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Flow of immiscible fluids in porous media at high capillary numbers may be characterized

by an effective viscosity. We demonstrate that the effective viscosity is well-described

by the Lichtenecker-Rother equation. Depending on the pore geometry, wettability, and

viscosity of the fluids, the exponent α in this equation can have different values. We

find α = 1 when fluids are well-mixed with small bubbles, α = 0.6 in two- and 0.5 in

three-dimensional systems when there is less mixing with the appearance of big bubbles,

and α = −0.5 when lubrication layers are formed along the pore walls. Our arguments

are based on analytical and numerical methods.

Keywords: porous media, two-phase flow, effective viscosity, pore-network modeling, lattice-boltzman method

(LBM)

1. INTRODUCTION

The hydrodynamics of real systems very often happens at small scale, such as in a porous medium
[1]. This is the case in a wide variety of biological, geological, and technological systems where there
are often several immiscible fluids present. The challenge of describing such systems in a unified
way, however, is largely unsolved. An important reason for this is the lack of a length scale above
which the system may be averaged. Such a length scale gives rise to the representative elementary
volume (REV) which is the conceptual basis for conventional theories that seek to up-scale the
description of flow in porousmedia. However, since the fluid structures in question are often fractal,
the REV average of intensive quantities, such as saturations, will depend on the size of the REV.

An important and rather general exception where this is not a problem, is the case of steady
state flow [2, 3]. Steady state flow is characterized by potentially strong fluctuations at the pore
scale, but with steady averages at the REV scale. Steady state configurations have much in common
with ensembles in equilibrium statistical mechanics. Steady state flow implicitly assumed in
conventional descriptions of porous media flows that take the existence of a REV for granted.

When the flow in question contains immiscible phases that are strongly forced in the sense
that viscous forces dominate capillary forces, the description of the steady state simplifies to the
description of a single fluid. This is the subject of the present work, and we show how the emergent
description is manifestly incompatible with the conventional theories that have been in use for
more than 80 years, most notably perhaps by the petroleum industry.

2. THEORY

The first and still leading theory describing immiscible two-phase flow in porous media is that of
Wyckoff and Botset [4]. They based their theory of relative permeability on the idea that when the
porous medium is seen from the viewpoint of one of the fluids, the pore volume accessible to this
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fluid would be the pore volume of the porous medium minus
the pore volume occupied by the other fluid. This reduces
the effective permeability seen by either fluid and the relative
reduction factor is the relative permeability. In order to account
for the surface tension between the immiscible fluids in the pores,
the concept of capillary pressure was introduced [5]. The central
equations in relative permeability theory are

Evj = − K

µj
kr,j(Sj) E∇Pj , (1)

where the subscript j either refers to the wetting fluid (j = w)
or the non-wetting fluid (j = n). Evw and Evn are superficial
velocities of the two fluids, defined as the volumetric flow rates
of each fluid entering a REV divided by the area of entry. K
is the permeability of the porous medium, µw and µn are the
wetting and non-wetting viscosities. kr,w(Sw) and kr,n(Sw) are the
relative permeabilities and they are both functions of the wetting
saturation Sw only. The corresponding non-wetting saturation
is Sn = 1 − Sw. The wetting and non-wetting pressure fields
Pw and Pn are related through the capillary pressure function
Pc(Sw) = Pn−Pw.We define a total superficial velocity Ev given by,

Ev = Evw + Evn . (2)

Ev is defined as the volumetric flow rate of all fluids entering the
REV divided by the area of entry.

Let us now consider the case when the flow rates are so large
that the capillary pressure may be ignored. Hence, we have Pn =
Pw = P and we may combine the relative permeability Equation
(1) with Equation (2) to find

Ev = −K

[

kr,w(Sw)

µw
+ kr,n(Sn)

µn

]

E∇P = − K

µeff(Sw)
E∇P , (3)

where we have defined an effective viscosity µeff as

1

µeff(Sw)
= kr,w(Sw)

µw
+ kr,n(Sn)

µn
. (4)

There have been many suggestions as to what functional form
the relative permeabilities kr,w(Sw) and kr,n(Sw) take. The most
common choice is to use those of Brooks and Corey assuming
kr,w(Sw) = k0r,wS

nw
w and kr,n(Sw) = S

nn
n where 0 ≤ k0r,w ≤ 1

and the Corey exponents nw and nn being typically in the range
2–6 [6, 7].

Equation (4) is problematic. When µw = µn, a dependency
of µeff on the saturation is predicted when nw and/or nn are
larger than 1when using the Brook–Corey relative permeabilities.
Other functional forms for the relative permeabilities give similar
dependencies. Clearly, such behavior is not physical.

McAdams et al. [8] proposed an effective viscosity for two-
phase flow by assuming a saturation-weighted harmonic average

1

µeff
= Sw

µw
+ Sn

µn
. (5)

Cicchitti et al. [9] proposed an effective viscosity based on the
saturation-weighted arithmetic average

µeff = µwSw + µnSn . (6)

Both of these expressions become saturation-independent when
µw = µn as they should. There are several other proposals for the
functional form of the effective viscosityµeff in the literature [10].

A one-dimensional porous medium, e.g., a capillary tube
where the two fluids move as bubbles in series [11] constitutes
a series coupling and the arithmetic average (6) is appropriate.
If the capillary tubes forms a parallel bundle, each filled with
either only the wetting or the non-wetting fluid, we have a
parallel coupled system and Equation (5) is appropriate. We now
consider a capillary bundle, where each capillary i in the bundle is
filled with a bubble train with a corresponding wetting saturation
Sw,i. The probability distribution for finding a capillary having
this saturation, Sw,i, is p(Sw,i) so that

Sw =
∫ 1

0
dS p(S) S . (7)

The capillary bundle is essentially a parallel combination of tubes,
each filled with a series of bubbles. The effective viscosity for the
capillary bundle is therefore given by,

1

µeff
=

∫ 1

0

p(S) dS

µwS+ µn(1− S)
. (8)

As a model for the distribution p(Sw,i), we may take a Gaussian
with a narrow width σ centered around Sw: p(Sw,i) =
exp[−(Sw,i − Sw)

2/2σ 2]/
√
2πσ 2. Using this distribution for

saturation we can integrate Equation (8) using a saddle point
approximation and we find to order σ 2 that,

µeff = µwSw + µnSn −
(µn − µw)

2

µwSw + µnSn
σ 2 . (9)

We now consider a wide distribution of saturations in the
capillaries. Considering a uniform distribution for p(Sw,i) in
Equation (8) rather than a Gaussian, we find for an average
wetting saturation Sw = 1/2,

µeff =

∣

∣

∣

∣

∣

∣

µw − µn

ln
(

µw
µn

)

∣

∣

∣

∣

∣

∣

. (10)

The functional form of the latter equation is very different from
the one for the Gaussian distribution, Equation (9).

For the extreme case when the capillaries are filled completely
by either the wetting or the non-wetting fluids given by p(Sw,i) =
Swδ(Sw,i− 1)+ Snδ(Sw,i), we find the effective viscosity according
to Equation (5), as already pointed out. Wemay study this either-
or situation in a more complex network, namely a square lattice.
We assume that the wetting saturation is set to Sw = 1/2, which
defines the bond percolation threshold and that the links are
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randomly filled with either fluid. We may then use Straley’s exact
result [12] leading to an effective viscosity

µeff = √
µwµn . (11)

We may calculate the effective viscosity of a regular lattice by
using Kirkpatrick’s mean field theory [13]. The mobility between
nodes i and j is Kij/µij where Kij is the permeability and µij is the
effective viscosity of the link given byµij = µwSw,ij+µnSn,ij. Here
Sw,ij and Sn,ij are the local wetting and non-wetting saturations in
the links between the nodes. This form of µij is due to the fluids
being connected in series in one link. Kirkpatrick’s theory is based
on the idea that the network with link mobilities Kij/µij may be
replaced by a network with a uniform mobility K/µeff such that
the total network mobility remains the same. In that case, the
value of K/µeff is given by [13]

〈 K
µeff

− Kij

µij

Kij

µij
+

[(

z
2

)

− 1
]

K
µeff

〉

= 0, (12)

where z is the coordination number of the lattice.
Considering the wetting saturation distribution p(Sw,ij)
fulfilling Equation (7), the ensemble average is given by,

〈...〉 =
∫ ∞
0 dKijP(Kij)

∫ 1
0 dSw,ijp(Sw,ij)..., where P(Kij) is the

permeability distribution. We assume a square lattice so that
z = 4. By assuming that the saturation distribution is a narrowly
peaked Gaussian with width σ , we may again use the saddle
point approximation to get,

µeff = µwSw + µnSn +O
(

|µn − µw|σ 2
)

. (13)

This is similar to that found for the parallel capillary
bundle, Equation (9).

From the systems giving rise to Equations (9), (10), (11), and
(13), the form of µeff is not clear. Does it depend on the details of
the porousmedium or is there a general form?Wemay generalize
Equations (5) and (6) by writing them in the form

µα
eff = µα

wSw + µα
nSn, (14)

where α = −1 for parallel coupling and α = +1 for
series coupling. Equation (14) has been used for estimating
the effective electrical permittivity of heterogeneous conductors
and in connection with permeability homogenization in porous
media and is known as the Lichtenecker–Rother equation [14–
17]. The effective viscosity in (11) corresponds to α → 0, whereas
Equations (9) and (13) suggest α = 1. Only Equation (10) does
not fit this form.

In order to test Equation (14) in case of a porous medium, we
now present two numerical approaches in the following: dynamic
pore-network modeling and lattice Boltzmann simulations.

3. PORE-NETWORK MODELING

The dynamic pore-network model used here has successfully
explained several experimental and theoretical results for

both the transient and steady-state two-phase flow in porous
media over decades [18–21]. During the transients, the
model shows the different regimes of two-phase flow, namely
the capillary fingering, viscous fingering, and the stable
displacement pattern while changing the capillary number
and viscosity ratio [18]. In the steady state, the crossover
from linear Darcy regime to a quadratic regime that was
observed experimentally have also been studied with this
pore-network model [19, 22]. The model have also shown
the experimental observation of history independence in
the steady-state two-phase flow at higher capillary numbers
[20]. Recently, relations between steady-state seepage
velocities in porous media was obtained analytically by
introducing of a new velocity function, the co-moving velocity.
These relations were also established numerically with this
model [23].

In the model, the porous medium is represented by a network
of links, connected at nodes. In the links, two immiscible fluids,
separated by interfaces, are transported. We consider both two-
dimensional (2D) and three-dimensional (3D) networks for our
simulations. For 2D, regular square and honeycomb networks
with disordered link radii are used, whereas for 3D, reconstructed
pore networks extracted from real samples are used [19]. The flow
rate inside a link between two neighboring nodes i and j with
respective pressures pi and pj obeys

qij = − gij

lij

(

pj − pi
)

, (15)

where lij is the link length and gij is the link mobility which
is inversely proportional to the link viscosity given by µij =
µwSw,ij+µnSn,ij [24, 25]. There is no contribution to the pressure
from interfaces as the surface tension (γ ) is zero. This sets the
capillary number, defined as the ratio of viscous to capillary forces
given by Ca = uµr/γ , to infinity. Here u is the Darcy velocity
and µr is the viscosity of the more viscous fluid. Simulations are
performed with a constant global pressure drop 1P across the
network and the local pressures (pi) are determined by solving
the Kirchhoff equations. Flow rates qij through each link are then
calculated using Equation (15) and the interfaces are moved with
small time steps.

A crucial point here is how to distribute the two fluids after
they mix at the nodes. Whether the system will allow high or
low fragmentation of the fluids will depend on the geometry
and nature of the pore space [26, 27]. This will have impact on
the size of the bubbles and the number of interfaces inside a
link. As small bubbles of either fluid may not necessarily imply
a large number of interfaces or vice versa, we implemented two
different algorithms for the interface dynamics. In the bubble-
controlled algorithm, we decide the minimum size of a bubble
before entering a link and in the interface-controlled algorithmwe
decide the maximum number of interfaces that can exist in a link.
We considered two different possibilities for each algorithm: for
the bubble-controlled case, (A) small bubbles are allowed, with
minimum sizes bmin = 0.02rij, (B) bubbles with sizes at least
equal to the respective pore radii (bmin = rij) are allowed. For the
interface-controlled algorithm, we study two cases, (C) one with
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maximum four and (D) another with maximum two interfaces
per link. Our model does not include lubrication layers, and the
simulations therefore cannot capture the wetting film effects at
the pore walls. More details of the interface algorithm is provided
in the Supplementary Material.

4. LATTICE BOLTZMANN SIMULATIONS

We then turn to lattice Boltzmann simulations which have no
explicit parameters for the bubble size or for the number of
interfaces and permits arbitrary shapes of the fluid domains
within the link. The lattice Boltzmann model applied here is
based on the original triangular lattice and the interaction rules
first introduced by Gunstensen et al. [28]. It models the Navier–
Stokes equation for two immiscible fluids within a 2D pore
geometry of rectangular pipes of equal width, and in the pores
the fluids organize only according to the flow and geometry of the
system. The two fluids are represented by different colors, here
red (more viscous) and blue (less viscous), and their respective
densities ρr and ρb define a local color gradient. The surface
tension is introduced by the application of two steps, first a
perturbation of the mass distribution that is proportional to the
magnitude of the color gradient, thus increasing the mass in the
directions transverse to a fluid-fluid interface, and second, a re-
coloring step that sends red toward red and blue toward blue.
Both steps conserve the local momentum, the first step creates
the change in the stress tensor which is responsible for the surface
tension, and the last step causes an anti-diffusive flux of both
phases. The solid obstacles are represented by the bounce-back
rule, which ensures the hydrodynamic no-slip condition and the
wetting property is controlled by coloring the solid obstacles with
the same saturations as in the bulk fluid. The aim is to simulate
flows that are not governed by surface tension effects and this
wetting rule creates a relatively neutral wetting property that does
not affect the flow as much as full wetting of one phase. The
model also allows for tuning of the surface tension γ, so that
the capillary number given by Ca = uµr

γ
, is set to high values.

Here, u is the overall Darcy velocity and µr is the viscosity of
the red fluid with higher viscosity. In all the simulations Ca >

9. For the more viscous wetting fluid, the wetting saturation
Sw = ρr/(ρr + ρb) controls the viscosity according to the
local rule

µ =
[

Sw +M(1− Sw)
]

µr , (16)

where M = µb/µr here and the pressure gradient is
implemented as a constant body force in the diagonal
direction point to upper right corner of the simulation
domain. The body force is introduced as a constant
momentum input at every time step and at every
lattice site.

Initially, the flow velocity is zero everywhere and ρr and ρb
initialized according to the specified value of Sw but with a small
random component added. This randomness then triggers an
initial phase separation which is responsible for the subsequent
distribution of bubbles. Unlike the network modeling, the
wetting effects of the pore walls are included here [29]. For the

neutral wetting condition and for more viscous wetting fluid,
we choose a rectangular pore network to emulate the network
model. For the case of complete wetting with less viscous wetting
fluid, the wetting layers are important and we therefore avoid the
singular sharp corners. The model is implemented on a 128×128
biperiodic lattice with the pressure gradient implemented as a
constant body force in the diagonal direction pointing to the
upper right corner.

5. RESULTS AND DISCUSSION

We perform simulations under constant external pressure drop
1P and the systems are evolved to the steady state. The results
here are in the high capillary number regime and therefore
do not depend on the history or the initial preparation of the
system [20]. In the steady state, we compare the results with
(µeff/µw)

α = Sw +MαSn (Equation 14), whereM = µn/µw. In
the network model, we measure the total flow rateQ as a function
of the saturations Sw. As Q = − KA

Lµeff
1P, we measure µeff/µw

by calculating Qw/Q where Qw is the total flow rate at Sw = 1.
In the lattice Boltzmann simulations, the µeff is calculated by
measuring the effective permeability, obtained by measuring the
total flux Q through the system and dividing by the forcing or
average pressure gradient. We chose M = 2, 5, and 10 here.
Higher values of M increase the computational cost and do not
change the conclusions of this study for the network model with
γ = 0. Simulations with M and 1/M produce the same results
due to symmetric bubble rules and the absence of film flow in
the network model. Depending on the pore geometry, wettability
and viscosities of the fluids, we find three flow regimes. All can
be characterized by Equation (14) with three different values of
α. When smaller bubbles (model A) or more interfaces (model
C) are allowed in the network model, we find α = 1 for both
2D and 3D systems as shown in Figures 1, 2, respectively were
the fluids are well mixed. This regime is also observed in the
lattice Boltzmann simulations for neutral wetting properties, or
when the wetting fluid is more viscous. This is shown in Figure 3,
where the straight lines confirm α = 1 in Equation (14). Here the
continuous merging and break-up of droplets give rise to a flow
where each pore channel contains a sequence of individual drops.
The fluids effectively behave as if they are arranged in series, and
on the average the life-time of the droplets does not have any
impact on the up-scaled behavior.

When we allow only larger bubbles with the size of the order
of the pore size (model B) or few interfaces (model D) in the
network model, we find α = 0.6 for 2D and α = 0.5 for 3D
that are consistent with Equation (14). Results are plotted in
Figures 4, 5, respectively. Here the steady-state fluid distribution
shows less mixing and larger clusters compared to Figure 1. This
also affects the fractional flow, making the less viscous fluid to
flow with higher velocity (Supplementary Material). So far, we
could not find a set of suitable parameters or pore geometry for
the lattice Boltzmann simulations that can reproduce this regime
of flow.

When the wetting fluid is made less viscous in the lattice
Boltzmann simulations, it produces lubrication layers of the
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FIGURE 1 | (A) Plot of (µeff/µw)
α obtained from 2D network simulations (symbols) with small bubbles (A) or with many interfaces (C). Results are consistent with

Equation (14) (straight lines) with α = 1. A steady-state snapshot for model C is shown in (B), where gray and blue are the wetting and non-wetting fluids respectively.

Here the wetting fluid is more viscous and the results for less viscous wetting fluid are the same for the network model due to the symmetry in the interface rules and

the lack of film flow mechanism in the model.

FIGURE 2 | (A) Plot of (µeff/µw)
α for 3D networks reconstructed from Berea sandstone and sandpack samples for the simulations with four interfaces (C). Results

are consistent with Equation (14) (straight lines) with α = 1, similar to the 2D networks. A snapshot of fluids in Berea sandstone in the steady state for model C is

shown in (B), where blue and red are the wetting and non-wetting fluids respectively.

FIGURE 3 | (A) Plot of (µeff/µw)
α obtained from lattice Boltzmann simulations with more viscous wetting fluid which shows α = 1 when compared with Equation (14).

(B) Typical steady-state distribution of the fluids, where the blue and red are the more viscous (wetting) and less-viscous (non-wetting) fluids, respectively.

wetting fluid along the pore walls. This introduces a third
regime with a negative value of α. The results are shown
in Figure 6 which indicate a robust α = −0.5 behavior
over a range of M values. This means that, due to the

lubrication layers flow comes close to the parallel-coupling
scenario, which is described by α = −1, but there is still
a significant difference. The flow paths that appear in parallel
are not stationary as they would be in a parallel coupled
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FIGURE 4 | (A) Plot of (µeff/µw)
α obtained from network simulations with larger bubbles (B) or few interfaces (D) which shows α = 0.6 for 2D. (B) Typical

steady-state snapshot for model D, showing less mixing of fluids and larger clusters compared to Figure 1B.

FIGURE 5 | (A) Plot of (µeff/µw)
α for 3D networks reconstructed from Berea sandstone and sandpack samples for the simulations with two interfaces (D). Results are

consistent with Equation (14) (straight lines) with α = 0.5. A steady-state snapshot of Berea sandstone for model D is shown in (B), where blue and red are the wetting

and non-wetting fluids respectively.

FIGURE 6 | (A) Plot of (µeff/µw)
α from lattice Boltzmann simulations with less viscous wetting fluid where we find α = −0.5. The steady state is dominated by

lubrication layers of less viscous blue fluid as seen in (B). The end points close to Sw = 1 fall a little below 1, which could have several explanations, one being finite

Reynolds numbers, an effect that is likely to increase with increasing M the way the simulations are done.

system, they break up and merge continuously. We could
not study this regime with our network model as the model
does not contain film flow. It will be interesting to study
this in the future with a network model that includes the
film flow [30].

6. CONCLUSION

In summary, we show that immiscible two-phase flow in porous
media at high capillary number limit can be characterized by
measuring the effective viscosity in the steady state. We find that
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the Lichtenecker–Rother Equation (14) describes the effective
viscosity well for different flow configurations. We identified
three flow regimes characterized by the exponent α, which
depend on the organization of the two fluids in the pores. When
the fluids are well mixed, we find a result which is consistent
with the Kirkpatrick’s mean field theory [13] with α = 1. This
is observed in both the network model and lattice Boltzmann
simulations, by allowing small bubbles or more interfaces in the
network model, and with the neutral wetting condition or more
viscous wetting fluid in the lattice Boltzmann simulations. When
only larger bubbles or fewer interfaces are allowed, we find the
second regime with α = 0.6 in 2D and α = 0.5 in 3D with
the network model. Third, when the wetting fluid is less viscous,
lubrication layers are formed at the pore walls, and we find α =
−0.5 from the lattice Boltzmann simulations.

Finally, we like to point out that in the network model, we
have varied the minimum bubble size over the range 0.02rij to
0.5rij finding α decreasing gradually from 1 to 0.6. Taking into
account that rij ≤ 0.4 l, where l is the link length, this shift of α

from 1 to 0.6 occurs over the narrow range from 0.008 l to 0.2 l,
indicating that we see a crossover. In case of the lattice Boltzmann
simulation there is no gradual transition with different wetting
properties from α = 1 to α = −0.5. The former is observed in
the neutrally wetting case or in the case when the viscous fluid
is the completely wetting. The latter is observed in the case of
complete wetting of the less viscous fluid.
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