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Brillouin Light Scattering (BLS) spectroscopy allows for the all-optical measurement of

the hypersonic velocities in a sample, from which one can extract high-frequency elastic

moduli. Recent advances in high resolution optical imaging spectrometers have made

it conducive to studying live biological samples and further its implementation as an

imaging modality for the life sciences. One major challenge in this context is the relatively

weak BLS signal together with the subtle BLS spectral variations observed in many

biological samples. Here we show that using spectral phasor analysis one can more

easily distinguish variations in noisy spectra compared to standard least-squares (LS)

fitting. There is no fitting in phasor analysis, and it is both robust in regards to unaccounted

for functional variations in the spectra, and orders of magnitude faster than LS-fitting. As

such it can prove particularly useful for increasing contrast in Brillouin imaging as well

as for high-throughput BLS applications such as cell-sorting and medical diagnostics

especially for statistically compromised or noisy data.

Keywords: Brillouin Light Scattering spectroscopy, Brillouin microscopy, optical microscopy, optical

spectroscopy, phasor analysis

INTRODUCTION

Brillouin Light Scattering (BLS) is the inelastic scattering of light from acoustic phonons in a
material [1, 2]. In BLS spectroscopy the dynamics of these phonons can be measured from their
inelastic scattering peaks which occur at small frequency shifts ω = ωB ∼ 5 − 15 GHz relative
to the probing laser frequency. For a given scattering vector the peaks may to the lowest order be
assumed to be Lorentzian or a simple harmonic oscillator, with a Full Width at Half Maximum
(FWHM) 1ωB, dictated by the respective phonon dispersion relation in the material. In particular
the acoustic (phonon) velocity and attenuation can be calculated from a given spectra via [3]:

ωB = 2 Vi nλ
−1
0 sin

(

θ

2

)

1ωB = π−1αVi (1)

were Vi is the longitudinal or transverse phonon velocity, n is the refractive index, λ0 is the free-
space wavelength, α is the acoustic attenuation coefficient, and θ is the scattering angle relative
to the probing angle. In the commonly used back scattering geometry (θ ∼ 180o), light will only
couple to longitudinal phonons giving rise to a single set of BLS peaks on either side of the elastic
scattering peak (the so-called Brillouin doublet) as shown in Figure 1A. In this geometry one can
extract the complex longitudinal modulusM = M′ +M′′i viaM′ = V2ρ andM′′ = M′1ωB /ωB,
where ρ is the mass density.

Over the last decade there has been a renewed interest in BLS microspectroscopy/microscopy
for studying biological systems and medical diagnostics [4–9]. This has to an extent been driven
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by advancements in spectrometer design [4, 5] which can allow
for faster spatial mapping, together with mounting evidence
of the import role that mechanical properties play in various
biological processes [10] and the onset of pathological conditions
[11]. With the desire to maximally reduce acquisition times
(e.g., for fast Brillouin imaging of dynamic biological samples)
and laser exposure (to minimize phototoxicity/damage in the
sample), one is often working with statistically compromised
spectra, the fitting of which can be very sensitive to initial
parameters and assumed fitting function. This is compounded
by the observation that BLS peak variations within biological
samples are often very subtle.

In practice the position and shape of the BLS peaks may be
perturbed in complex biological samples, setting limitations on
functional fitting analysis methods. For examples, due to the
steep dispersion curve of acoustic phonons, the frequency shift
has a significant angular (wavevector) dependence (Equation 1),
which would result in asymmetric broadening of the peak for
high numerical aperture (high spatial resolution) measurements.
The exact functional form of the broadening can become non-
trivial especially in mechanically anisotropic materials where
the dispersion is dependent on the vector direction of the
probed phonons. Additional broadening resulting frommultiple-
scattering events can also be expected to become significant in
non-transparent biological samples [12, 13]. Finally, when the
probing volume contains more than one distinct structure that is
larger than the characteristic phonon length scale, the measured
spectrum will consist of a superposition of BLS peaks, which can
prove challenging to fit if they are closely spaced or the number
of components unclear (an example of a spectra from such a
two-component material is shown in Figure 1B).

Here we investigate the merits of Spectral Phasor Analysis
(SPA) as compared to Least Squares (LS) fitting for analyzing
simulated BLS data. In particular, we focus on the ability of SPA
to differentiate several BLS spectra in the presence of different
types and amounts of noise, as well as the statistical certainty
with which two closely spaced spectra can be distinguished as
a function of increasing noise. We conclude that SPA offers
a powerful tool for analyzing noisy BLS spectra, that may
prove particularly beneficial for applications such as cell sorting
[14, 15], diagnostics [7, 8], as well as being able to provide an
additional contrast scheme for e.g., segmentation of regions of
interest in Brillouin Microscopy maps [4–6, 8, 9].

PHASOR ANALYSIS

Phasor analysis is a common tool in physics and electrical
engineering [16]. It is an analytic representation of a spectrum
in terms of its amplitude and Fourier (phase) components, and
is particularly useful for analyzing complex signals that are a
convolution of several components (which become a product in
Fourier space) and where the functional dependence is either
unknown or complex. The results of a phasor analysis are
typically presented in the form of a phasor plot with a data set
reduced to a point in a 2-dimensional plot. Phasor analysis was
first introduced into optics for time-domain fluorescence lifetime

analysis [17], where it has become a powerful tool for studying
variations in complex multi-exponential (or non-exponential)
fluorescence decays. It has also been used for the analysis
of hyperspectral data including multi-channel fluorescence
[18, 19] and Raman spectroscopy [20], where it can provide
a useful approach for extracting constituent components and
segmentation in sample mapping. It is particularly well-suited
for analyzing and differentiating subtle variations in noisy or
complex multi-component spectra for which the exact functional
dependence is unknown, and where conventional fitting can
either not capture subtle changes or yield erroneous results due to
poor fitting accuracy. Since there is no fitting in phasor analysis it
is thus very powerful in exploring novel behavior not included
in pre-assumed models. Unlike Principle Component Analysis
(PCA) it is by construction linear, such that the phasor for a
mixture consisting of two (independent) component spectra will
be the sum of the phasors for of the two components weighted
according to their relative abundance. When one can assume
such a linear superposition, the phasor of a mixture will fall on a
line between the phasor of the two constituent components when
plotted on a phasor plot. Deviations from this can be used to
identify interactions such as resonant energy transfer in phasor
lifetime analysis [17] or the abundance of different molecular
species in spectral phasor analysis [18–20]. Also, unlike PCA, it
is an analytic representation, and therefore each phasor can be
mapped to a single measured spectrum.

In the case of BLS spectra—which is based on a collective
molecular phenomena—the BLS spectrum measured for a
mixture will in general not be the linear superposition of that of
its constituent components. The exception where this would be
the case is if the constituent components form discrete structures
larger than the characteristic acoustic length scales in the probed
direction, and the measured interaction distance in the direction
of the probed phonons contains several different such structures.
In this scenario a similar interpretation as with spectral phasor
analysis of fluorescence or Raman spectra may be assumed, and
the position of the measured phasor along the line connecting
two constitutive components can in principle yield information
on the relative volume fractions occupied by these components,
assuming a priori knowledge of the spectra of the constituent
components. This is illustrated in Figure 1C where the volume
fraction of component A in a mixture X consisting of A and
B will be given by RAX/RAB. For the case of mixtures with
constituent components smaller than the characteristic acoustic
length scales in the probed direction, deviations from the straight
line connecting the two pure components may provide a quick
visual assessment into the nature of the transition (i.e., to
what extent it is governed by changes in relative component
concentrations). This is illustrated in Figure 1D. The described
linearity property of phasors can readily be extended to more
than two basis spectra, in which case the fractional composition
of the mixture is determined by the area of the enclosed polygon
opposite to the vertex of the basis spectra, as shown in Figure 1E

for the case of a three component system.
In addition to providing insight into what extent the BLS

spectra is dependent on its constituent components, SPA can
also prove powerful in differentiating dynamic behavior of
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FIGURE 1 | Stokes and anti-Stokes BLS peaks on either side of elastic scattering peak (at ω = 0) for (A) a single effective mechanical component (probed acoustic

phonon velocity) in the scattering volume, and (B) a mixture consisting of two components in the scattering volume. Red bars indicate spectral regions that may be

considered for spectral phasor analysis. (C) An example phasor plot showing the phasors that would be obtained for two single component samples (A and B) and a

mixture (X ) consisting of both components when the resulting spectra is a linear combination of the constitutive components. The phasor X will trace a line between A

and B, with the ratio RAX/RAB equal to the relative fraction of A. (D) Same as (C) but for the case when the effective acoustic velocity in the mixture X’ are not a linear

combination of the constitutive components. (E) Phasor plot for a 3-component mixture X’ when the BLS spectra is a linear combination of three components. The

relative concentrations of each can be calculated if one knows the phasor of the individual components as described in main text. (F) Evolution of a phasor subject to

a perturbation (e.g., temperature) can reveal variations between BLS spectra of complex mixtures not observable from LS fitting which assume a given functional

dependence of the spectral profile.

complex multi-component spectra (such as during structural
or composition changes) when the number of contributing
components and functional form of the BLS peak is unclear or
changing. An example of the evolution of two initially similar
spectra is shown in Figure 1F, where the trajectory of the traced
line and distance between the phasors as a function of time can
be used to identify and gain further understanding on the nature
of the transition. An analysis using conventional single or multi-
peak fitting in such cases would prove particularly challenging or
impossible if one is for example measuring the superposition of
multiple closely spaced spectra and the number of components is
ill defined.

SIMULATION RESULTS

To calculate the phasors for a given measured BLS spectra we
assume a discrete spectral signal Ijmeasured at frequencies ωj,
where 1 ≤ j ≤ N. The exact starting and ending frequency

for the spectra considered in SPA is not critical provided it is
consistently defined for a set of measurements to be compared
and spans all relevant spectral features of interest. Typically,
it makes sense to define the smallest spectral range which will
contain all the relevant information (examples are shown as red
bars in Figures 1A,B). The horizontal and vertical coordinates of
the phasor may then be calculated via:

u =

∑N
j=1 Ij cos

(

2πmωj

|ωN−ω1|

)

∑N
j=1 Ij

(2a)

v =

∑N
j=1 Ij sin

(

2πmωj

|ωN−ω1|

)

∑N
j=1 Ij

(2b)

where m is the order of the phasor. We will constrain ourselves
to the lowest order (m = 1), although higher orders may be
desirable to discern subtle differences in high resolution spectra.
We simulate BLS spectra characteristic to that which might be
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obtained in a typical BLS microspectroscopy experiment, using a
visible (532 nm wavelength) excitation laser and measured using
an imaging-spectrometer, such as in Refs. [6–8]. For analysis we
consider the frequency interval ω = 5 → 15 GHz, as would
be relevant for many biological samples, and for simplicity we
assume a constant step size of

∣

∣ωj+1 − ωj

∣

∣ = 150 MHz for
our spectra.

In Figure 2 we show a phasor plot for a range of different
simulated BLS spectra, in each case assuming a Lorentzian peak
shape for the spectrum. The squares correspond to phasors with
increasing Brillouin frequency shift from ωB = 5.5 − 14.5 GHz
and line widths 1ωB = 0.2 − 4.0 GHz. With increasing ωB the
position on the phasor space migrates counter-clockwise around
the origin (u = v =0), whereas with increasing peak width it
extends further from the origin, guaranteeing that any spectra
will occupy a unique position on the phasor plot. Shown also
are the phasors for several “standard control” samples (water,
methanol, PMMA, and BK7 glass) as well as those typical for
some subcellular structures of biological interest. We note it is
possible to use this plot as a palette to assign a discrete or a
spectrum of colors to different regions of the phasor plot in a BLS
microscopy spatial map, to provide a more revealing alternative
contrast scale that considers both peak position and peak shape.
This can provide a powerful means of segmentation in BLS
microscopy, since significant variations in the peak width and
shape as well as peak position are often observed in biological
samples—e.g. [21].

For the case when the spectra has a known or a priori assumed
functional two-parameter functional dependence it is possible to
unambiguously recover these parameters from the phasor (u, v).
This can be demonstrated by taking for example a (normalized)
Lorentzian measured spectra as typically measured in BLS, which
in a discrete form would be given by:

Ij = π−1

(

ŴB

2

)

[

(

j1ω − ωB

)2 +
(

ŴB

2

)2
]−1

(3)

Where 1ω are the frequency intervals measured, and ωB and
ŴBare the peak position and Full Width at Half Maximum
(FWHM)—corresponding to the Brillouin shift and Brillouin
peak width. Rewriting the phasor equations (Equations 2a and
2b) in the general form (for themth order):

um − ivm =
∑N−1

j=0
Ij exp [(2πi)jm1ω/(ωN − ω1)] (4)

then inserting Equation (3) and taking the Fourier transform
one obtains:

um − ivm = exp

[

−
(2πi)ωB

ωN − ω1

]

exp

[

−
πŴB

ωN − ω1

]

. (5)

From this it immediately follows (by considering the real and
imaginary components) that the peak position and FWHM can
be calculated from the phasor (um, vm), via:

ωB = (2π)−1 (ωN − ω1) tan
-1

(

vm

um

)

(6a)

ŴB = (2π)−1
(ωN − ω1) |ln

(

u2m + v2m
)

| (6b)

Equation’s (6) also holds some clues on the optimum choice of
order (m) to use in the phasor analysis to most accurately extract
either peak position (vm ≫ um) or peak width (maximization of
|u2m + v2m|).

For the case of spectra consisting of multiple peaks or peaks
with complex or unknown functional forms of more parameters
the one to one correspondence between the phasor and the fitting
parameters no longer is possible. In certain BLS applications
though one may have the (linear) superposition of multiple
peaks of known functional dependence and is interested in the
relative contribution (amplitude in Intensity spectra) of these.
This is readily obtained directly from phasor plots (see above,
and Figure 1), and can be directly calculated from the phasor as
follows. For the case of two components (indexed 1 and 2) the
phasor may be expressed in the form:

um − ivm = αf (1) + (1− α) f (2) (7)

where α is the fractional contribution of component-1, and f (x)

is the (discrete) Fourier Transform of the xth component. For
the case of Lorentzian functions the latter would be given by

f (x) = exp

[

− 2πiω
(x)
B

ωN−ω1

]

exp

[

− πΓ
(x)
B

ωN−ω1

]

. It follows from Equation

(7) that the relative contribution (α) can be obtained from either
um or vmvia:

α = (um − f
(2)
R )/(f

(2)
R − f

(1)
R ) (8a)

α = (vm − f
(2)
I )/(f

(2)
I − f

(1)
I ) (8b)

Where f
(x)
R (f

(x)
I ) are the real and imaginary part of

the Fourier transform f (x). For the case of Lorentzians

FIGURE 2 | Example phasor plot of BLS spectra with different frequency (ωB)

shifts and line widths (1ωB). Also shown on the plot are phasors for several

different samples and structures.
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these would be: f
(x)
R = cos

[

2πω
(x)
B

ωN−ω1

]

exp

[

− πΓ
(x)
B

ωN−ω1

]

and

f
(x)
I = -sin

[

2πω
(x)
B ωN − ω1

]

exp

[

− πŴ
(x)
B

ωN−ω1

]

.

For the case of three contributing components Equation
(7) becomes:

um − ivm = α1f
(1) + α2f

(2) + (1− α1 − α2) f
(3) (9)

from which it follows that:

α1 =

[

f
(12)
R

(

1−
f
(31)
I

f
(23)
I

)]−1


um − f
(3)
R +

f
(23)
R

(

vm + f
(3)
I

)

f
(23)
I





(10a)

α2 = (f
(31)
I α1 − f

(3)
I − vm)/f

(32)

I (10b)

Where, we have for conciseness defined f (xy) = f (x) − f (y).
It follows that phasor analysis can be used to definitively
distinguish the relative contributions also of three known
spectra—which would have applications also in potential BLS
sorting applications—and Equation’s (10) may be used to
optimize the phasor order for maximizing the accuracy with
which the relative contributions are calculated.

To assess the potential advantages of SPA as compared to a
functional fitting approach, we take a look at the effect of reduced
signal integrity and noise on the ability of the two approaches to
distinguish several closely spaced single component BLS spectra
that may typically be encountered in BLS microscopy. There

are a number of different sources and types of noise that will
perturb the BLS spectra I (ω), depending on the nature of the
measurement/instrument and sample. We separately consider
three different types of noise, weighted by a factor W = aN(σ ),
where a is parameter defining the amount (strength) of the noise,
and N(σ ) a vector the size of the spectra I (ω) constituted of
random numbers distributed normally with width σ = 1GHz.
Specifically, we consider the followin three scenarios:

(1) photon (shot) noise limited : 1Ij = √
Ij

(2) detector noise+ shot noise : 1Ij = Wj +√
Ij

(3) 1/f (fluctuation) noise+ shot noise: 1Ij = WjIjω
−1
j + √

Ij

For illustrative purposes we look at three sample spectra: that
of water Iw(ω) with ωB = 7.45 GHz and 1ωB = 0.80 GHz;
a typical value for the cytoplasm of a cell Ic(ω) with ωB =
7.70 GHz and 1ωB = 1.00 GHz; and a typical value for the
nucleus of a cell In(ω) with ωB = 8.10 GHz and 1ωB =
1.10 GHz (e.g., [5–7]). We simulate 100 spectra with different
levels of noise for each of the three cases (assuming a Lorentzian
distribution for the peak), and then perform both a non-linear
Least Squares (LS) fit and a phasor analysis to compare how well
the methods can differentiate the three spectra from each other.
In each case LS fitting was performed in Matlab (Mathworks)
using the Peakfit function1 with the initial parameter guess for
ωB and 1ωB corresponding to the “true” value for the respective
spectra, and including a polynomial background correction.
For both the LS and SPA the spectral range from 4 to 15
GHz was included to assure that the accuracy would not be

1https://terpconnect.umd.edu/~toh/spectrum/

FIGURE 3 | LS and Phasor Analysis of 100 simulated BLS spectra. Example spectra for three different samples [ωB,1ωB] = [7.45,0.80], [7.70,1.00], and [8.10,1.10]

GHz (top), results for ωB and 1ωB obtained from LS fitting (middle), and results obtained from spectral analysis (bottom). Shown are scenarios with (A) no noise (B)

shot noise limited (C) shot noise + detector noise (W = 0.4), (D) shot noise + detector noise (W = 1.0), (E) shot noise + detector noise (W = 1.5).
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FIGURE 4 | Same as Figure 3 for the case of shot noise and different amounts of 1/f-noise with noise strength (A) W = 0.4, (B) W = 1.0, (C) W = 2.5, (D) W = 5,

(E) W = 10.

FIGURE 5 | Evolution of p-value for differentiating two closely spaced spectra subject to increasing (A) detector noise (B) 1/f-noise. Black and red lines show the case

for LS-fitting and SPA, respectively. The two BLS spectra taken were Lorentzian functions with [ωB,1ωB] = [7.8, 0.9]GHz and [ωB,1ωB] = [7.9, 1.0]GHz, and for

each case a sample size of 250 simulated BLS spectra were used.

significantly compromised by clipping of the Lorentzian tails,
and to justify direct comparison between the two approaches.
For the phasor calculation no other a priori information was
assumed. In Figures 3, 4 we display for different noise scenarios
in each case, a characteristic “noisy” spectra assumed for each
of the three sample types (top), a 2D contour plot showing the
cumulative distribution of values ofωB vs.1ωB obtained from LS
fitting (middle), and finally a phasor plot showing the cumulative
distributions for u vs. v (bottom). Figures 3A,B show the case
for noise free spectra and shot-noise limited spectra, respectively.
For the former, both approaches are able to unambiguously

differentiate the three sample types as expected. For the latter
the LS fitting can no longer unambiguously distinguish the
three sample types, whereas the phasor approach still clearly
separates them in phasor space. As one increases the detector
noise (while still including the shot noise) to <W> = 0.4, 1.0,
and 1.5, the ability of both the LS and the SPA to differentiate the
three components decreases rapidly as shown in Figures 3C–E,
respectively. By the time one reaches <W> = 1.5 (Figure 3E)
it is no longer possible to discern 3 components from the LS
fitting, while SPA still suggests the presence of three distinct
components. For the case of 1/f or fluctuation noise, which may
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originate both from the sample as well as the detection optics
and electronics [22], we observe a similar trend. By increasing
the noise parameter <W> from 0.4, 1.0, 2.5, 5.0, and 10.0, as
shown in Figures 4A–E, respectively, it is however apparent that
SPA again allows for a clearer identification of three independent
components with increasing 1/f noise.

To quantify the ability of SPA to distinguish noisy spectra
we consider the case of two very closely spaced spectra with
[ωB,1ωB] = [7.8, 0.9]GHz and [ωB,1ωB] = [7.9, 1.0]GHz,
and separately simulate 250 spectra of each under different
amounts and types of noise. We then test for each noise
scenario the significance of the difference between the two
data sets based on their separation in both [ωB,1ωB]-space
(as obtained via LS fitting) and in [u, v]-space (as obtained
via SPA analysis). For this analysis we express the statistical
significance of the spectra from the two data sets being distinct
in the form of an effective p-value as opposed to other statistical
significance tests, based on its prevalent usage for assessing the
significance of differences between assumed normally distributed
data sets in the life-sciences. The effect on the p-value obtained
from the LS-fitting and SPA results of the two data sets is
shown in Figures 5A,B for the case of increasing the detector
noise [scenario (2)] and 1/f-noise [scenario (1)] respectively.
In each case, the noise level is set by the above described
<W>-parameter. As can be seen that, while SPA proves
advantageous to LS-fitting in both cases, the advantage is more
pronounced for the case of detector noise (Figure 5A). It is
also evident that, the advantages of SPA over LS-fitting is
most significant for shot-noise limited measurements, as was
qualitatively evident also from Figure 3B. This suggests that
phasor analysis may prove particularly powerful for Brillouin
microscopy using imaging-spectrometers where owing to the
short acquisition times and modern detector arrays one is often
shot-noise limited.

CONCLUSION AND DISCUSSION

Together the above results suggest that SPA can be well-suited
for BLS microspectroscopy and aid in distinguishing noisy and
complex multi-component spectra which fitting approaches are
not able to. The Fourier transform needed to calculate phasors
(Equations 2a and 2b), unlike least-squares fitting, are a very fast
computational calculation that can be performed “on the fly”
during imaging, and even if not implemented in end analysis
may serve as a useful real-time contrasting method [e.g., by
assigning a color palette to the (u, v)-space]. For high throughput
applications such as cell sorting [14] or distinguishing two or
more characteristic samples or sample regions with different

spectra for which extracting biophysical/material parameters
is not essential, one may directly use the un-scaled spectral
projection in an imaging spectrometer (i.e., the direct camera
read out) for calculating the phasors, provided that it remains un-
changed during the measurement of the samples of interest and
control samples. Alternatively and depending on the application,
it may be desirable to use a refractive index or refractive
index and density corrected spectra—i.e., I (ω) → I(ω /n) or
I (ω) → I(ω2ρ /n2)—for the SPA which will scale directly
with the acoustic velocity and elastic modulus, respectively
(Equation 1).

There are also several additional desirable aspects of SPA,
such as that any background signal (which corresponds to an
infinite or very large spectral width signal) would by construction
accumulate in the center of the phasor plot and thus can easily
be identified. The spectral response of a detector/spectrometer—
an important consideration in BLS—can also be easily accounted
for in SPA, since the Fourier transform of a convolution is the
product of the individual Fourier transforms: one thus only
needs to divide the phasor of the measured signal by the Fourier
transform of the instrument and spectral response.

Despite its desirable traits, SPAwill however not be suitable for
all applications. In particular for cases when the functional form
of the spectra is of explicit interest and either not well-defined or
complex. Furthermore, other more elaborate non-linear methods
(e.g., [23]) may in cases also prove desirable for segmentation.
However, based on its relative simplicity it is likely to serve
as a powerful tool for quickly presenting BLS spectral maps in
complex biological samples, as well as the ability to visualize and
discern subtle and functional variations in the spectra otherwise
not possible.
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