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We introduce contact interactions defined by boundary conditions at the contact

manifold Ŵ ≡ ∪i,j{xi = xj}. There are two types of contact interactions, weak and strong.

Both provide self-adjoint extensions of Ĥ0 the free hamiltonian restricted away from Ŵ.

We analyze both of them by “lifting” the system to a space of more singular functions:

the map is fractioning and mixing. In the new space we use tools of Functional Analysis.

After returning to physical space we use Gamma convergence, a well-known variational

tool. We prove that contact interactions are strong resolvent limits of potentials with

finite range. Weak contact of one boson with two other bosons leads to the low-density

Bose-Einstrin condensate. Simultaneous weak contact of three bosons produces the

high-density condensate which has an Efimov sequence of bound states. In Low Energy

Physics strong contact of one particle with another two produces an Efimov sequence of

bound states (we will comment briefly on the relation with the effect with the same name

in Quantum Mechanics). For N bosons strong contact gives a lower bound −CN for the

energy. A system of fermions in strong contact (unitary gas) has a positive hamiltonian.

We give several examples in dimension 3,2,1. In the Appendix we describe the ground

state of the Polaron.

Keywords: contact, gamma convergence, interaction, Efimov, Bose Einstein

1. INTRODUCTION

In Classical Mechanics constraints we describe forces restricting the motion of two systems when
they are in contact.

In Quantum Mechanics it is convenient to use the Heisenberg representation and describe the
system by means of self-adjoint operators on some function space. Each self-adjoint operator has a
domain of definition.

We consider first in some detail the dynamics in R3 and later consider the case of dimension two
and dimension one.

Contact (zero range) interactions in R3 are defined by imposing that the wave function in the
domain of the hamiltonian satisfies at the coincidence manifold Ŵ

Ŵ ≡ ∪i,jŴi,j Ŵi,j ≡ {xi − xj} = 0, i 6= j xi ∈ R3. (1)

the boundary conditions

φ(X) =
Ci,j

|xi − xj|
+ Di,j i 6= j (2)
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These conditions were used already in 1935 by Bethe and
Peirels [1] in the description of the interaction between a proton
and neutron.

They were later used by Ter-Martirosian and Skorniakov [2]
in their analysis of the three-body scattering within the Faddeev
formalism. We shall call them Ter-Martrosian [2] boundary
conditions. In the weak contact case for each contact there
is a zero-energy resonance i.e., a function that at infinity is
proportional to 1

|xi−xj| .

For contact interactions it is easy to determine the spectra;
the interest in the subject was renewed in Theoretical Physics
by recent advances in the theoretical formulation of low energy
physics and also by the flourishing of research on ultra-cold
atoms interacting through potentials of very short range.

The T-M boundary conditions can be described by potentials
Vi,j(|xi − xj|) and Ui,j(|xi − xj|) hat are distributions supported by
the boundary

Vi,j = −Ci,jδ(xi − xj)
d

dρi,j
Ui,j(ρi,j) = −Di,jδ(xi − xj)

Ci,j > 0 Di,j > 0 ρi,j = |xi − xj| (3)

This can be verified by taking the scalar product with a function
in the domain of Ĥ0 (the free hamiltonian restricted to functions
that vanish in a neighborhood of Ŵ) and integrating by parts.

This condition implies a very singular modification of the free
dynamics at coincidence hyper-planes.

At the boundary, the solutions are not in the domain of the
free hamiltonian; solution of the Schrödinger equation is only
meant in a weak sense, after averaging with a smooth function
and integrating by parts.

The equation holds in the sense of quadratic forms. Quadratic
form techniques play an important role.

2. STRONG AND WEAK CONTACT

We call strong contacts the self-adjoint extension characterized by
Di,j = 0 and weak contacts the one characterized by Ci,j = 0.

From a mathematical point of view, the resulting operators
are self-adjoint extensions of the symmetric operator Ĥ0 , the free
hamiltonian for three particles of mass m defined on functions
that have support away form Ŵ.

Notice in the case of strong contact both the free hamiltonian
and the potential define quadratic forms (of opposite sign) on
absolutely continuous functions.

The (negative) potential is defined on the larger class of
continuous functions and there takes a finite value.

On continuous functions that are not absolutely continuous
the quadratic form of the free hamiltonian “is infinite.”

Therefore, in a two-particle system strong contact cannot
be defined.

Weak contact can be defined but its domain contains a zero-
energy resonance.

We shall prove that in three particle system separate strong
contact of one particle with two other particles can be defined.

If the potential is sufficiently strong the system has an
Efimov spectrum.

We consider mainly the case in which all particles have the same
mass. In the case of strong contact of one of the particles with the
other two the spectrum of Efimov type.

A small difference in the masses does not change the structure
of the spectrum.

The (energy) scale is given by the mass and by the ratio
between the strong and weak contact coefficients, if they are
both present.

In the case of weak contact, the distributional potential at
the boundary has the same scaling property under dilation as
the kinetic energy. Therefore, the hamiltonian of weak contact
is scale covariant under the dilation group.

This by itself is an indication of the presence of a resonance.
Point interactions [3] can be seen as a weak contact interaction
between two particles one of which is infinitely massive (with
wave function concentrated in a point).

We emphasize that both strong and weak contact hamiltonian
are needed to classify completely the zero range interactions.

We will prove that they produce complementary and
independent effects.

Both effects are independent from those due to the
possible presence of regular potentials (that may cause
further resonances).

For the proof of independence, we shall use a general form for
the resolvent of the interacting system, due to Krein (we use the
Konno and Kuroda [4] improved version).

It should be noted that there is another “natural” extension of
Ĥ0 which is obtained by imposing Dirichlet boundary conditions
on some or all contact, manifold.

Imposing Dirichlet boundary conditions is an alternative
procedure and does not correspond to the limit of attractive
potentials Vǫ .

Remark: To make a connection with the interaction trough
two-body potentials, we will prove that the three-body strong
contact hamiltonian is limited, in a strong resolvent sense, to
Hamiltonians with two body potentials that scale as Vǫ(|x|) =
1
ǫ3
V( |x|

ǫ
).

Two body weak contact is the limit, in strong resolvent sense,

of hamiltonian with potentials that scale as Uǫ(|x|) = 1
ǫ2
U( |x|

ǫ
)

and have a zero energy resonance.
We will show that in general (and not only for point

interactions [3]) weak contact requires the approximating
hamiltonians to have a zero-energy resonance (infinite
scattering length).

Since in the case of contact interactions the spectra and
spectral properties can be given explicitly, contact interactions
are a valuable tool for very short-range potentials.

We shall analyze in detail the case of the separate strong contact
of a particle with other two (all particles have the same mass)
and the case of the (weak) contact between two pairs of particles
which are themselves in strong contact.

With the same formalism we analyze the case of three particles
in which every particle has a weak contact interaction with the
other two.

Notice that simultaneous strong contact of three particles leads
to divergences [5].
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3. MATHEMATICAL FORMULATION

From a mathematical point of view the problem of zero range
interaction between three particles was first analyzed by Pavlov
[6] who investigated the self-adjoint extensions defined by the
condition that the wave function takes a finite value at the
boundary Ŵi,j (weak contact).

The problem was later studied by Minlos [7, 8] concentrating
on (the physically relevant) case of two identical particles one
interacting through “zero range potentials” with a particle of the
same mass.

The same analysis applies to a system of three identical
particles in which each has a strong contact with the other two.
For the sake of simplicity all particles have mass one.

To analyze the system, we introduced a compact invertible
map (the Krein map K ) to a space of more singular functions.
The map depends on a positive parameter λ; this parameter will
play a role in the semiclassical limit.

We call the map “Krein map” K because our steps are in
the path of the theory of self-adjoint extensions of positive
operators by Birman [9] and Krein [10], but on the side of
quadratic forms as suggested in Klaus and Simon [11] (the
advantage of this formalism is also remarked in Cassano and
Pizzichillo [12]).

The idea of using this map came from reading [7, 8] and
therefore we will call Minlos spaceM the image space.

The Krein operator is (H0 + λ)−
1
2 .

The Krein map acts differently on the kinetic term and on the
potential tem.

It acts on the kinetic energy (seen as operator) as follows

(H0 + λ) → (H0 + λ)
1
2 .

It acts on the delta potential (seen as quadratic form) as follows

δ → (H0 + λ)−
1
2 δ(H0 + λ)−

1
2 .

Since for strong and weak contact the distributional potential
“commutes” with the free hamiltonian (as seen by taking the
Fourier transfor) in M the quadratic form is also the quadratic
form of δ(H0 + λ−1 and this shows a formal relation with
Birman [9] and Krein [10].

For very short distances the Krein map enhances the potential
term with respect to the kinetic energy.

As a consequence, the quadratic form kinetic energy
+ potential may become unbounded below (the potential
is attractive).

Notice that the Krein is invertible; after inversion, the system
was not changed.

The Krein map is only a tool to extract information, a
magnifying glass

We distinguish between two cases.

a) Weak contact
If inM the result is a unique strongly closed quadratic form,
by rotation invariance it can be decomposed into strictly
convex quadratic form.
Their image under inversion of the Krein map are weakly
closed strictly convex quadratic forms.
Since the forms are bounded below (the inversion
changes the topology of the space) they can be closed

strongly [13] and define self-adjoint operators in
“physical” space.
Depending on the strength of the potential there may be a
finite number of bound states.

b) Strong contact
In position space in for l = 0 by construction the potential
term is the sum of a first order pole (with negative coefficient
−C0) and a smooth positive quadratic form 40 which is zero
on the diagonal.
The form 40 corresponds to a bounded positive operator; its
contribution can be analyzed using perturbation theory.
Since the Krein map is only an instrument to evidence
general features of the interaction term at small distance, such
bounded operators play no role in the following. We shall
therefore neglect it.

If C0 is sufficiently large one has a Weyl limit circle degeneracy
[14] and a one-parameter family of self-adjoint extensions all
unbounded below and each with an infinite negative point
spectrum that diverges linearly. Inversion of the Krein map gives
a family of quadratic forms that are only weakly closed and
bounded below.

If there is one which admits a strong closure, this form defines a
self-adjoint operator in physical space with an Efimov spectrum.

This form is obtained using Gamma convergence, a procedure
often used in the analysis of finely fragmented materials (we will
give later the definitions).

It is a minimization procedure for families of strictly convex
forms (not necessary quadratic).

Gamma-convergence selects from a sequence of strictly convex
forms, a unique one that has a strong closure. This selected form
is called Gamma limit. The name Gamma limit is used because
Gamma convergence is a minimization process.

Recall that the Gamma limit of a sequence of strictly convex
weakly closed forms Fn in a topological space Y is the unique
weakly closed quadratic form F such that for any subsequence
the following holds

∀y ∈ Y , yn → y, F(y) ≤ liminfF(yn) limsupF(yn) ≥ F(y)
(4)

The limited form is strictly convex and therefore
strongly closable.

The condition for the existence of the Gamma-limit is that the
sequence be contained in a compact set of Y . In the present case
Y has the Frechet topology given by Sobolev semi-norms.

Compactness of bounded sets is assured by the absence of zero
energy resonances,

Therefore, there is a minimizing (Palais-Smale) sequence.
From the point of view of Functional Analysis, it is important

that Gamma convergence implies resolvent convergence [15].
Notice that this is precisely what is done in the study

of composite materials: one first acquires information on
the “small scale structure” and then draws conclusions at a
macroscopic scale.

We have noticed that the Krein map is fractioning andmixing.
This explains why inverting the Krein map requires tools

from the theory of homogenization (Gamma convergence
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[15]) a procedure often used in the analysis of finely
fragmented materials.

If the interaction is strong enough there is an Efimov sequence
of bound states.

It is easy to verify that these states (called “trimers”
in the Physics literature) have increasingly larger
essential support.

Therefore, only the first few members of the series can be
detected experimentally.

For an outlook on experimental and theoretical results on the
three and four body problem one can consult [16, 17].

4. STRONG AND WEAK CONTACT

INTERACTIONS AS LIMITS

a) Strong contact
We prove that strong-contact hamiltonians

are limited in a strong resolvent sense of finite
range hamiltonians.

This makes contact hamiltonians a valuable tool in the study
of interactions of a very small range.

We require that the potential V(|x|) be of class C1. It defines
therefore a quadratic form inH

1.
By duality, it is a bounded map from H

2 to C1

(this explains why we find hamiltonians that are
bounded below).

We consider separately the restriction to irreducible
representation of the rotation group (the approximating
potentials are invariant under rotation).

The quadratic form associated to the potentials Vǫ is a
decreasing function of ǫ (the potential is negative).

Since there is no zero-energy resonance the sequence of the
approximating hamiltonians belongs to a compact subset for
topology given by the Sobolev semi-norms.

The potential V is negative therefore for any choice of V ∈
C1 ∩L1 the ǫ-dependent quadratic forms are stricly decreasing as
function of ǫ.

A lower bound is the quadratic form of the contact interaction.
A decreasing sequence in a compact set with a lower bound

always admits a converging subsequence.
If the sequence is strictly decreasing the limit point is unique.
If the potential is of class C1 the limit of this converging

minimizing subsequence belongs to the limit set of the
contact interactions.

Since this set contains only one element for any choice
of the L1 norm of the approximating potentials, the limit is
unique and coincides with the contact interaction with the
same strength.

Gamma convergence implies strong resolvent convergence
[15]. Therefore the sequence of self-adjoint operators with
potentials H0 + Vǫ , Vǫ ∈ C1 have in strong resolvent sense
a limit which is the resolvent of the strong contact hamiltonian
(which depends on the L1 norm of the approximation potentials
but not on the shape).

In turn strong resolvent convergence implies
convergence of spectra and of the Wave Operator in
Scattering Theory.

We have proved

Theorem 1: The hamiltonian of a system describing the strong
contact interactions of a particle with two identical bosons is
limit, in the strong resolvent sense, of hamiltonians with two
body negative potentials of class C1 that have support that shrinks

to a point with law Vǫ(|x|) = 1
ǫ3
V( |x|

ǫ
). The limit hamiltonian is

bounded below.
There are constant C1, C2 such that if |V|1 < C1 the negative

spectrum is empty, if C1 ≤ |V|1 < C2 the strong contact
hamiltonian has a finite negative spectrum while if |V1| ≥,C2 the
negative spectrum is of Efimov type (the sequence of eigenvalues
converges geometrically to zero).

In this latter case the eigenfunctions are centered on the
barycenter of the system and have increasing support. ♦

Remark: The same is true with the same proof in a three-
particle system in which each pair has a separate strong
contact interaction.

b) Weak contact
In the case of weak contact, the proof does not apply

because the domain of the limit operators contains a zero-energy
resonance and compactness in the topology of the Sobolev semi-
norms fails.

This is the reason why the approximating potentials V must
have a zero-energy resonance.

Since the potentials Vǫ are obtained by scaling the resonance
is independent from ǫ and can be chosen to be the same as the
resonance of the weak contact hamiltonian.

Therefore, the domain of difference between the
approximating potentials and the weak contact is inL2 and
one has compactness in the Sobolev semi-norms.

5. THE BIRMAN-KREIN-SCHWINGER

FORMULA

The role on Gamma convergence in Quantum Mechanics is
clearly seen considering the Birman-Krein -Schwinger formula
for the difference of the resolvents of two self-adjoint operators
H and H0 both bounded below.

(H + λ)−1 − (H0 + λ)−1) = (H0 + λ)−1Wλ(H0 + λ)−1 (5)

where λ is greater than the lower bound of the spectra.
Wλ is the Krein kernel, the quadratic form of a symmetric

operator.
Usually H0 is the free hamiltonian, but one can make other

choices (for exampleH0 may be the magnetic free hamiltonian, a
positive operator).

The B-K-S formula, which is the basis for a perturbative
analysis, clearly shows the role of Gamma convergence for strong
contact in a non-perturbative setting.

This formula can be written as

(H + λ)−1 − (H0 + λ)−1) = {Kλ}{Kλ}Wλ) (6)

where {Kλ} is the Krein map.
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This formula is ill-defined as it stands because the image of the
Krein map is a weakly closed form and the Krein map is defined
only for strongly closed forms (self-adjoint operators).

If the image is closable in the strong topology one can take its
closure before the second Krein map.

If not, one must select one of the weakly closed forms that has
a strong closure.

Gamma convergence is the instrument to make this selection.
In the more general setting the formula should be replaced by

(H + λ)−1 − (H0 + λ)−1) = {Kλ}Ŵ({Kλ}Wλ) (7)

where the symbol Ŵ indicates that it is necessary to use
Gamma convergence.

6. BOUNDARY CHARGES

An important aspect of contact interactions is that they are
extension ofH0 that are entirely due to “charges at the boundary.”

In the present case the boundary is internal i.e., they are the
contact manifolds.

Compare with electrostatics: in that case the boundary
has co-dimension one and the Krein map can be
identified with the Weyl map from potentials to
charges.

It is therefore natural to refer to Minlos space as the space of
charges [18].

The distribution of “charges at the boundary” determine
uniquely the self-adjoint extension; each function in the domain
can be written as the sum of a part determined by the charges
and a regular part in the domain of H0. We sketch here the
proof.

Let H be the self-adjoint extension that represent the
contact interaction.

Choose λ in such a way that H + λI is invertible.
By construction, the quadratic form ofH+λ is the sum of the

quadratic form of H0 + λ and a quadratic form in Krein space.
The elements in the form domain of the contact hamiltonian

H are of the form ψ = φ + ζ where φ ∈ D(H0) and ζ is in Krein
space [11].

The action of H on elements in its domain is

(H + λ)ψ = (H0 + λ)φ ψ = φ + {Kλ}ψ (8)

The formal proof (modulo control of the domains) is as follows

((H + λ)ψ , 1

H0 + λ
(H + λ)ψ)

= ((H0 + λ)φ,
1

H + λ (H0 + λ)φ)

= (φ, (H0 + λ)φ)+ ({Kλ}φ,Wλ{Kλ}φ) (9)

This is same procedure as for finite range potentials; Gamma
convergence substantiates this formal argument.

Therefore, only “the space of charges” enters in the description
of the domain.

Notice the analogy with electrostatics; the singular part is
determined by the charges. The Weyl map takes the role of the
Krein map. ♥

7. SOME REMARKS

I
It is worth stressing the connection with the theory of

boundary triples [19].
This a generalization of the Weyl map in electrostatics from

potential in a bounded set � in R3 with regular boundaries to
charges at the boundary ∂�.

In this context the Krein map may be regarded as a Weyl map
between “potentials” and “charges” (the charges belong to a space
of more singular functions).

But in the present setting the “boundary charges” are placed on
a boundary of co-dimension three (the contact manifold) and not
on an external boundary of co-dimension one as in electrostatics
(and in most of the papers on boundary triples).

For contact interactions the boundary is internal [20].

II

As is often the case for variational arguments for quadratic
forms, the eigenfunctions of the minima are not in the domain
of the free hamiltonian.

The minimum is obtained “by compensation” of the
divergences of the kinetic and the potential contributions.

Since the eigenstates are not in the domain of H0 perturbation
theory does not apply.

The solutions of the Schrödinger equation with contact
interaction belong to the space 4 of functions that are at
any time twice differentiable (more precisely in H

2) away
from the contact manifold but have a 1

|xi−xk| singularity at the

contact manifold.
Since the Schrödinger flow is dispersive the entire set of

solutions has this property.
Bound states are critical points of the energy functional (as in

the classical case). Scattering and Wave operators are defined in
the space4.

III
It worth recalling that Gamma convergence gives simple

results but since it is not a perturbative method it is difficult to
evaluate the error made in using contact interactions. The error
is of second order in ǫ (it is a minimization process) but the
coefficient is not determined.

In the application to nuclear physics a comparison with
experimental data [16, 17, 21] gives a reasonable agreement.

IV
One can take the limit in which the two masses of the particles

that are not in contact is taken to be infinite; the resulting
system is a particle in strong contact with two fixed points (a
two-point interaction).

Also, this system has no zero-energy resonance.
On the contrary one cannot assign infinite mass to the

particles which interact separately with the two other particles
(two identical particles in strong contact with a fixed point); the
procedure we follow gives in this limit a divergent result.
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8. ON THE ROLE OF GAMMA

CONVERGENCE

It is surprising that a formalism invented by de Giorgi more
than 50 years ago to handle singular variational problems, and
of common use in applied mathematics (and in industry) to
treat finely fractured materials, plays an important role in such
diverse fields as in the construction of self-adjoint extensions of
positive symmetric operators, in the determination of the Efimov
structure of three and four bodies systems in high energy physics,
in explaining the role of zero energy (Fesbach) resonances (and
the secret of the missing 1

N ) in the dilute case of Bose Einstein
condensates and in finding the structure of the ground state in at
high density.

9. SEMICLASSICAL LIMIT

The energy form for a three-body problem in which all particles
have equal mass and each particle has a strong contact interaction
with the other two can be evaluated on coherent states centered
on the points xi, i = 1, 2, 3 and with “classical momentum”
p1, p2, p3.

The result is the “classical” energy functional of the newtonian
three body problem.

The hamiltonian of the classical three-body problem
admits infinitely many periodic solutions which correspond to
critical points of the classical energy functional. Their energy
decreases geometrically.

The three-body problem and its periodic solutions are well
studied in Classical Mechanics.

In quantummechanics for identical bosons in strong pairwise
contact interactions there is an Efimov sequence of bound states
i.e., infinite sequence of bound states with negative eigenvalues
that decrease geometrically to zero (as in the classical case).

These are critical points of the quantum energy functional.
This suggests that the classical newtonian three body problem

be the semiclassical limit of the quantum mechanical problem of
strong contact interaction of one particle with the other two in a
system of three identical particles.

Notice that variational problems are studied using quadratic
forms (and not operators).

In the next section we shall show that the Krein map is related
to the semiclassical limit.

10. RELATION OF THE KREIN MAP WITH

SEMICLASSICAL LIMIT

We have indicated that in Milnos space the kinetic part of the
hamiltonian is represented by

√
H0 + λ for some (arbitrary)

positive λ.
In the three-body problem with strong contact in M the

contact potential is represented by the quadratic form of an
attractive Coulomb potential.

For the Krein map we can choose λ > 0 with the only
requirement that the operator H + λ is positive.

For λ large on can develop on a dense domain the square
root as

√

H0 + λ =
√
λ+ 1

2

H0√
λ
+ O(λ−

3
2 ) (10)

Setting 1√
λ
= h̄, apart from an irrelevant constant, this is to first

order in h̄ the free hamiltonian of the quantum system.
When evaluated on coherent states this is the classical

free hamiltionian.
When λ is large, in M strong contact potentials are

represented by the Coulomb potential− C
|xi−xi| C > 0.

Therefore, for λ very large themapKλ can be related to a semi-
classical limit and in M the free hamiltonian tends (a part for a
large constant) to the Classical hamiltonian.

In the semiclassical limit the free hamiltonian is scaled by a
factor to h̄−2 and the Coulomb potential is scaled by a factor h̄−1.

If we identify the radius of the potential (the parameter ǫ ) with
h̄ (both have the dimension of a length) the limit h̄ = ǫ → 0 gives
contact interaction at a quantum scale, Coulomb interaction at a
semiclassical scale.

Therefore, the Newtonian three body problem can be considered
semiclassical limit of the quantum three body problem with
pairwise strong contact interaction.

Addition of a magnetic potential is represented as usual with
the substitution i∇ → i∇ + A.

11. WEAK CONTACT

Now we consider the case of weak contact.
Since the weak contact potential has the same

scaling properties under dilations as the kinetic energy
in order to have an hamiltonian which is bounded
below there can be at most as many weak contacts as
particles.

In R3 with Riemann stricture weak contact of two
particles as self-adjoint extension can occur only if there is
a zero-energy resonance (infinite scattering length for the
approximation potential).

If one of the particles has infinite mass (so that it
may be considered as a fixed point) weak contact is called
point interaction.

In Adami et al. [22], it is proved that this
extension cannot exist in a three-dimensional
manifold with a sub-Riemmannian manifold so
that the operator defined on R3 − {0} is essentially
self-adjoint.

In spite of the richness of the mathematics it has produced
weak contact of two particles has severe limitations in the
physical applications.

This is not the case for weak contact of two particles
in a three-particle system (the difference is that the position
of the barycenter of the two-particle subsystem cannot be
fixed).

In this case there is a self-adjoint extension which has a
bound state.

One can also consider simultaneous weak contact of three
particles. In this case the extension has an Efimov spectrum.
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We will discuss this case when we will analyze the Bose gas in
the high-density regime.

We shall consider first the case of two particles in
weak contact.

Now the [2] boundary conditions require that functions in the
domain take a finite value at the boundary.

In the study of weak contact, we can proceed as in the case of
strong contact and introduce the Minlos space.

The Krein map is induced again by the operator (H0 + λ)−
1
2 .

This corresponds to fractioning but there is no mixing.
InM the kinetic energy is represented by the operator (H0 +

λ)
1
2 and the potential has a log(|xi − xj|) singularity at the

coincidence manifold.
The hamiltonian is covariant under dilation
Due to scale covariance this is the behavior of the wave

function also at large distances; this is the origin of the zero-
energy resonance.

Inverting the Krein map one has in physical space a weakly
closed quadratic form bounded below with a 1

|xi−xj| behavior at

large distances and therefore a zero-energy resonance (the Krein
map does not alter the long-distance behavior).

It is strongly closed [13] and corresponds to a self-adjoint
operator bounded below and with a zero-energy resonance.

The hamiltonian and the Krein map are invariant under
rotations. Therefore, one can study separately the irreducible
components in the angular momentum sectors.

In each of them the weak contact hamiltonian is the limit in
strong resolvent sense of the hamiltonian with the approximation
potentials Vǫ but in the L = 0 sector a zero energy resonance must
be subtracted away before on can use compactness to prove the
existence of the limit.

This explains why in the case of weak contact of two particles
the approximating potentials must have a zero-energy resonance.

Remark: The case of a weak interaction in a two-particle system
is discussed in Albeverio and Hoegh-Krohn [3] using methods
of Functional analysis in the case when one of the particles has
infinite mass. This particle may be considered as a fixed point
(point interaction).

The presence of a zero-energy resonance implies a singularity
of the resolvent at zero momentum and this requires an accurate
and difficult estimate of the zero-energy limit in the B.K.S.
formula for the difference of two resolvents [3].

In Albeverio and Hoegh-Krohn [3], this analysis is presented
for the weak contact interaction of a particle with a fixed point (a
particle of infinite mass) but the same analysis can be done for the
case of weak contact interaction of two particles in the reference
frame of the barycenter.

12. A PARTICLE IN WEAK CONTACT WITH

A PAIR OF IDENTICAL PARTICLES

Consider now the case of a particle in weak contact with a pair of
identical particles.

We use the same Krein map as the case of strong contact.
Therefore, it corresponds to fragmenting the wave functions and
in mixing the two channels.

Again, we restrict attention to product states.
The Krein map is mixing and fractioning.
In Minlos space the boundary potentials are represented by

a function that has a logarithmic singularity at coincidence
hyperplanes (the derivative in polar coordinates has a

1
|xi−xj| singularity).

The boundary potential and the kinetic energy transform
covariantly under dilation.

Therefore, the boundary potential in Minlos space behaves
also at infinity as log(|xi − xj|).

The kinetic energy is still represented by
√
H0 + λ.

Lifting to physical space one has a unique a three-body
operator. In the B.K.S. formula for the difference between the
resolvent of weak contact and the free resolvent, at the origin
in momentum space one has the inverse of a two-by-two matrix
with zero on the diagonal.

The matrix is therefore invertible and has a negative
eigenvalue (one may say that the two zero energy resonances
conspire to give a bound state).

Therefore, if the potential of the weak contact is
strong enough the system has a bound state and no zero
energy resonances.

The same occurs for the sequence of approximating potentials
with a zero-energy resonance.

Since there is no zero energy resonance in the difference, the
sequence in physical space of the difference the quadratic of the
weak contact and that form associated to the potentials Vǫ is
compact in bounded sets in the Sobolev topology it converges to
zero when ǫ → 0.

It has a (Palais.Smale) limit that represents

Proposition 1: A particle in weak contact with a pair of identical
particles is represented by a self-adjoint operator with one bound
state and no zero energy resonances.

It is the limit of the hamiltonians with potential Vǫ that scale
as Vǫ(x) = 1

ǫ2
V( |x|

ǫ
).

There may zero energy resonances due to additional regular
potentials, but we shall prove that their contribution is
independent of that of weak contact.

A direct study “in physical space” of the limit is not difficult.
We sketch some details (based on an unpublished manuscript
with A. Michelangeli).

From the analysis of B.K.S it follows that the resolvent R(z) =
1

H+z of H satisfies

R(z)− R0(z) = [R0(z)A
∗
ǫ ](1− Qǫz))

−1[AǫR0(z)] (11)

Aǫ =
√

Vǫ1 + Vǫ2 Qǫ(z) = Aǫ
1

R 0
(z)A∗

ǫ R0(z) = H0 − ǫz
(12)
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If V1 and V2 are of class C1, under the scaling V → Vǫ(x) =
ǫ−2V( x

ǫ
) one has

limǫ→0[
√

Vǫ1 (y1)+ Vǫ2 (y2)−
√

Vǫ1 (y1)−
√

Vǫ2 (y2)] = 0 (13)

and therefore the “overlap” vanishes when ǫ → 0 and one can
substitute A =

√

Vǫ(y1)+
√

Vǫ(y2).
Since Aǫ is the sum of two terms, one has four summands.
To estimate the limit ǫ → 0 perform in the integral over

internal variables a scaling x → ǫ
3
2 x.

The two integrations implicit in the right-hand side of (12)
provide a factor ǫ3; the product of the two potential provide a
factor ǫ−4.

Therefore, to find the limit one can neglect all contributions
that are of order>1 in ǫ.

To first order in ǫ there is only a separate contributions of the
zero energy resonances in each channel.

This is an invertible two-by-two symmetric matrix with zero
on the diagonal. It has therefore a negative eigenvalues.

Substitution in the B.K.S. formula for the difference of two
resolvents this produces a bound state if the potential is strong
enough and ǫ is sufficiently small.

The limit ǫ → 0 is the resolvent of the hamiltonian of the
system made of a particle of mass 1 in weak contact interaction
with two identical bosons of mass one.

Remark 1: The scaling x → ǫ
3
2 x that enters in the rescaling of

the integral over the internal variables transforms weak contact
interaction into strong contact.

We shall come back to this point when we will discuss the
Bose-Einstein gas in the high-density case.

Remark 2: The result does not depend on the masses of the
particles provided that they are not all zero.

If two of the particles have zero mass the bound state is the
Polaron [23]; we will consider this case in detail in Appendix 1.

If two of the particles have infinite mass the system represents
weak contact interaction with two fixed point (point interaction
with two fixed points).

This system has zero energy resonances and therefore the
Wave operator is a bounded map Lp → Lq for 1 < p ≤ q <∞.

13. THREE PARTICLES IN PAIRWISE WEAK

CONTACT: LOW DENSITY BOSE-EINSTEIN

CONDENSATE

The Bose-Einstein condensate is a relatively dilute gas of identical
bosons in weal contact.

The density is such that the probability to find a third particle
nearby is negligible.

Still, due to the zero-energy resonance, (a long-range effect)
the presence of a third particle is essential (the particle we
consider has a weak contact with two particles).

We have seen in the preceding section there is a
bound state.

We shall call�w this bound state.

Weak contact is the limit of an attractive potentials of very
short radius ǫ and a zero-energy resonance.

If ǫ is very small and if the gas is diluted one can choose
ǫ−1 = N and regard the subsystems as composed of only three
particles in weak contact. The bound state �w is stable because
the hamiltonian of the two-particle subsystem is positive (and
have a zero-energy resonance).

A zero energy (Fesbach) resonance is required for the interaction
of the two-body pairs. Once formed, the pairs are stable.

Since the gas is very diluted the probability that all three
particles are very close is negligible (notice the interaction has
range ǫ).

But the particles are identical and satisfy
Bose-Einstein statistics.

Their state is therefore “entangled,” and each pair has equal
probability to be in weak contact.

Since the particles are identical, it is as
if the system be composed of separate pairs
of particles.

The ground state of the system of 2N particles is the tensor
product of the vectors ⊗�i

w for all different two-body pairs
(properly symmetrized since the particles are identical bosons).

The error is of order 1
N .

Since the two (identical) bosons in the pair are in (weak)
contact and each of them satisfies the Schrödinger equation with
as potential the density of the other, each of two bosons satisfies
the Gross-Pitaewskii equation for a Bose-Einstein condensate
with an effective coupling potential due to the presence of a
zero-energy resonance [24].

Remark 1: In Benedikter et al. [25] to have the right scaling one
adds an extra N factor (N is the number of particles).

This scaling is justified with the assumption that each particle
contributes for a fraction 1

N .
In our approach the correct scaling is a consequence of

weak contact.

The probability of having a correlation with a third particle
(and therefore with another pair) vanishes as ǫ and this is the
basis for the proof of condensation in Khowles and Pickl [26].
Since weak contact is limit of a potential with very short range
1
N and the gas is very diluted the error term in neglecting the

interaction with the other pairs is proportional to 1
N and one can

use perturbation theory to describe the interaction between pairs.
To first order the ground state is a collection of non-

interacting weakly bound pairs.
Choosing ǫ ≡ 1

N permits a Fock space analysis.
We will not analyze further here this problem .

14. BOSE-EINSTEIN CONDENSATE, THE

HIGH-DENSITY CASE, THE NEW GROUND

STATE

Consider now the high-density case.
The particles are now simultaneously in weak contact.
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The interaction s represented, before taking the limit ǫ → 0
by the hamiltonian

Hint = H0 +
∑

i6=j 6=k

1

ǫ2
V(

|xi − xj|
ǫ

) (14)

In Krein space we can use perturbation theory.
In the perturbation formula for the resolvent the terms that

depend only on two of the potentials give the same result of the
weak contact interaction of one particle with a pair.

We are interested in the contribution of terms that depend on
all three potentials.

In this contribution we can “artificially” take away two ǫ from
the denominator of one of the potential and “give” an ǫ−1 factor
to each of the other two (this artifice does not alter the result).

The remaining potential now plays no role.
Redistributing the ǫ is an artifice but it leads to the conclusion

that at high density the ground state of system is better described
considering a system of three particles one of which is in strong
contact with the other two.

The strong contact interaction takes place separately with the
two particles; since the particles are identical one has a gas two
particles strongly bound.

Remark that the presence of a third particle is mandatory
to define strong contact. The role of the third particle is to
prevent free motion for the barycenter of the two particles in
strong contact.

Call�s the ground state. To first order the ground state of the
high-density Bose-Einstein gas is⊗i�

i
s.

It is not related to the ground state ⊗i�
i
w of the diluted

Bose-Einstein gas.
Since the two (identical) bosons in the pair are in

strong contact, each of them satisfies the Schrödinger
equation with as potential the density of the other i.e.,
the focusing cubic Schrödinger equation (and not the
Gross-Pitaewskii equation which has a different effective
coupling constant due to the presence of a zero energy
resonance) [24].

15. EFIMOV EFFECT IN QUANTUM

MECHANICS

The Efimov effect in Quantum Mechanics is the presence of an
Efimov sequence of bound states for a particle that moves in a
potential that is the sum of two potentials which taken separately
have a zero-energy resonance.

In spite of the same name, the effects have totally
different origin.

They lead to the same result because in the two cases there is
the same balance of kinetic and potentials energies.

We assign +2 for each of the three particles particle (since they
satisfy a second order differential equation) and –3 two strong
contacts (the power of ǫ−1 in the scaling). If the difference is zero
one has Efimov spectrum.

In the quantum mechanical case there is only one second
order differential operator and there are two weak contacts with

two resonances; for the counting of weights this is the same as a
weak contact with the resulting bound state.

One assigns - 2 to weak contact with bound state. The net sum
is zero as in the three-particle case with strong contact.

Therefore, one can expect to have the same effect (this
counting is not a substitute for proofs but, in spite of its empirical
flavor, provides very efficient indications).

A proof of the Efimov effect in Quantum Mechanics for
contact interactions can be obtained using the Krein map.

The Krein map is well defined.
Setting equal to one the mass of the particle in Minlos space

the kinetic term is
√

− 1
21+ λ.

The two zero energy resonances conspire to a give a bound
state and this gives a negative quadratic form with a singularity
of degree –1 at the origin in position space.

This leads to a Weyl limit circle singularity as in the three
particles case.

Inverting the Krein map and making use of Gamma
convergence one obtains the Efimov spectrum as in the three-
particle case.

Remark: Notice that we have used only the existence of two zero
energy resonances and the fact that the Schr odinger equation is
of second order; therefore, this analysis through the Krein map
applies as well to the case of smooth potentials, leading to an
alternative proof usual Efimov effect in QM [27, 28].

In the same way one can analyze the case of the Pauli equation
for non-relativistic spinors.

The Pauli equation is a first order differential equation (for
spinors) with positive generator.

In one dimension one can use as contact potential the delta
function; this gives a contact of weak type at the vertex for a
system of three particles that move on a Y-shaped graph and
interact at the vertex.

There is a bound state since there are three operators and
only two weak contacts (in one dimension the delta function
represents a weak contact interaction because it scales as the
differential operator).

At the end we shall return briefly to this system.

16. STRONG AND WEAK CONTACT ARE

INDEPENDENT

Theorem 2: In three dimensions for N ≥ 3 contact
interactions and weak-contact interactions contribute separately
and independently to the spectral properties and to the boundary
conditions at the contact manifold.

Contact interaction contribute to the Efimov part of the
spectrum and to the T-M boundary condition

ci,j
|xj−xi| at the

boundary Ŵ ≡ ∪i,jŴi,j.
Weak-contact interactions contribute to the constant terms

at the boundary and may contribute to the (finite) negative
part spectrum. ♦
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Remark: This theorem states that all results of the weak-contact
case (in particular for point interactions) remain valid when
strong contact interactions are added.

Proof. For an unified presentation (which includes also the proof
that the addition of a regular potential does not change the
picture) it is convenient to use a symmetric presentation due to
Konno and Kuroda [4] (who generalize previous work by Krein
and Birman) for hamiltonians that can be written in the form

H = H0 +Hint Hint = B∗A (15)

where B, A are densely defined closed operators with D(A) ∩
D(B) ⊂ D(H0) and such that, for every z in the resolvent set of
H0, the operator A

1
H0+zB

∗ has a bounded extension, denoted by
Q(z). We give details in the case N = 3.

Since we consider the case of attractive forces, and therefore
negative potentials it is convenient to denote by−Vk(|y|) the two
body potentials.

The particle’s coordinates are xk ∈ R3, k = 1, 2, 3.
We take the interaction potential to be of class C1 and set

Vǫ(X) =
∑

i6=j

[Vǫ1 (|xi − xj|)+ Vǫ2 (|xi − xj|) (16)

where V1 and V2 are negative and V3(|y) is a regular potential.
For each pair of indices i, j we define Vǫ1 (|y|)) = 1

ǫ3
V1(

|y|
ǫ
) and

Vǫ2 (|y|) = 1
ǫ2
V2(

|y|
ǫ
).

The limit corresponds, respectively to contact and
weak-contact.

We define Bǫ = Aǫ =
√
−Vǫ .

For ǫ > 0 using Krein resolvent formula one can give
explicitly the operator Bǫ as convergent power series of products
of the free resolvent R0(z),Rez > 0 and the square roots of the
sum of potentials Vǫ

k
k = 1, 2, 3. One has then for the resolvent

R(z) ≡ 1
H+z the following form [4]

R(z)−R0(z) = [R0(z)B
ǫ][1−Qǫ(z)]−1[BǫR0(z)] z > 0 (17)

with

R0(z) =
1

H0 + z
Qǫ(z) = Bǫ

1

H0 + z
Bǫ (18)

If ǫ > 0 the Born series converges and the resolvent can be cast
in the Konno-Kuroda form [4], where the operator B is given as
(convergent) power series of convolutions of the potentialUǫ and
Vǫ1 with the resolvent of H0.

In general

√

Vǫ1 (|y|)+ Uǫ(|y|) 6=
√

Vǫ1 (|y|)+
√

Uǫ(|y|) (19)

and in the Konno-Kuroda formula for the resolvent of the
operator Hǫ one loses separation between the two potentials Vǫ1
and Uǫ .

Notice however that, ifVǫ1 andU
ǫ are of class C1 , the L1 norm

of Uǫ vanishes as ǫ → 0 uniformly on the support of Vǫ1 .

By the Cauchy inequality one has

limǫ→0‖
√

Vǫ1 (y).
√

Uǫ(y)‖1 = 0 (20)

Therefore, if the limit exists the strong and weak contact
interactions act independently.

In the same way one proves the independence of the strong
and weak contact interactions from the regular interaction.

The weak-contact part has a limit in strong resolvent sense.
The limit is unconditional, i.e., it does not depend on the

particular denumerable subsequence ǫn → 0 used.
The strong contact part has a limit along minimizing

sequences by Theorem 1.
Therefore, the joint limit exits along these

minimizing sequences. ♥

17. WEAK-CONTACT CASE: SEPARATION

OF THE REGULAR PART

Consider now separateweak-contact interaction of a particle with
a pair of identical particles.

We allow for the presence of a “regular part” represented by
a smooth two body L1 potential of finite range and call singular
part the quasi contact interaction and the resonance.

Theorem 3: For a weak-contact interactions the singular term
(pure weak-contact ) and the regular term in the two-body part
of the interaction contribute separately to the spectral structure of
the hamiltonian. ♦

Proof. For the proof we use again the Konno-Kuroda resolvent
formula but now for a system with potentials Vǫ2 + V3.

Recall that set Vǫ2 (|x|) = 1
ǫ2
V2(

|x|
ǫ
).

The Konno-Kuroda formula is now for Re(z) > 0 and Rǫ0(z) =
H0 + ǫz

1

Hǫ + z
− 1

H0 + z
= − 1

H0 + z
QǫBǫQǫ

1

H0 + z
(21)

Bǫ =
√

Vǫ2 + V3 Qǫ(z) = Bǫ
1

R 0
(z)Bǫ R0(z) = (H0 + ǫz)−1

(22)
One can now repeat the procedure in Theorem 3.

By assumption V2 and V3 are of class C
1 and as ǫ → 0 on the

support of Vǫ2 the L2 norm of V3 is of order ǫ.
Therefore

‖(
√

Vǫ3 +
√

Vǫ2 )
2 − Vǫ3 − Vǫ2‖ = 0(ǫ) (23)

We conclude that in limit the potentials V2 and V3 contribute
additively to spectral properties.

The potential V2 (weak-contact) may contribute for a finite
or infinite number of elements of the spectrum (depending on
the masses and the coupling constants), the potential V3 gives a
contribution to the spectral measure.
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In both case there are no singularities at the bottom of the
(absolutely) continuous spectrum.

This proves Theorem 3. ♥

Remark: The zero-energy resonance we have found is due to a
very sort range potential (in the limit, zero range) whereas the
possible resonances of the regular potentials are due to their very
long range.

The presence of one does not interfere with the presence of
the other.

18. CONNECTION WITH OTHER

APPROACHES

Heat kernel renormalization

We comment briefly on the relation with the “heat kernel”
renormalization introduced in Erman and Turgut [29].

Start with the identity

∫ τ

0
e−H0+λdt = τ + 1

H0 + λ
+ O(

1

τ
) (24)

where H0 is the free hamiltonian.
The heat kernel renormalization consists by definition in

taking the limit τ → ∞ and neglecting the divergent constant.
SinceH0 + λ commutes (formally) with a delta distribution (a

constant in Fourier space) the heat kernel renormalization of the
potential Vǫ for the three-body system

Vǫ → 1√
H0 − λ

Vǫ
1√

H0 + λ
(25)

may be defined as a regularization map for ǫ > 0 and in the limit
ǫ → 0 is the interaction potential inM.

Recall that the Krein map is a “fractioning” of the “wave
function” (the wave function becomes more singular) while
switching the channels which results in mixing.

In this case this “renormalization” consists in using Gamma
convergence after the inversion of the Krein map (i.e., in
physical space).

This is clearly a non-perturbative scheme and does not require
“removing infinities.”

We recall that Gamma-convergence is equivalent to resolvent
convergence i.e., roughly speaking, convergence under the
assumption that one considers sequences of states on which the
hamiltonian stays bounded (this is the role of renormalization).

Interior boundary conditions

This approach has been proposed recently, mostly in view of a
second-quantization scheme [20, 30, 31].

With different wording and different analytical techniques
this approach has some similarities with the one which is
developed here.

After all, the boundary conditions at the contact manifold are
“interior boundary conditions.”

In an Appendix we develop a second quantization scheme
(similar to that in Lampart [30]) adapted to the self-adjoint
extensions discussed here.

It is a “baby second quantization scheme,” adapted to
the three-body contact interaction for one massive and two
massless particles, in which only the zero mass particles undergo
second quantization.

Notice that a quantum mechanical three body problem arises
naturally if creation and annihilation operators are “partially
dequantized” by choosing for two of the zero mass particles the
ground state of a system in which the zero mass particles are in
strong contact interaction with the massive one.

The ground state of the system is then obtained choosing
for the remaining particles the vacuum state of a suitable
representation of the c.c.r.

The resulting ground state is a model for the polaron [32],
the ground state of the Nelson model [23]. We discuss this
model in the Appendix. We can also in the same way find the
excited states below the continuum by choosing different bound
states of the three-body problem and the vacuum of another
suitable representation.

Changing the bound state changes also the representation.
Notice that this procedure limits the role

of strong contact interaction in quantization
problems to linear couplings of a particle and a
quantized field.

19. DETAILS FOR SOME SIGNIFICANT

CASES IN THREE DIMENSIONS

We study in the following systems of non-relativistic bosons and
fermions that satisfy the Schrödinger equation.

Later we will consider on a lattice electrons which are fermions
and satisfy the Pauli equation.

Since the Pauli equation is a first order differential equation,
weak contact plays the same role as strong contact in the
bosonic case.

For boson we shall discuss in what follow, both for strong
and weak contact , some relevant case; they are sufficient to draw
conclusions on a system of an arbitrary number of particles.

In particular we shall consider in three dimensions

I) A particle of mass m in strong or weak contact interaction
with two identical bosons of unit mass.

II) A particle of mass 1 in strong contact with two fermions of
the same mass.

III) Two pairs of identical bosons in strong contact whose
barycenters are in weak contact

IV) The same problem for fermions,
V) N pairs of boson or fermions in strong contact.

In the case of strong contact for fermions we prove that the
hamiltonian is positive for any value of N. This system is called
Unitary gas.

In the case of bosons, the (negative) lower bound of the
spectrum is linear in N.
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I

Consider first the case of a particle of massm in strong contact
interaction with two identical bosons of unit mass.

Setting again for simplicity λ = 0 the quadratic form in M is
the sum of two terms

Q = Q1 + Q2 (26)

where

Q1(φ) =
m

m+ 1
(φ,

√

H0φ) (27)

while the kernel of Q2 is

Q2(p, q) = −
2

1+m (p.q)

(p2 + q2)− 1
(1+m)

(p.q)
(28)

Again, this kernel quadratic reaches its minimum value at q = p .
In Fourier transform one has

B(m)
√
−1− D(m)

1

|x| +4"(m) (29)

where B(m),D(m) are suitable positive functions of the parameter
m and 4′′ is a positive form with a smooth kernel that vanishes
on the diagonal.

We consider only the case 4 = 0. The contribution of 4 is
small and does not alter the conclusions.

Following Derezinky and Richard [14] proves that for each
eigenvalue l of the angular momentum there are threshold
N∗
l
, N∗∗

l
such that for m > N∗∗

l
the spectrum is absolutely

continuous and positive.
For N∗

l
< m ≤ N∗∗

l
there is a continuous family of self-

adjoint extensions, each with a negative eigenvalue, and for 0 <
m ≤ N∗

l
the negative spectrum is pure point and accumulates

geometrically to−∞ (a Weyl limit circle effect).
One can verify that for equal masses N∗∗

0 > 1 while N∗
l
< 1

for all l ≥ 1.
Therefore, in the equal mass case there is a family of

extensions; for each of them there is a family of bound states with
energies that diverge linearly to−∞.

Inverting the Krein map by Gamma convergence one has

Proposition 2: The hamiltonian of a pair identical bosons in strong
contact interaction with a third particle of the same mass has an
Efimov sequence of bound states if the interaction is strong enough.
The support of the wave functions is larger for decreasing energy;
the wave functions belong to the form domain. ♦

II

We consider next in R3 the case of a particle of mass m in
strong contact with a pair of fermions with the same mass.

The analysis proceeds as in the strong contact case but since
the contact is weak the integral in the integrand in Q2 must be
anti-symmetrized.

Now one has

(φ,Q1φ) =
m

m+ 1
(φ,

√

H0 + λφ) (30)

while the kernel of Q2 is

Q2(p, q) =
2

1+m

1

|p− q|2 (p
2 + q2)2 − 4

(1+m)2(p.q)2
(31)

These are the quadratic forms inM that correspond, respectively
the kinetic energy and to the distributional potential.

For the study of spectral properties, it is convenient to notice
that the kernel of Q2 is positive (it has a positive maximum
at p = q).

Since the Krein map is positivity preserving in physical space
the operator is positive.

Proposition 3: The hamiltonian of a pair of fermions of mass m
which are in strong contact with a third particle of the same mass
has a positive spectrum. ♦

20. III, STRONG AND WEAK CONTACT IN A

FOUR BOSONS SYSTEM

We have analyzed the case of three particles.
Consider now a four bosons system. We assume that there is

a strong contact of any particle with two other particles ad in
addition there is a weak contact between the barycenters of any
two pairs.

Notice that the total degree of the kinetic terms is eight (two
for each particle) and the total degree of the interaction term
is also eight (three for each strong contact and two for the
weak contact).

Therefore, we expect to have an Efimov sequence of four-
bound states (quadrimers).

The analysis is simple in momentum space.
The explicit expressions of these forms in momentum space

were known to R.Minlos (private communication).
We choose as coordinates the difference of the coordinates

of the particles in strong contact and the difference of the
coordinates of the barycenters.

The strong interactions within a triple gives a contribution
that we have already analyzed.

The only difference is the presence of the weak interaction
between the barycenters. In Minlos space the kinetic energy is
represented by

√
H0 + λ.

The interaction is the sum of three terms Ci, i = 1, 2, 3.
C1 and C2 are the images inM of the convolution of the four-

particle Green function with the strong interaction potentials.

(φ,C1φ) = (φ,C2φ)

=
∫

dkdsdwφ̄(k,w)
φ(s,w)+ φ(k, s)

k2 + s2 + w2 + (k, s)+ (k,w)+ (s,w)

(32)

ContributionsC1,C2 refer to the three-particle case, i.e., a particle
in strong contact with two other particles.

It is different from the case of three particles we have
considered before because of the presence of a fourth particle.

Frontiers in Physics | www.frontiersin.org 12 April 2019 | Volume 7 | Article 40

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Dell’Antonio Contact Interactions Through Gamma Convergence

The presence of a fourth particle is irrelevant because it only
enters the definition of the Krein map, which is inverted at
the end.

C3 is a genuine four particle term which is not present in the
three-particle sector. It describes the (weak) interaction of the
two barycenters.

The corresponding quadratic form in M is

(φ,C3φ) = −
∫

dwdsdk
φ̄(k, s)φ(w− k+s

2 ,−w− k+s
2 )

w2 + 3
4 (k

2 + s2)+ 1
2 (k, s)

(33)

(this quadratic form was known to R. Minlos,
private communication).

The form has a simpler structure when written as a function of
the difference of coordinates of the barycenters of the two pairs.
In these coordinates it is the image in the four-particle sector of
an “effective” weak contact interaction between the barycenters
of the two pairs. Weak contact between the two barycenters gives
a system with at most a finite number of bound states.

Therefore, in Krein space the system is described by a two-
parameters family of operators which have an infinite number of
bound states with eigenvalues that diverge linearly to ∞ and a
self-adjoint operator wit at most a finite number of bound states.

Inverting the Krein map one obtains a two parameter families
of weakly closed forms.

By construction, the form is invariant under rotation but also
under permutation of the particles.

We decompose again in irreducible representation of the
rotation group and quotient it by the permutation group.

Each component is now strictly convex, and we can use
Gamma convergence to extract a convergent subsequence.

This give a unique weakly closed quadratic form bounded
below that can be closed strongly and provides a self-adjoint
operator with an Efimov spectrum.

Since it is a four-body system it describes an Efimov sequence
of quaternions.

Therefore

Proposition 4: If the interaction is strong enough a system of two
pairs of bosons in strong contact and with a weak contact between
the barycenter has an Efimov sequence of quaternions. ♦

Four-body Efimov states have been reported experimentally
[16, 21].

21. IV. THE CASE OF FERMIONS

Consider the system of two pairs of identical spin 1
2 fermions

of mass one which satisfy the Schrödinger equation and in
contact interaction. Spin 1

2 is required because antisymmetry
of the wave functions of parallel spins is zero at contact. The
generalization to N identical spin 1

2 fermions will describe the
unitary gas.

In M the quadratic form of the system is the sum a term
C0 which represents the kinetic part of form minus three forms
C1, C2 C3.

The explicit expressions of these forms in momentum space
were known to R.Minlos (private communication).

C1 and C2 are the images in M of the convolution of the
four-particle Green function with two delta singularities of the
potential between two fermions with opposite spin.

(φ,C1φ) = (φ,C2φ)

=
∫

dkdsdwφ̄(k,w)
φ(s,w)+ φ(k, s)

k2 + s2 + w2 + (k, s)+ (k,w)+ (s,w)

(34)

As in the tree particles case, when written in space
coordinates they have a Coulomb type singularity in
different variables related to the possible triples. But now
due to antisymmetry the coefficient of the Coulomb term
is positive.

C3 is a genuine four particle term which is not present in the
three-particle sector.

It represents an effective interaction between the barycenters of
the two pairs.

Notice that a pair of fermions with opposite spin has the
symmetry a boson.

The corresponding quadratic form in M is

(φ,C3φ) = −
∫

dwdsdk
φ̄(k, s)φ(w− k+s

2 ,−w− k+s
2 )

w2 + 3
4 (k

2 + s2)+ 1
2 (k, s)

(35)

It has a simpler expression when written as a function of the
difference of coordinates of the barycenters of the two pairs. In
these coordinates it is the image in the four-particle sector of M

of an “effective” contact interaction between the barycenters of
two pairs with opposite spin. Notice that only pairs of particles
enter this term.

The form can be decomposed into a symmetric and
antisymmetric part under interchange of the two pairs.

Only the kinetic energy contributes to the antisymmetric part;
this part is positive.

Also, the symmetric term of is positive.
Therefore, the quadratic form is positive.
Since the Krein map is positivity preserving the

same is true in physical space and the system is
described by a positive hamiltonian (with a zero-energy
bound state).

Proposition 5: The operator associated to a system two pairs of
identical fermions in strong contact and such that the barycenters
are in weak contact is a positive self-adjoint operator in L2(R12).
Its hamiltonian is the limit, in the strong resolvent sense, of
a sequence of approximating hamiltonians with potentials of
decreasing support. ♦

Remark: In Michelamgeli and Pfeiffer [33], positivity of the
spectrum was conjectured with the aid of a computer.

V: the case of N particles. We have considered so far the cases
N = 3 and N = 4.
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Consider now the case of N identical bosons.
For N particles the negative part of the spectrum

is entirely due either to a strong contact of tree
bodies or to the four-body contact described in
Proposition 4.

Therefore

Proposition 6: The energy of a gas of N bosons in strong
contact interaction is bounded below by −CN which
the positive constant C depends on the strength of
the interactions.

The system described by any number of identical
fermions in weak or strong interaction is described by a
positive hamiltonian. This system is often call often called
Unitary gas. ♦

22. TWO DIMENSIONS; SIMULTANEOUS

PAIRWISE WEAK CONTACT

In the two-dimensional case strong contact interaction is a
distributional potential δ(|xi − xj|) at the coincidence manifold.

It is the limit of the interaction through two-body potentials

of that scale as Vǫ(|y|) = 1
ǫ2
V(

|y|
ǫ
).

The Krein map is the same as in three-dimensional case.
Again, in Minlos space the free hamiltonian H0 is represented

by (H0 + λ)
1
2 and the potentials differ from − C

|xixj| for a smooth

positive quadratic form.
One has therefore

Propostion 7: In two dimensions strong simultaneous pairwise
weak contact interaction of three bosons is represented by the
potential −C

∑

δ(|xi − xk), C > 0.
It is well defined in physical space through Gamma convergence.

It is the limit for ǫ → 0 of potentials that scale as Vǫ(|x|) =
1
ǫ2
V( |x|

ǫ
)

The system has an Efimov sequence of bound states. ♦

Since there are no zero energy resonances the mapping
properties of the Wave operator in physical space are Lp → Lq

for 1 < p ≤ q <∞.
This result has been obtained also for regular potentials in

Erdogan et al. [34]).

23. TWO DIMENSIONS, SEPARATE

STRONG CONTACT

Consider now a system of three identical bosons in which each
has a strong contact with the other two.

We describe in detail the hamiltonian of the resulting system.
To study the structure of the operator we study its quadratic

form and assume a before that the particles are identical bosons.
The wave function in the frame of reference of the barycenter is
best written as a function of one radial coordinate r and two Euler
coordinates on S3.

We define r2 = (|x1 − x3|)2 + (|x2 − x3|)2 xk ∈ R2, r ∈ R+.
In the Theoretical Physics literature this coordinates are

called “homogeneous.”

The quadratic forms we consider have the same structure
as in the case of three dimensions but in two dimension the
singularities are different.

Again, we use a Krein map with the compact operator
√
H0 + λ−

1
2 ( for each particle there are two contacts).

For simplicity we take λ = 0 in the following formulae.
If we denote by xk ∈ R2 k = 1, 2, 3 the coordinates of

the three points with x1 + x2 + x0 = 0 one has in M for the
quadratic forms

Q(φ) = Q0(φ)+ Q1(φ) (36)

where

Q0 = (φ,
√

H0 + λ)φ) (37)

In the center of mass, using Fourier coordinates conjugated with
x1 − x3 and x2 − x3 , the kernel of Q1 is

1

(q21 + q22 + (q1, q2)+ λ)(q1 + q2)2 + λ
qi ∈ R2 (38)

Setting

(x1 − x3)
2 + (x2 − x3)

2 = r2 r ∈ R+ (39)

the kernel Q1 can be written in spatial homogeneous coordinates
as integral over S3 of a kernel −C 1

r + W(x1, x2, λ) where C > 0
andW is a smooth kernel which vanished in the diagonal.

On now proceeds as in the three-body case in R3 with weak
contact interactions.

Proposition 8: In two dimensions the pairwise strong contact of
three identical bosons is represented by a hamiltonian which, if the
interaction is strong enough, has a bound state.

Since there are no zero energy resonances the Wave Operator
for the system is a bounded map from Lp to Lp for all
1 < p <∞. ♦

24. ONE DIMENSION. LATTICE

STRUCTURE. THE FERMI SEA

The purpose of the following section is manly to have a rough
picture of the Fermi sea.

We follow the usual description according to which nuclear
forces the conduction electrons to move on a graph-like stricture
with Y-shaped vertices.

The nucleus can be considered fixed at the center of the cell
have a weak contact with the two inner electrons (weak contact
at a larger scale is Coulomb interaction).

The system has therefore a bound state of energy −K and the
two internal electrons have a wave function (essentially) localized
at the center of the cell.

Conduction electrons move on the graph and satisfy the
Pauli equation (a first order differential equation for a two-
component spinor).

The generator is the (positive) Pauli operator

P ≡ iσ .∇ +mI, m > 0 (40)
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(σi are the Pauli matrices and I is the unit matrix).
Notice that the structure of the graph is entirely due to the

position of the nuclei. The vertices are Y-shaped.
The interaction of the conduction electrons on the lattice takes

place at the vertices.
The lattice stricture forces the conduction electrons to change

direction at the vertices; before and after the vertex the conduction
electrons are closer to the nucleus.

This can be represented by a (negative) potential. The kinetic
energy is not changed; in this sense the interaction is attractive.

We describe it by a weak contact at the vertex and therefore
there is a zero-energy resonance.

Since there are two electrons moving on the lattice this gives a
bound state.

Since the momentum is discontinuous at the vertex the
interaction depends on both position a momentum.

We represent this by allowing the (negative) energy of this
bound state to be in an interval [−c, 0).

In an extended crystal by the Pauli exclusion principle all these
states are occupied: this is the Fermi sea.

The electrons “near the surface” have negligible energy.
The wave functions are essentially flat, and they have “a
Dirac spectrum.”

In presence of an electric field along the edge, since the
electrons are charged particles, a flow of current is generated.
Spins at the two ends of an edge form a magnetic dipole;
in presence of a magnetic field the orientation of the dipole
is changed.

At the semiclassical scale one can introduce smooth magnetic
fields (in the previous scale they correspond to discontinuous
potentials); at this scale the motion of electrons on the surface
of the Fermi sea is seen as classical motion of point particles
which satisfy the laws of classical electrodynamics [35]. The
formalism we have described leaves room also to the “magnetic”
Pauli operator.

Of course, at the semiclassical level in presence of
electromagnetic fields the Fermi surface can have a
complicated structure and the description of dynamics
of a point on the Fermi surface may require a refined
analysis [35].
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APPENDIX 1

A. THE POLARON

We treat the Polaron problem ([N][G][FS]) in the context of
second quantizaton.

Second quantization can be thought as Weyl quantization for
a system with an infinite number of particles.

Lebesgue measure is substituted by a measure on function
space (Gauss measure in the Bose case).

Functions on phase space can be represented by the
coefficients of their Fourier transforms.

Very roughly speaking for bosons in second quantization a
wave function f is substituted with of a scalar field 9(f ) =
a(f ) + a∗(f̄ ) where a(f ) (resp. a∗(f̄ )) destroys (resp. creates) a
particle with wave f . Both terms are linear in f .

The field satisfies the (non-relativistic) commutation relations
[9(f̄ ),9(g)] = (f , g).

In the Fock representation one postulates the existence of a
vector � (the “vacuum”) such that a(f )� = 0 ∀f in the Hilbert
space.

Fock space is the space generated by repeated action of the
a∗(f ) on� (this justifies the name “creation operators”).

We shall use the formalism of second quantization and denote
by a((k) (resp. a∗(k)) the annichilation (resp. creation) of a
zero mass particle “of momentum k” (we omit the more precise
definition).

In the following we consider the contact interaction of the
particle of mass m with any two non relativistic zero mass
particles in the second quantization formulation for the field.

This system is called polaronic and the ground state is the
polaron [N].

We take the interaction to be weak contact of the massive
particle with any two of the zero mass particles.

We approximate the interaction by using the two-body

potential Vǫ = 1
ǫ2
V( |xi−x|

ǫ
) where V ∈ C1.

Hǫ = H0 +
∫

Vǫ(x− y1)9(y1)dy1 +
∫

Vǫ(x− y2)9(y2)dy2

H0 = − 1

2m
1x +

∫

ω(p)a∗(p)a(p)dp (A1)

where ω(p) = |p|2 and the a(k) satisfy the c.c.r.
The limit ǫ → 0 is the contact interaction of the particle with

the field.
We have proved that this system has a bound state 9 . We

denote by Ĥ the hamiltonian.
We use the formalism of second quantization paying attention

to the fact that for zero mass particles there infinitely inequivalent
representations of the c.c.r.

A vector of finite energy in the Hilbert space may contain
an infinity of zero mass particles with smaller and smaller
momentum (this is known as infrared problem).

We denote byH the limit hamiltonian. It describes the contact
interaction of the massive particle with the cloud of zero mass
particles.

To find the structure of the ground state (the Polaron) we will
“partially dequantize” the field by choosing properly the state of
two of the zero mass particles (and therefore the representation of
the c.c.r. since the zero mass particles are identical).

We have previously remarked that the weak contact
interaction of a particle of massm with two particles of zero mass
leads to a bound state.

Let8(x) be the wave function.
To find the ground state of the combined system we fiber the

second quantization space of the zero mass particles choosing as
parameter the position of the particle of mass m.

We choose the representation by defining annichilation
operators

Ax(y) = a(y)−8(x) (A2)

For each value of x the (distribution valued) operators Ax(y)
satisfies the same c.c.r as the operators a(y) but the two
representations are inequivalent.

Different values of the position of the particle of mass m
correspond to a different “infrared behavior” of the mass zero
field.

If one writes the Hamiltonian as a function of the field Ax(y)
one obtains

H = Ĥ +
∫

ω(p)A∗
x(p)Ax(p)dp

Remark: In the Theoretical Physics literature this operation goes
under the name of “completing the square” and the particle of
positive mass is now “dressed” with the a particles

In order to minimize the energy one must choose the Fock
representation for Ax for every x. .

The minimum of energy is obtained on the vaccum.
It is convenient therefore to write the relation between Ax and

a in the following way

a(y) = Ax(y)+8(x) (A3)

The self-adjoint operator Ĥ has a ground state8.
There is no coupling.
Therefore, the ground state 9 of the entire system (i.e., the

polaron) is at each point x the product 8 × �x, where �x is the
vacuum in the Ax representation, properly symmetrized. .

By construction the Ax representation is inequivalent to the a
representation.

The ground state of the system (the polaron) is a “cloud” of
infinitely manymass zero identical particle with distribution that
depends on the wave function�(x).

The cloud depends on the coordinate of the heavy particle. [N]
[F,S], [L,S], [S].

APPENDIX 2

B. A FIELD THEORY APPROACH

In the following we make some (tentative) comments on a Field
Theory approach.
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In case of the Polaron we have chosen a non relativistic
quantization for the Bose field since the particle is non relativistic.

The theory is hybrid since Fock space is used for the mass zero
field but not for the particle.

On can place contact interaction in a fully relativistic setting
in the context of Relativistic Quantum Field Theory.

Notice that “being in contact at a given time” is a relativistic
invariant statement.

Define the Krein map as in the non relativistic case but now
with the free relativistic hamiltonian Hrel of Relativistic Field
Theory (a positive operator in Fock space).

The Krein map acts differently on the kinetic part and on the
interaction term, and also this is a relativistic invariant statement.

Gamma convergence is a minimization procedure, and
therefore a relativistic invariant.

The Fock representation is a Gaussian measure space in
the case of bosons, Berezin-Segal measure space in the case of
fermions.

We consider here only the case of bosons.
In relativistic Fock (r-Fock space) space the free hamiltonian

for bosons is H0 =
∑

n(−1n +mn)
1
2 .

In order to have “strong contact” with interaction hamiltonian
density formally given by “φ3(x)” one must use a space in
which the hamiltonian is a second order differential operator and

therefore one must use a Fock space based onH
− 1

2 .
We call this space nr- Fock space (non-relativistic Fock space)

As measure spaces, the two Fock spaces are not equivalent.
In nr-Fock space the free hamiltonian is Ĥ0 =

∑

n(−1n +
mn)

1
2 .

As usual we use the Krein as a way to explore the system.
In the non relativistic we introduce (weak) contact by a

: :φ3(x) : : interaction density as in QuantumMechanics.
With the symbol : : . : : we denote the normal ordered defined

by the condition [L,S,T,T] that the last term (from the right) in the
product is an annichilation operator and the first one is a creation
operator (so that the choice is only in the middle term).

It a relativistically invariant definition. It has the consequence
that the vacuum is invariant.

By construction the interaction hamiltonian has matrix
elements only between states that contain at least one particle
each.

Let ψ1(x) and ψ2(x) the wave functions of these two particles.
Without loss of generality we choose ψ1 = ψ2 ≡ ψ(x).

One is therefore back to contact of a particle with two identical
particles.

We have discussed this case at length. Depending on the
strength of the contact the system has a bound state or an Efimov
sequence of bound states. .

We must now pass to the r-Fock space.
The topology of r-Foch space as measure space is weaker than

that of nr-Fock space (the topology in r-Foch space is given by the
relativistic hamiltonian, a first order differential operator, while
the topology in a nr-Fock space is given by the non relativistic
hamiltonian, a second order differential operator).

But also the covariance is different and the two effect concel.
Therefore, in r-Fock space there are bound states, states of

fixed energy in any reference frame.
They correspond to particles.
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