ )−

4eη3csch(τ )sech3(τ )p2ρ2 tanh
p2 (τ )− 2eη3csch3(τ )sech(τ )3p2ρ2 tanh

p2 (τ )+

6eη3csch(τ )sech3(τ )p22ρ2 tanh
p2 (τ )+ 3eη3csch3(τ )sech(τ )3p22ρ2 tanh

p2 (τ )−

eη3csch3(τ )sech3(τ )p32ρ2 tanh
p2 (τ )− 3ηcsch(τ )sech(τ )p2ρ

2
2 tanh

2p2 (τ )−

4eη3csch(τ )sech(τ )p2ρ2 tanh
2+p2 (τ ) = 0

(35)
Upon equating the exponents in p1 and p2, we acquire

2p2 = 2+ p2, (36)

p1 + p2 = 1+ 2p1, (37)

thus, we obtain p1 = p2 = 2. Putting into Equation (38), we
acquire



















































2vηsech2(τ )ρ1 tanh(τ )+ 2aηsech4(τ )ρ21 tanh(τ )+

2bηsech2(τ )ρ2 tanh(τ )+ 4ηsech4(τ )ρ1ρ2 tanh(τ ) = 0,

2cηsech(τ )2ρ1 tanh(τ )+ 2f ηsech(τ )4ρ21 tanh(τ )+

2dηsech2(τ )ρ2 tanh(τ )+ 2vηsech2(τ )ρ2 tanh(τ )+

8eη3sech2(τ )ρ2 tanh(τ )− 24eη3sech4(τ )ρ2 tanh(τ )+

6ηsech4(τ )ρ22 tanh(τ ) = 0.

(38)
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FIGURE 2 | Surface profile of the non topological soliton solutions A and B mathematically represented by Equation (33) describing several terminologies in the field of

mathematical physics by setting a1 = 0.5,b2 = −0.1, c3 = 0.2,d = 2, e = 2, f = 0.4.

After making some algebraic computations, we obtain the
following soliton parameters

v =
ab

2
, η =

1

4

√

a2b− 4c+ 2ad

ae
,

ρ2 = −
3
(

a3b− 4ac+ 2a2d
)

4
(

3a2 + 4f
) , ρ1 =

3
(

a3b− 4ac+ 2a2d
)

2a
(

3a2 + 4f
) .

(39)

The topological soliton solutions of Equation (3) are given by























u(x, t) =
3(a2b−4c+2ad)

6a2+8f
tanh2

[

1
4

√

a2b−4c+2ad
ae

(

− 1
2abt + x

)

]

,

v(x, t) = −
3a(a2b−4c+2ad)

4(3a2+4f )
tanh2

[

1
4

√

a2b−4c+2ad
ae

(

− 1
2abt + x

)

]

.

(40)

5.3. Singular Soliton Solutions Type-I
The singular soliton solution type-I of Equation (3) can be
represented by the following ansatz:

u(x, t) = σ1csch
p1τ , v(x, t) = σ2csch

p2τ , (41)

where τ = η(x − vt). Inserting Equation (41) into Equation (3),
we acquire



































































vη cosh(τ )csch1+p1 (τ )p1ρ1 + aη cosh(τ )csch1+2p1 (τ )p1ρ
2
1+

bη cosh(τ )csch1+p2 (τ )p2ρ2 + η cosh(τ ) csch
1+p1+p2 (τ )p1ρ1ρ2+

η cosh(τ )csch1+p1+p2 (τ )p2ρ1ρ2 = 0,

cη cosh(τ )csch1+p1 (τ )p1ρ1 + f η cosh(τ )csch1+2p1 (τ )p1ρ
2
1+

dη cosh(τ )csch1+p2 (τ )p2ρ2 + vη cosh(τ )csch3+p2 (τ )p2ρ2−

2eη3 cosh(τ )csch1+p2 (τ )p2ρ2 + 2eη3 cosh3(τ )csch3+p2 (τ )p2ρ2−

3eη3 cosh(τ )csch1+p2 (τ )p22ρ2 + 3eη3 cosh3(τ )csch(τ )3+p2p22ρ2+

eη3 cosh3(τ )csch3+p2 (τ )p32ρ2 + 3η cosh(τ )csch1+2p2 (τ )p2ρ
2
2 = 0.

(42)

Upon equating the exponents of p1 and p2 Equation (42), we
acquire

3+ p2 = 1+ p1 + p2, (43)

3+ p2 = 1+ 2p2, (44)

thus, we obtain p1 = p2 = 2. Putting into Equation (42), we
obtain



















































2vη coth(τ )csch2(τ )ρ1 + 2aη coth(τ )csch4(τ )ρ21+

2bη coth(τ )csch2(τ )ρ2 + 4η coth(τ )csch4(τ )ρ1ρ2 = 0,

2cη coth(τ )csch2(τ )ρ1 + 2f η coth(τ )csch4(τ )ρ21+

2dη coth(τ )csch2(τ )ρ2 + 2vη coth(τ )csch2(τ )ρ2+

8eη3 coth(τ )csch2(τ )ρ2 − 24eη3 coth(τ )csch4(τ )ρ2+

6η coth(τ )csch4(τ )ρ22 = 0.

(45)
After making some algebraic computations, we obtain the
following soliton parameters

v =
ab

2
, η =

1

2

√

−a2b+ 4c− 2ad

2ae
,

ρ1 =
3
(

a2b− 4c+ 2ad
)

3a2 + 4f
, ρ2 = −

3a
(

a2b− 4c+ 2ad
)

2
(

3a2 + 4f
) . (46)

The singular soliton solutions type-I of Equation (3) are given by































u(x, t) = 3(a2b−4c+2ad)
3a2+4f

csch2

[

1
4

√

4c−a(ab+2d)
2ae (−abt + 2x)

]

,

v(x, t) = −
3a(a2b−4c+2ad)

2(3a2+4f )
csch2

[

1
4

√

4c−a(ab+2d)
2ae (−abt + 2x)

]

.

(47)
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FIGURE 3 | Surface profile of the topological soliton solutions A and B mathematically represented by Equation (40) describing several terminologies in the field of

mathematical physics by setting a1 = 0.4,b2 = −0.2, c3 = 0.1,d = 2, e = 2, f = 0.4.

FIGURE 4 | Surface profile of the singular soliton solutions type-I A and B mathematically represented by Equation (47) describing several terminologies in the field of

mathematical physics by setting a1 = 0.6,b2 = −0.7, c3 = 0.2,d = 1, e = 2, f = 0.4.

5.4. Singular Soliton Type-II
The singular soliton solutions type-II of Equation (3) can be
represented by the following ansatz:

u(x, t) = σ1coth
p1τ , v(x, t) = σ2coth

p2τ , (48)

where τ = η(x− vt). Putting Equation (48) into Equation (3), we
obtain















































































vη cothp1 (τ )csch(τ )sech(τ )p1ρ1 + aη coth2p1 (τ )csch(τ )sech(τ )p1ρ
2
1+

bη cothp2 (τ )csch(τ )sech(τ )p2ρ2 + η coth
p1+p2 (τ )csch(τ )sech(τ )p1ρ1ρ2+

η cothp1+p2 (τ )csch(τ )sech(τ )p2ρ1ρ2 = 0,

cη cothp1 (τ )csch(τ )sech(τ )p1ρ1 + f η coth2p1 (τ )csch(τ )sech(τ )p1ρ
2
1+

dη cothp2 (τ )csch(τ )sech(τ )p2ρ2 + vη cothp2 (τ )csch(τ )sech(τ )p2ρ2+

4eη3 coth2+p2 (τ )csch(τ )sech(τ )p2ρ2 − 4eη3 cothp2 (τ )csch3(τ )sech(τ )p2ρ2+

eη3 cothp2 (τ )csch3(τ )sech3(τ )p2ρ2 + 6eη3 cothp2 (τ )csch(τ )3sech(τ )p22ρ2−

3eη3 cothp2 (τ )csch3(τ )sech3(τ )p22ρ2 + eη3 cothp2 (τ )csch3(τ )sech3(τ )p32ρ2+

3η coth2p2 (τ )csch(τ )sech(τ )p2ρ
2
2 = 0.

(49)

Upon equating the exponents in p1 and p2, we acquire

2+ p2 = 2p2, (50)

p1 + p2 = 2p1, (51)

thus, we obtain p1 = p2 = 2. Putting into Equation (49), we
acquire



















































2vηcoth(τ )csch2(τ )ρ1 + 2aη coth3(τ )csch2(τ )ρ21+

2bη coth(τ )csch2(τ )ρ2 + 4η coth3(τ )csch2(τ )ρ1ρ2 = 0,

2cη coth(τ )csch(τ )2ρ1 + 2f η coth3(τ )csch2(τ )ρ21+

2dη coth(τ )csch2(τ )ρ2 + 2vη coth(τ )csch2(τ )ρ2+

16eη3 coth(τ )csch2(τ )ρ2 − 8eη3 coth3(τ )csch2(τ )ρ2+

6η coth3(τ )csch2(τ )ρ22 = 0.

(52)
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FIGURE 5 | Surface profile of the singular soliton solutions type-I I A and B mathematically represented by Equation (54) describing several terminologies in the field of

mathematical physics by setting a1 = 0.2,b2 = 0.8, c3 = 0.2,d = 1, e = 2, f = 0.5.

After making some algebraic computations, we acquire the
following soliton parameters

v =
ab

2
, η =

1

4

√

−a2b+ 4c− 2ad

ae
,

ρ2 =
−a3b+ 4ac− 2a2d

4
(

3a2 + 4f
) , ρ1 = −

−a3b+ 4ac− 2a2d

2a
(

3a2 + 4f
) . (53)

The singular soliton solutions type-II of Equation (3) are given by



























u(x, t) = (a2b−4c+2ad)
6a2+8f

coth2

[

1
8

√

4c−a(ab+2d)
ae (−abt + 2x)

]

,

v(x, t) = −
a(a2b−4c+2ad)

4(3a2+4f )
coth2

[

1
8

√

4c−a(ab+2d)
ae (−abt + 2x)

]

.

(54)

6. CONCLUSION

In this work, we obtained the invariant subspaces and soliton
solutions the coupled nonlinear Fokas-Liu system. The ISM and
the ansatz approach were the methods employed to study the
equation. New forms of algebraic solutions, topological, non-
topological and singular soliton solutions have been reported.
These solutions have a lot of application in mathematical physics
and have not been reported in previous time in the literature.
Some figures showing the physical description and numerical
results of the acquired solutions. This has been shown in
Figures 1–5.
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