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The double-well potential is a good example, where we can compute the splitting

in the bound state energy of the system due to the tunneling effect with various

methods, namely path-integral, WKB, and instanton calculations. All these methods are

non-perturbative and there is a common belief that it is difficult to find the splitting in

the energy due to the barrier penetration from a perturbative analysis. However, we will

illustrate by explicit examples including singular potentials (e.g., Dirac delta potentials

supported by points and curves and their relativistic extensions) it is possible to find the

splitting in the bound state energies by developing some kind of perturbation method.

Keywords: Dirac delta potentials, Krein’s formulae, resolvent, perturbation theory, tunneling, Dirac delta potentials

supported by curves, heat kernel, bound state energy

1. INTRODUCTION

Most real quantum mechanical systems can not be solved exactly and we usually apply some
approximation methods, the most common one being perturbation theory, to get information
about the energy levels and scattering amplitudes. However, not all quantum systems can be
analyzed by perturbative methods. There are various class of problems where we can not deduce
any information by simply using perturbation theory since these problems are inherently non-
perturbative phenomena like the formation of bound states and penetration through a potential
barrier. For such non-perturbative phenomenon, other tools, such as WKB [1, 2] and instanton
calculations [3], are particularly useful. The particle moving in a one-dimensional anharmonic

potential V(x) = λ2

8 (x
2 − a2)2 is a classic example, where we can show the barrier penetration

through the WKB analysis.
When the energy scale determined by the length scale a is extremely small compared with

the binding energy of the system, i.e., h̄2/2ma2 << EB, or λa
2 >> 1, the potential separates

into two symmetrical wells with a very high barrier (see Figure 1). In this extreme regime, as a
first approximation, each well has separately quantized energy levels and these energy levels are
degenerate due to the symmetry. However, once the large but finite value of the coupling constant
λ is taken into account, the particle initially confined to one well can tunnel to the other well so the
degeneracy in the energy levels disappear. The splitting in the resulting energy levels (between the
true ground state and the first excited level due to the tunneling) is given by Landau [1] and Das [2]

δE = E2 − E1 ≈
4e

π

√

mh̄ω3/2a exp

(

−1

h̄
S0

)

(1)

where S0 = 2mωa2

3 and ω2 = λ2a2

m . The above exponentially decaying factor with respect to the
separation between the wells illustrates the tunneling effect. The true ground state corresponds to

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2019.00069
http://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2019.00069&domain=pdf&date_stamp=2019-05-07
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:fatih.erman@gmail.com
https://doi.org/10.3389/fphy.2019.00069
https://www.frontiersin.org/articles/10.3389/fphy.2019.00069/full
http://loop.frontiersin.org/people/618911/overview
http://loop.frontiersin.org/people/106201/overview


Erman and Turgut A Perturbative Approach to the Tunneling Phenomena

a symmetric combination and the excited level corresponds to
the anti-symmetric combination of the WKB corrected wave
functions.

Among the exactly solvable potentials in quantummechanics,
Dirac delta well potentials are the most well-known text book
example [4]. Moreover, it has been studied extensively in
mathematical physics literature from the different point of
views, in particular in the context of self-adjoint extension
of symmetric operators [5]. Although it is easier to define it
rigorously in one dimension through the quadratic forms, one
possible way to define it in higher dimensions is to consider
the free symmetric Hamiltonian defined on a dense domain
excluding the point, where the support of the Dirac delta
function is located, and then apply the self-adjoint extension
techniques developed by J. Von Neumann [see the monograph
[6] for the details and also for the historical development
with extensive literature in the subject]. Then, the formal (or
heuristic) definition of one-dimensional Dirac delta potentials
in the physics literature is understood as the one particular
choice among the four parameter family of the self-adjoint
operators, where the matching conditions of the wave function
are just obtained from the boundary conditions (which define
the domain of our self-adjoint operator) constructed through
the extension theory. Another way to introduce these point
interactions uses the resolvent method, developed by M. Krein,
and it is based on the observation that for such type of potentials
the resolvent can be found explicitly and expressed via the so-
called Krein’s formula [7].Within this approach, the Hamiltonian
for point interaction (in two and three dimensions) is first
approximated (regularized) by a properly chosen sequence of
self-adjoint operators Hǫ and then the coupling constant (or
strength) of the potential is assumed to be a function of the
parameter ǫ in such a way that one obtains a non-trivial limit.
This convergence is actually in the strong resolvent sense, so
the limit operator is self-adjoint [8]. Since the Dirac delta
potentials in two and three dimensions require renormalization,
it is usually considered as a toy model for the renormalization
originally developed in quantum field theories and it helps
us to better understand the various ideas in field theory
such as renormalization group and asymptotic freedom [9–
12]. Furthermore, point like Dirac delta interactions have been
also extended to various generalizations. For our approach, to
illustrate the main ideas, we are mainly concerned with the
delta potentials supported by points on flat and hyperbolic
manifolds [13–15], and delta potentials supported by curves in
flat spaces, and its various relativistic extensions in flat spaces
[16–19].

In this paper, we explicitly demonstrate for a class of singular
potential problems that the splitting in the energy levels due to
the tunneling can be realized by simply developing some kind
of perturbation theory. We have two basic assumptions here:
(1) Binding energies of individual Dirac delta potentials are all
different. Otherwise we need to employ degenerate perturbation
theory. Actually, we briefly discus a particular degenerate case,
namely the two center case in two dimensions to compare with
the double well potential. (2) The support of singular interactions
are sufficiently separated from one another, as a result the

FIGURE 1 | Anharmonic potential.

bound state wave functions decay rapidly over the distances
between them.

All the findings about the splitting in the bound state energies
for singular potentials on hyperbolicmanifolds treated here could
be applied to the two dimensional systems such as graphite
sheets. We can model impurities in these systems as attractive
centers in some approximation and these sheets can be put
in various shapes. This is especially true for surfaces with
variable sectional curvature which is not completely negative.
The negatively curved surfaces, of course, cannot be realized as
embedded surfaces in three dimensions due to Hilbert’s well-
known theorem. Nevertheless, we may envisage these models
as an effective description of unusual quasi-particle states of
some two dimensional systems. Due to the interactions, the
system may develop a gap in the spectrum and the effective
description may well be best understood through a negative
sectional curvature space. Moreover, the problems related with
point interactions on Lobachevsky plane have been studied
from different points of view [20, 21]. The point interactions
can be extended on more general class of manifolds as well
[22]. In particular, they have been studied on some particular
surfaces in R

3, namely on the infinite planar strip as a
natural model for quantum wires containing impurities [23]
and on the torus [24]. A more heuristic approach for point
interactions on Riemannian manifolds has been constructed
through the heat kernel in Altunkaynak et al. [13] and Erman
and Turgut [14]. The physical motivation behind studying the
Dirac delta potentials supported by curves is based on the
need for modeling semiconductor wires [25]. They could be
considered as a toy model for electrons confined to narrow
tube-like regions.

The paper is organized as follows: In section 2, we formally
summarize the resolvent formulae, called Krein’s formulae, for
Hamiltonians perturbed by singular potentials including Dirac
delta potentials supported by points and curves. The principal
matrices for each case are given explicitly. The relativistic and
the field theoretical extension of it has been also reviewed
in the subsections of this section. In section 3, we briefly
discuss the analytic structure of the principal matrix and the
bound state spectrum for such type of singular interactions.
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In Section 4, we discuss how the off-diagonal terms of the
principal matrix change in the tunneling regime. section 5
and section 6 contain the formulation of the perturbative
analysis and explicit calculations of the splitting in the bound
state energy when these singular interactions are far away
from each other, which is the main result of the paper. We
finally discuss the degenerate case and wave functions, and
compare the one dimensional results with the exact result in
section 7.

2. KREIN’S FORMULAE FOR FREE
HAMILTONIANS PERTURBED BY
SINGULAR INTERACTIONS

Before we are going to discuss the perturbative analysis of
singular interactions for large separations of the support of
the potentials, we first present the basic results about our
formulation of the singular Hamiltonians. In this paper, we are
mainly concerned with the Dirac delta potentials supported by
finitely many points and finitely many curves in flat spaces,
and their extension to the hyperbolic manifolds. Moreover,
we also consider some relativistic extensions of these singular
interactions.

Since we study the spectral properties of different kinds
of Dirac delta potentials, we first introduce the notation for
Dirac delta functions of interest. The Dirac delta distribution
δa supported by a point a in R

n is defined as a continuous
linear functional whose action on the test functions ψ is
given by

〈δa,ψ〉 = ψ(a) . (2)

Similarly, Dirac delta distribution δγ supported by a curve Ŵ in
R
n is defined as a continuous linear functional whose action on

the test functions ψ is given by Appel [26]

〈δγ ,ψ〉 =
∫

Ŵ

ds ψ(γ (s)) . (3)

The left hand sides in the definitions (2) and (3) can
be expressed in the Dirac’s bra-ket notation, most
common in physics literature, as 〈a|ψ〉 and 〈γ |ψ〉,
respectively.

As we have already emphasized in the introduction, there
are several ways to define rigorously the Hamiltonian for Dirac
delta potentials. Here, we start with a finite rank perturbations
of self-adjoint free Hamiltonian H0 (e.g., H0 = P2/2m in
the non-relativistic case and H0 =

√
P2 +m2 in the semi-

relativistic case):

H = H0 −
N
∑

i=1

λi〈ϕi, .〉 ϕi , (4)

where ϕi ∈ H and 〈., .〉 denotes the sesqui-linear inner
product in the Hilbert space H. Then, it is well-known that
the resolvent of H can be explicitly found in terms of the

resolvent of the free part by simply solving the inhomogenous
equation [7]

(H − z)ψ = ρ , (5)

for a given ρ ∈ H and ψ ∈ D(H0) = D(H). Here D stands
for the domain of the operator and we assume that ℑ(z) > 0.
It is well-known that H is self-adjoint on D(H0) due to the
Kato-Rellich theorem [5]. The resolvent of H could be found
in two steps: First, we apply the resolvent of the free part to
the Equation (5)

(H0 − z)−1ρ = ψ −
N
∑

i=1

λi〈ϕi,ψ〉 (H0 − z)−1ϕi , (6)

and project this on the vector ϕj, we can then find the solution
〈ϕi,ψ〉 so that the resolvent Rz(H) = (H − z)−1 of the
Hamiltonian H at z is:

Rz(H) = Rz(H0)+
N
∑

i,j=1

Rz(H0)ϕi [8
−1(z)]ij 〈Rz̄(H0)ϕj, .〉 , (7)

where

8ij(z) =
{ 1
λi
− 〈ϕi,Rz(H0)ϕi〉 if i = j

−〈ϕi,Rz(H0)ϕj〉 if j 6= j′
. (8)

Actually, the resolvent formula (7) is valid even in the case
where the vectors ϕi’s do not belong to the Hilbert space. Such
perturbations represent the singular type of interactions, e.g.,
Dirac delta potentials supported by points or curves [6, 16].
In Dirac’s bra-ket notation, one can also express the above
resolvent formula as:

Rz(H) = Rz(H0)+
N
∑

i,j=1

Rz(H0)|ϕi〉 [8−1(z)]ij 〈ϕj|Rz(H0) . (9)

The explicit expression of the resolvent (7) or (9) is known
as Krein’s resolvent formula. Alternatively, these singular
interactions can be defined directly through von Neumann’s self-
adjoint extension theory (or quadratic forms in some cases).
Since our aim is the spectral behavior and especially the bound
state problem of such singular interactions, Krein’s explicit
formula is much more useful. Throughout the paper, following
the terminology introduced by Rajeev [27] we call the matrix 8
as the principal matrix (this is equivalent to the matrix Ŵ used in
Albeverio et al. [6]).

Actually, one can also develop the above resolvent formula
(9) to relativistic and field theoretical extensions of the singular
models, as we will discuss in the next subsections. Let us
now summarize explicitly the resolvent formulae and principal
matrices in all classes of singular interactions that we are going to
discuss in this paper:
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2.1. Point-Like Dirac Delta Interactions in R

The Hamiltonian for the non-relativistic particle moving in fixed
N point like Dirac delta potentials in one dimension can be
expressed in terms of the formal projection operators given by
the Dirac kets |ai〉

H = H0 −
N
∑

i=1

λi|ai〉〈ai| , (10)

where H0 is the non-relativistic free Hamiltonian, and λj’s are
positive constants, called coupling constants or strengths of the
potential. Throughout this paper, we will use the units such that
h̄ = 2m = 1 for non-relativistic cases and h̄ = c = 1
only for the relativistic case. Since we have fairly complicated
expressions, this simplifies our writing, hoping that this does
not lead to any further complications. It is well-known in the
literature that there are different ways to make sense of this
formal Hamiltonian in a mathematically rigorous way [strictly
speaking, the above expression (10) has no meaning as an
operator in L2(R)]. Let us define Rz(H) : = R(z) and Rz(H0) : =
R0(z) for simplicity. Even though it is hard to make sense
of the Hamiltonian, one can find the resolvent of this formal
operator algebraically and the result is consistent with the one
given by a more rigorous formulation. Choosing ϕi as the
Dirac kets |ai〉 formally in the previous section, the resolvent is
explicitly given by

R(z) = R0(z)+
N
∑

i,j=1

R0(z)|ai〉[8−1(E)]ij〈aj|R0(z) , (11)

where8 is an N × N matrix

8ij(z) =
{ 1
λi
− R0(ai, ai; z) if i = j

−R0(ai, aj; z) if i 6= j
. (12)

Here R0(ai, aj; z) = 〈ai|(H0 − z)−1|aj〉 is the free resolvent
kernel. It is useful to express the principal matrix in terms of the
heat kernel Kt(ai, aj) - the fundamental solution to the Cauchy
problem associated with the heat equation—using

R0(ai, aj; z) = 〈ai|(H0 − z)−1|aj〉 = 〈ai|
∫ ∞

0
dt et(H0−z)|aj〉

=
∫ ∞

0
dt Kt(ai, aj) e

tz . (13)

Then, we obtain

8ij(z) =
{ 1
λi
−
∫∞
0 dt Kt(ai, ai)e

tz if i = j

−
∫∞
0 dt Kt(ai, aj)e

tz if i 6= j
. (14)

These expressions should be considered as analytical
continuations of the formulae beyond their regions of
convergence in the variable z. From the resolvent (11), one
can also write down the resolvent kernel

R(x1, x2; z) = R0(x1, x2; z)+
N
∑

i,j=1

R0(x1, ai; z)[8−1]ijR0(aj, x2; z) .

(15)

Using the explicit expression of the integral kernel of the free
resolvent

R0(x, y; z) =
i

2
√
z
ei
√
z|x−y| , (16)

we have

8ij (z) =
{

1
λi
− i

2
√
z

if i = j

− i
2
√
z
ei
√
z|ai−aj| if i 6= j

. (17)

Here
√
z is defined as the unambiguous square root of z with

ℑ√z is positive. Since we study the bound state spectrum, it is
sometimes convenient to express the above matrix8(z) in terms
of a real positive variable ν = −i

√
z, i.e.,

8ij(z)

∣

∣

∣

∣

z=−ν2
: = 8ij(ν) =

{ 1
λi
− 1

2ν if i = j

− 1
2ν e−ν|ai−aj| if i 6= j

. (18)

2.2. Point-Like Dirac Delta Interactions in
R
2 and R

3

We assume that the centers of the Dirac delta potentials do
not coincide, that is, ai 6= aj whenever i 6= j. If we follow
the same steps outlined above, we find exactly the same formal
expression for the resolvent for point interactions in two and
three dimensions except for the fact that the explicit expression
of the integral kernel of the free resolvent in R

2 and R
3 [6] are

given by

R0(r1, r2; z) = i

4
H

(1)
0 (

√
z|r1 − r2|) , (19)

R0(r1, r2; z) = ei
√
z|r1−r2|

4π |r1 − r2|
, (20)

respectively. Here H
(1)
0 is the Hankel function of the first kind

of order zero and ℑ√z > 0. Unfortunately, the diagonal part
of the free resolvent kernels are divergent so the diagonal part
of the principal matrices are infinite. This is clear for the three
dimensional case from the asymptotic behavior of the Hankel
function [28]

H
(1)
0 (x) ≈ −2i

π
log(2/x) , (21)

as x → 0.
This difficulty can be resolved by the so-called regularization

and renormalization method. Instead of starting with the
higher dimensional version of the formal Hamiltonian (10),
we first consider the regularized Hamiltonian through the
heat kernel

Hǫ = H0 −
N
∑

i=1

λi(ǫ) |aǫi 〉〈aǫi | , (22)

where 〈r|aiǫ〉 = Kǫ/2(r, ai). The heat kernel associated with the

heat equation ∇2ψ − ∂ψ
∂t = 0 in R

n is given by

Kt(r1, r2) =
1

(4π t)n/2
e−

|r1−r2 |2
4t . (23)
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It is important to note that

Kǫ/2(r, ai) → δ(r− ai) , (24)

as ǫ → 0+ in the distributional sense. Then, we can easily find
the resolvent kernel associated with the regularized Hamiltonian
(22)

Rǫ(r1, r2; z) = R0(r1, r2; z)

+
N
∑

i,j=1

R0 (r1, ai; z)
[

8ǫ(z)
]−1

ij
R0
(

aj, r2; z
)

, (25)

where

[8ǫ(z)]ij =
{ 1
λi(ǫ)

−
∫∞
0 dt Kt+ǫ(ai, ai) etz if i = j

−
∫∞
0 dt Kt+ǫ(ai, aj) etz if i 6= j

. (26)

If we choose

1

λi(ǫ)
=
∫ ∞

0
dt Kt+ǫ(ai, ai) e

tEiB (27)

where EiB < 0 (the spectrum of the free Hamiltonian only
includes the continuous spectrum: [0,∞]) is the bound state
energy of the particle to the i th center in the absence of all the
other centers and take the formal limit ǫ → 0+ we find

R(r1, r2; z) = R0(r1, r2; z)

+
N
∑

i,j=1

R0 (r1, ai; z)
[

8(z)
]−1

ij
R0
(

aj, r2; z
)

, (28)

where

8ij(z) =
{

∫∞
0 dt Kt(ai, ai)

(

etE
i
B − etz

)

if i = j

−
∫∞
0 dt Kt(ai, aj) e

tz if i 6= j
. (29)

Kt(x, y) =



















√
2

κ

1

(4π t)3/2
e−κ

2t/4

∫ ∞

κd(x,y)
ds

s e−s2/4κ2t

√

cosh s− cosh κd(x, y)
for n = 2

κd(x, y)

(4π t)3/2 sinh κd(x, y)
e−κ

2t− d2(x,y)
4t for n = 3 ,

(34)

From the explicit form of the heat kernel formula (23), we
obtain

8ij(z) =







1
2π log

(

−i
√

z/|EiB|
)

if i = j

− i
4H

(1)
0 (

√
z|ai − aj|) if i 6= j

, (30)

in two dimensions and

8ij(z) =







(

−i
√
z−
√

|EiB|
)

4π if i = j

− e
i
√
z|ai−aj |

4π |ai−aj| if i 6= j
, (31)

in three dimensions.

Since we deal with the bound states in this paper, it is
convenient to express the principal matrices in terms of the real
positive variable ν = −i

√
z:

8ij(z)|z=−ν2 =







1
2π log

(

ν/

√

|EiB|
)

if i = j

− 1
2π K0(ν|ai − aj|) if i 6= j

, (32)

in two dimensions and

8ij(z)|z=−ν2 =







(

ν−
√

|EiB|
)

4π if i = j

− e
−ν|ai−aj |

4π |ai−aj| if i 6= j
, (33)

in three dimensions. Here we have used K0(z) = iπ
2 H1

0(iz) with
−π < arg(z) < π/2 and K0(z) is the modified Bessel function of
the third kind [28].

2.3. Point-Like Dirac Delta Interactions in
H

2 and H
3

Here we assume that the particle is intrinsically moving in
the manifold. Our heuristic approach to study such type of
interactions on Riemannian manifolds is based on the idea of
using the heat kernel as a regulator for point interactions on
manifolds [13, 14]. Thanks to the fact (24), the regularized
interaction is chosen as the heat kernel on Riemannian
manifolds. Once we have regularized the Hamiltonian, one
can follow essentially the same steps outlined in the previous
section, and obtain exactly the same form of the resolvent and
principal matrix as in (28) and (29), respectively. In this paper,
we only consider the particular class of Riemannian manifolds,
namely two and three dimensional hyperbolic manifolds for
simplicity. The heat kernel on hyperbolic manifolds of constant
sectional curvature −κ2 can be analytically calculated and given
by Grigoryan [29]

where d(x, y) is the geodesic distance between the points x and
y on the manifold. The explicit form of the principal matrix inH3

can then be easily evaluated [15]:

8ij(z) =























1

4π

(

√

κ2 − z −
√

κ2 − EiB

)

if i = j

−





κ exp
(

−d(ai, aj)
√
κ2 − z

)

4π sinh
(

κd(ai, aj)
)



 if i 6= j .

(35)

Similarly, the principal matrix in H
2 can simply be evaluated by

interchanging the order of integration with respect to t and s
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8ij(z) =























1

2π



ψ

(

1

2
+
√

− z

κ2
+ 1

4

)

− ψ





1

2
+

√

−EiB
κ2

+ 1

4







 if i = j

− 1

2π
Q 1

2+
√

− z
κ2

+ 1
4

(

cosh(κd(ai, aj))
)

if i 6= j ,

(36)

where ψ is the digamma function with its integral
representation [28]

ψ(w) =
∫ ∞

0

(

e−t

t
− e−tw

1− e−t

)

dt , (37)

forℜ(w) > 0, and Q is the Legendre function of second type [28]
with its integral representation

Qα(cosh a) =
∫ ∞

a

e−(α+ 1
2 )r

√
2 cosh r − 2 cosh a

dr , (38)

for real and positive a and ℜ(α) > −1.
Since the spectrum of the free Hamiltonian in H

n includes
only the continuous part starting from (n− 1)2κ2/4, it is natural
to assume EiB < (n− 1)2κ2/4.

2.4. Two Types of Relativistic Extensions of
Point-Like Dirac Delta Interactions
We first consider the so-called semi-relativistic Salpeter type free
Hamiltonian (also known as relativistic spin zero Hamiltonian)
perturbed by point like Dirac delta potentials in one dimension.
This problem for the single center case has been first studied in
Albeverio and Kurasov [30] from the self-adjoint extension point
of view. The formal Hamiltonian is exactly in the same form as in
(10), except for the free part

H =

√

− d2

dx2
+m2 −

N
∑

i=1

λi|ai〉〈ai| , (39)

in the units where h̄ = c = 1. This non-local operator is a
particular case of pseudo-differential operators and defined in
momentum space as multiplication by

√

p2 +m2 [31], which
is known as the symbol of the operator. After following
the renormalization procedure outlined above for the point
interactions in two and three dimensions, the resolvent and the
principal matrix is exactly the same form as in (28) and (29),
respectively. However, the explicit expression of the heat kernel
in this case is given by Lieb and Loss [31]

Kt(x, y) =
mt

π
√

(x− y)2 + t2
K1

(

m

√

(x− y)2 + t2
)

, (40)

where K1 is the modified Bessel function of the first kind. Due to
the short-time asymptotic expansion

K1(mt) ∼ 1

mt
, (41)

the diagonal term in the principal matrix (29) is divergent.
In contrast to the one-dimensional case for point Dirac delta
potentials, this problem therefore requires renormalization, as

noticed by Erman et al. [18] and Al-Hashimi et al. [32]. Choosing
the coupling constants as in (27) by substituting the heat kernel
(40) and taking the limit ǫ → 0+, we obtain the resolvent in the
form of the Krein’s formula (11). The explicit form of the diagonal
principal matrix is given by Erman et al. [18]

8ii(z) = ϕ(EiB)− ϕ(z) , (42)

where

ϕ(z) = z

π
√
m2 − z2

(

π

2
+ arctan

z√
m2 − z2

)

. (43)

Its off-diagonal part is given by

8ij(z) =















− 1
π

∫∞
m dµ e−µ|ai−aj|

√
µ2−m2

µ2−m2+z2
if ℜz < 0

−i e
i
√

z2−m2|ai−aj|
√

1− m2

z2

− 1
π

∫∞
m dµ e−µ|ai−aj|

√
µ2−m2

µ2−m2+z2
if ℜz > 0

,

(44)

where EiB is the bound state energy to the i th center in the
absence of all the other centers. Since the spectrum of the free
Hamiltonian includes only the continuous spectrum starting
fromm, it is natural to expect that EiB < m.

An alternative relativistic model can be introduced from a
field theory perspective in two dimensions. If we take very heavy
particles interacting with a light particle, in the extreme limit of
static heavy particles one recovers the following model:

H =
∫∫

R2

d2p

(2π)2

√

(

p2 +m2
)

a†(p)a(p)

−
N
∑

i=1

λiφ
(−)(ai)φ

(+)(ai) , (45)

where ai refer to the locations of static heavy particles. Here

φ(+)(x) =
∫∫

R2

d2p

(2π)2
eip·x√

2(p2 +m2)1/4
a(p) and

φ(−) =
(

φ(+)
)†

, (46)

where † denotes the adjoint. Since this model was worked out
in Dogan and Turgut [17], we will be content with the resulting
formulae only referring to the original paper for the details. We
can compute the diagonal principal matrix as

8ii(z) =
1

2π
ln
( m− z

m− EiB

)

, (47)
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and the off-diagonal part as

8ij(z) = − 1

2π

∫ ∞

0

ds

(s2 + 1)1/2
e−|ai−aj|[m(s2+1)1/2−zs] , (48)

for −m < ℜ(z) < m. Moreover, the binding energy of the single
center should satisfy−m < EiB < m, and the lower bound is due
to the stability requirement, to prevent pair creation to reduce
the energy further thus rendering the model unrealistic in single
particle sector.

2.5. Dirac Delta Interactions Supported by
Curves in R

2 and in R
3

We consider N Dirac delta potentials supported by non-
intersecting smooth curves γj :[0, Lj] → R

n of finite length Lj
(n = 2, 3). Each curve is assumed to be simple, i.e., γj(s1) 6= γj(s2)
whenever s1 6= s2, where s1, s2 ∈ (0, Lj). Our formulation also
allows the simple closed curves.

The Hamiltonian of the system is given by

H = H0 −
N
∑

i=1

λi

Li
|γi〉〈γi| , (49)

where 〈γi|r〉 =
∫

Ŵi
ds δ(r−γi(s)). Then, the Schrödinger equation

(H|ψ〉 = E|ψ〉) associated with this Hamiltonian is

− ∇2ψ(r) −
N
∑

i=1

λi

Li

∫

Ŵi

dsi δ(r− γi(si))
∫

Ŵi

ds′i ψ(γi(s
′
i))

= Eψ(r) . (50)

In contrast to the point-like Dirac delta interactions, this
equation is a generalized Schrödinger equation in the sense that
it is non-local. The resolvent kernel of the above Hamiltonian is
explicitly given in the same form associated with point like Dirac
delta potentials, namely

R(r1, r2; z) = R0(r1, r2; z)

+
N
∑

i,j=1

1
√

LiLj
R0 (r1, γi; z)

[

8(z)
]−1

ij
R0
(

γj, r2; z
)

,

(51)

where

8ij(z) =
{

1
λi
− 1

Li
〈γi|R0(z)|γi〉 if i = j

− 1√
LiLj

〈γi|R0(z)|γj〉 if i 6= j , (52)

or if we express it in terms of the heat kernel

8ij(z) =
{

1
λi

− 1
Li

∫∫

Ŵi×Ŵi dsi ds
′
i

∫∞
0 dt etz Kt(γi(si), γi(s

′
i)) if i = j

− 1√
LiLj

∫∫

Ŵi×Ŵj dsi ds
′
j

∫∞
0 dt etz Kt(γi(sj), γj(s

′
j)) if i 6= j .

(53)

Using the explicit form of the heat kernel in two dimensions, the
above principal matrix becomes

8ij(z) =







1
λi

− i
8πLi

∫∫

Ŵi×Ŵi dsi ds
′
i H

(1)
0 (

√
z|γi(si)− γi(s′i)|) if i = j

− i

8π
√

LiLj

∫∫

Ŵi×Ŵj dsi ds
′
j H

(1)
0 (

√
z|γi(si)− γj(s′j)|) if i 6= j

.

(54)

The spectrum of the free Hamiltonian includes only continuous
spectrum starting from zero, so we expect that the bound state
energies must be below z = 0. For this reason, we restrict the
principal matrix to the negative real values, i.e., z = −ν2, ν > 0.
Then, we have

8ij(z)|z=−ν2 =
{

1
λi

− 1
4πLi

∫∫

Ŵi×Ŵi dsi ds
′
i K0(ν|γi(si)− γi(s′i)|) if i = j

− 1

4π
√

LiLj

∫∫

Ŵi×Ŵj dsi ds
′
j K0(ν|γi(si)− γj(s′j)|) if i 6= j .

(55)
For non self-intersecting curve γi, we can expand it around the
neighborhood of s′i = si in the Serret-Frenet frame at si [33]:

γi(s
′
i) = γi(si)+

(

(s′i − si)− k2i (si)
(s′i − si)

3

3!

)

ti(si)

+
(

ki(si)

2
(s′i − si)

2 − k
′
i(si)

(s′i − si)
3

3!

)

ni(si)+ Ri(si) ,

(56)

where ti(si) and ni(si) are the tangent and normal vectors at
si, and Ri(si) is the remainder term which vanishes faster than
(s′i − si)

3 as s′i → si. We have an extra term proportional to

the binormal vector bi(si) in three dimensions (− ki(si)τi(si)
3! (s′i −

si)
3bi(si), where τi(si) is the torsion of the curve). In the first

approximation, keeping only the linear terms in s′i − si, and
translating and rotating the Serret-Frenet frame attached to the
coordinate system Oxy in such a way that ti(si) = (1, 0) and
ni(si) = (0, 1), we have

|γi(s′i)− γi(si)| ≈ |s′i − si| . (57)

Then, the integral in the diagonal part of the principal matrix (55)
around s′i = si in the first approximation is

∫∫

Ŵi×Ŵi
dsi ds

′
i K0(ν|s′i − si|) . (58)

By making change of coordinates ξi = (s′i+si)

2 and ηi = (s′i−si)

2 , the
above integral becomes

4

∫ Li/2

0
dηi(Li − 2ηi)K0(2νηi) . (59)

Using
∫ Li/2
0 dηi(Li − 2ηi)K0(2νηi) ≤

∫∞
0 dηi(Li − 2ηi)K0(2νηi)

and the integrals of modified Bessel functions [34]

∫ ∞

0
dx xn K0(ax) = 2n−1a−n−1Ŵ2

(

1+ n

2

)

, (60)

where n = 0, 1 and Ŵ is the gamma function, it is easy to see that
the integral that we consider is finite around ηi = 0 (s′i = si).
For non self-intersecting curves, the integrals in the diagonal and
off-diagonal terms in (55) are finite whenever s′i 6= si due to the
upper bounds of the Bessel functions [14]

K0(x) <
2

1+ x
e−

x
2 + e−

x
2 ln

(

x+ 1

x

)

. (61)
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In three dimensions, the Dirac delta potentials supported by
curves requires the renormalization. Using the explicit formula
of the heat kernel (23) for three dimensions, we find

8ij(z) =











1
λi
− 1

4πLi

∫∫

Ŵi×Ŵi dsi ds
′
i
ei
√
z|γi(si)−γi(s′i)|

|γi(si)−γi(s′i)|
if i = j

− 1

4π
√

LiLj

∫∫

Ŵi×Ŵj dsi ds
′
j
e
i
√
z|γi(si)−γj(s′j)|

|γi(si)−γj(s′j)|
if i 6= j

.

(62)
One can show that the diagonal part of the above principal matrix
(53) includes a term

∫∫

Ŵi×Ŵi
dsi ds

′
i

ei
√
z|γi(si)−γi(s′i)|

|γi(si)− γi(s′i)|
, (63)

which is divergent around s′i = si. This can be immediately
seen using the similar method outlined above, that is, the above
integral includes the following integral in the new variable ηi:

∫ Li/2

0
dηi

e2i
√
zηi

ηi
, (64)

which is divergent around ηi = 0.
Similar to the non-relativistic and relativistic point

interactions, we first regularize the resolvent and then by
choosing the coupling constant as a function of the cut-off
parameter ǫ:

1

λi(ǫ)
=
∫ ∞

0
dt etE

i
BKt+ǫ(γi(si), γi(s

′
i)) , (65)

and taking the formal limit ǫ → 0+, we obtain the resolvent
which is exactly the same form as in (51) except the matrix 8
is given by

8ij(z) =







1
Li

∫∫

Ŵi×Ŵi dsi ds
′
i

∫∞
0 dt (etE

i
B − etz)Kt(γi(si), γi(s

′
i)) if i = j

− 1√
LiLj

∫∫

Ŵi×Ŵj dsi ds
′
j

∫∞
0 dt etz Kt(γi(si), γj(s

′
j)) if i 6= j

.

(66)
Here, EiB is the bound state energy of the particle to the

delta interaction supported by ith curve in the absence of
all the other delta interactions. Since the spectrum of the
free Hamiltonian only includes the continuous part starting
from zero, we have EiB < 0. Using the explicit form
of the heat kernel, the principal matrix turns out to be a
finite expression:

8ij(z) =











1
4πLi

∫∫

Ŵi×Ŵi dsi ds
′
i

1
|(γi(si)−γi(s′i))|

(e−
√

|EiB||(γi(si)−γi(s′i))| − ei
√
z|(γi(si)−γi(s′i))|) if i = j

− 1

4π
√

LiLj

∫∫

Ŵi×Ŵj dsi ds
′
j
e
i
√
z|(γi(si)−γj(s′j))|

|(γi(si)−γj(s′j))|
if i 6= j

. (67)

A semi-relativistic generalization of particles interacting with
curves is presented in Kaynak and Turgut[19]. The formal
Hamiltonian can be written as

H =
∫∫

R2

d2p

(2π)2

(

p2 +m2
)

a†(p)a(p)

−
N
∑

i=1

λi

Li

∫

dsi φ
(−)(γi(si))

∫

ds′i φ
(+)(γi(s

′
i)). (68)

We refer to this work for the details and we are content
with writing down the resulting 8 matrix, since for tunneling
corrections to the bound spectra this is all we need:

8ii(z) =
m√
2π2Li

∫ ∞

0
dt

∫

Ŵi×Ŵi
dsids

′
i

K1

(

m
√

t2 + |γi(si)− γi(s′i)|2
)

√

t2 + |γi(si)− γi(s′i)|2
(

eE
i
Bt − ezt

)

,

(69)

8ij(z) = − m
√

2LiLjπ2

∫ ∞

0
dt

∫

Ŵi×Ŵj
dsidsj

K1

(

m
√

t2 + |γi(si)− γj(sj)|2
)

√

t2 + |γi(si)− γj(sj)|2
ezt . (70)

As usual, these formulae must be analytically continued in z
outside of their region of convergence. In our approach we are
interested in the bound states for which these formulae are valid.

3. ANALYTIC STRUCTURE OF THE
PRINCIPAL MATRICES AND THE BOUND
STATE SPECTRUM

It is well-known that the bound state spectrum is determined by
the poles of the resolvent, so the bound state spectrum should
only come from the points z below the spectrum of the free
Hamiltonian, where the matrix8 is not invertible, i.e., the bound
state energies are the real solutions of the equation

det8(E) = 0 , (71)

where E < σ (H0). From all the explicit form of the principal
matrices8ij(z), they are all matrix-valued holomorphic function
on their largest possible set of the complex plane. The analytical
structure of the principal matrices can be determined by using the
generalized Loewner’s theorem [35], which simply states that if f0
is a real valued continuously differentiable function on an open
subset1 of (−∞,∞), then the following are equivalent:

• There exists a holomorphic function f with ℑf ≥ 0 on the
upper half-plane of the complex plane such that f has an
analytic continuation across1 that coincides with f0 on1.

• For each continuous complex valued function F on 1 that
vanishes off a compact subset of1,

∫

1

∫

1

dζ dη K(ζ , η)F̄(ζ )F(η) ≥ 0 , (72)

where for ζ , η ∈ 1,

K(ζ , η) =
{

f0(ζ )−f0(η)
ζ−η if ζ 6= η

f ′0(ζ ) if ζ = η
. (73)

Frontiers in Physics | www.frontiersin.org 8 May 2019 | Volume 7 | Article 69

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Erman and Turgut A Perturbative Approach to the Tunneling Phenomena

For simplicity, let us explicitly show the analytical structure of
the principal matrix associated with the Dirac delta potential
supported by a single curve in two dimensions. In this case,
the principal matrix (52) is just the diagonal part, say 8(E),
and continuously differentiable function of E, where E is on the
negative real axis. Then, we have

8(ζ )−8(η)
ζ − η = − 1

L

1

ζ − η 〈γ |R0(ζ )− R0(η)|γ 〉 , (74)

where ζ , η is on the negative real axis and L is the length of the
curve Ŵ. Using the resolvent identity for the free resolvent, i.e.,
R0(ζ )− R0(η) = (η − ζ )R0(ζ )R0(η), we find

∫

1

∫

1

dζ dη F̄(ζ )F(η)

(

8(ζ )−8(η)
ζ − η

)

= 1

L

∣

∣

∣

∣

∫

1

dη F(η)R0(η)|γ 〉
∣

∣

∣

∣

2

> 0 , (75)

where R†
0(η) = R0(η̄) = R0(η). The positivity is preserved in

the limiting case ζ → η as well. This shows that the analytically
continued function, say 8̃ is a Nevallina function. We denote
the analytically continued function by the same letter 8 for
simplicity. The aforementioned theorem can be generalized to
the matrix valued function 8ij(E), as a result to ensure the
holomorphicity we verify that:

∫

1

∫

1

dζ dη

N
∑

i,j=1

F̄i(ζ )Fj(η)

(

8ij(ζ )−8ij(η)

ζ − η

)

=
∣

∣

∣

∣

∣

∫

1

dη

N
∑

i=1

1

Li
Fi(η)R0(η)|γi〉

∣

∣

∣

∣

∣

2

> 0 , (76)

and the principal matrix in all the other cases including
the relativistic extension of the problem can be similarly
analyzed. Hence, for a large region of the complex plane,
which contains the negative real axis, the principal matrix is a
matrix-valued holomorphic function so that its eigenvalues and
eigenprojections are holomorphic near the real axis [36]. In fact,
we get poles on the real axis for the eigenvalues and the residue
calculus can be used the calculate the associated projections.

Let us consider the eigenvalue problem for the principal
matrix depending on the real parameter E:

8(E)Ak(E) = ωk(E)Ak(E) , (77)

where k = 1, 2, . . . ,N and we assume there is no degeneracy for
simplicity (we consider the generic case). In order to simplify the
notation, we sometimes suppress the variable E in the equations,
e.g., Ak(E) = Ak and so on. Then, the bound state energies can
be found from the zeroes of the eigenvalues ω, that is,

ωk(E) = 0 , (78)

for each k. Thanks to Feynman-Hellmann theorem [37, 38], we
have the following useful result

∂ωk

∂E
= 〈Ak,

∂8

∂E
Ak〉 , (79)

where 〈., .〉 denotes the inner product on C
N . Using the

expression of the principal matrices in all class of singular
interactions described above and using the positivity of the heat
kernel, it is possible to show that

∂ωk

∂E
< 0 . (80)

This is an important result, since it implies that every eigenvalue
cuts the real axis only once, that particular value gives us a bound
state if it is below the spectrum of the free part. Moreover, we
deduce that the ground state energy corresponds to the smallest
eigenvalue of8.

4. OFF-DIAGONAL TERMS OF THE
PRINCIPAL MATRICES IN THE TUNNELING
REGIME

For simplicity, we assume that all binding energies EiB’s or/and
λi’s are different. We consider the situation where the Dirac
delta potentials (supported by points and curves) are separated
far away from each other in the sense that the de Broglie
wavelength of the particle is much smaller than the minimum
distance d between the point Dirac delta potentials or than the
minimum distance between the delta potentials supported by
non-intersecting regular curves with finite length, namely

d≫ λde Broglie , (81)

or in the semi-relativistic case, this can be stated as d≫λCompton.
This regime can be also defined in terms of the energy scales,
namely

1

d2
≪ EB , (82)

where EB is the minimum of the binding energies to the single
delta potentials in the absence of all the others (recall that h̄ =
2m = 1).

In the non-relativistic problem for point interactions in one
and three dimensions, it is clear from the explicit form of the
principal matrices (18), (33) all the off-diagonal terms are getting
exponentially small as d increases, i.e.,

|8ij(ν)| =
exp(−νdij)

2ν
≤ exp(−νd)

2ν
→ 0 , (83)

and

|8ij(ν)| =
exp(−νdij)

4πdij
≤ exp(−νd)

4πd
→ 0 , (84)

as d → ∞. For point interactions in two dimensions, thanks to
the upper bound of the Bessel function [14],

K0(x) <
2

x
exp(−x/2) , (85)
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for all x, the off-diagonal terms of the principal matrix (32)

|8ij(ν)| ≤
1

2π
K0(ν|ai − aj|) ≤

1

2π
K0(νd) <

1

νπd
exp(−νd) ,

(86)
is going to zero exponentially as d → ∞. In the above
expressions for principal matrices, we have expressed them in
terms of a real positive variable ν for simplicity. Not all the
bound state spectrum of the potentials we consider in this paper
is negative, so it is not always useful to express the principal
matrix in terms of a real positive variable ν. For that purpose, we
will consider the principal matrices restricted to the real values,
namely z = E, where E is the real variable (not necessarily
negative).

For point interactions in three dimensional hyperbolic
manifolds, the off-diagonal principal matrix restricted to the real
values E < κ2

|8ij(E)| ≤





κ exp
(

−d
√
κ2 − z

)

4π sinh
(

κd
)



 (87)

is exponentially small as d → ∞. Here d is the minimum
geodesic distance between the centers.

As for the point interactions in two dimensional hyperbolic
manifolds, the off-diagonal principal matrix restricted to the real
values E < κ2/4 becomes

|8ij(E)| =
1

2π
Q 1

2+
√

− E
κ2

+ 1
4

(

cosh(κd(ai, aj))
)

. (88)

Using the series representation of the Legendre function of
second kind [28]

Qv(coshα) =
∞
∑

k=0

Ŵ(k+ v+ 1)Ŵ
(

k+ 1
2

)

Ŵ
(

k+ v+ 3
2

)

Ŵ(k+ 1)
e−α(2k+v+1) , (89)

where v = 1
2 +

√

− E
κ2

+ 1
4 > 1 and α = κd(ai, aj), and splitting

the sum, we obtain

|8ij(E)| =
Ŵ(v+ 1)Ŵ

(

1
2

)

Ŵ
(

v+ 3
2

)

Ŵ(1)
e−α(v+1)

+
Ŵ(1+ v+ 1)Ŵ

(

1+ 1
2

)

Ŵ
(

1+ v+ 3
2

)

Ŵ(1+ 1)
e−α(2+v+1)

+
∞
∑

k=2

Ŵ(k+ v+ 1)Ŵ
(

k+ 1
2

)

Ŵ
(

k+ v+ 3
2

)

Ŵ(k+ 1)
e−α(2k+v+1) . (90)

Since Gamma function is increasing on [2,∞],
Ŵ(k+v+1)Ŵ

(

k+ 1
2

)

Ŵ
(

k+v+ 3
2

)

Ŵ(k+1)
<

1 for all k ≥ 2, and v > 1, we can find an upper bound for the
above the infinite sum as

e−4κd−κd(v+1)
∞
∑

k=0

e−2kκd , (91)

which is simply a geometric series. All these show that the
off-diagonal principal matrix in two dimensional hyperbolic
manifolds is exponentially small as d → ∞ and the leading term
is given by the first term of the series expansion.

As for the delta interactions supported by curves, the
minimum of the pairwise distances between the supports of Dirac
delta potentials always exists since dij(s, s

′) =
√

|(γi(s)− γj(s′))|
is a continuous function on compact interval s ∈ [0, L], so we
have

|(γi(si)−γj(s′j))|2 ≥ min
si ,s

′
j

|(γi(si)−γj(s′j))|2 : = dij ≥ min
ij

dij : = d ,

(92)
for i 6= j. Then,

|8ij(E)| ≤
√

Li Lj

∫ ∞

0
dt

e−d2/4t+tE

4π t
=
√

Li Lj

2π
K0(

√
−Ed) .

(93)
Due to the upper bound of the Bessel function (85), the off-
diagonal principal matrix is going to zero as d → ∞.

Similarly, the explicit forms of the off-diagonal parts of the
principal matrices (44) and (48) in the relativistic cases are
exponentially going to zero as d → ∞ (by assuming the
order of the limit and the integral can be interchanged). For the
other relativistic cases (including the relativistic delta potentials
supported by curves), the off diagonal terms of the principal
matrices can also be shown to be exponentially small.

Therefore, we see that the principal matrices for all the above
models are diagonally dominant in the “large" separation regime.
However, the exponentially small off-diagonal terms are not
analytic in the small parameter ( 1

EBd2
). Nevertheless, we can keep

track of small values of the off-diagonal terms by introducing an
artificial parameter ǫ in order to control the orders of terms in the
perturbative expansion, that we are going to develop in the next
section.

5. SPLITTING IN BOUND STATE ENERGIES
THROUGH PERTURBATION THEORY

Let us consider the family of principal matrices restricted to the
real axis E:

8(E) = 80(E)+ ǫ δ8(E) , (94)

where 80 is the diagonal part of the principal matrix, and
δ8 is off-diagonal part of it and this is the “small" correction
(perturbation) to the diagonal part. Since 8(E) is symmetric
(Hermitian), we can apply standard perturbation techniques to
the principal matrix [5, 36, 39]. For this purpose, let us assume
we can expand the eigenvalues and eigenvectors as follows:

ωk = ωk
0 + ǫ ωk

1 + ǫ2 ωk
2 + . . .

Ak = Ak
0 + ǫ Ak

1 + ǫ2 Ak
2 + . . . , (95)

for each k.
The solution to the related unperturbed eigenvalue problem

80A
k
0 = ωk

0A
k
0 , (96)
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is given by

ωk
0 = [80]kk . (97)

Once we have found the eigenvalues and eigenvectors of the
diagonal part of the principal matrix or unperturbed eigenvalue
problem, we can perturbatively solve the full problem. The
standard perturbation theory gives us the eigenvalues ωk up to
second order:

ωk
1(E) = 〈Ak

0(E), δ8(E)A
k
0(E)〉 =

[

δ8(E)
]

kk
, (98)

ωk
2(E) =

N
∑

l=1
l 6=k

∣

∣

∣
〈Ak

0(E), δ8(E)A
k
0(E)〉

∣

∣

∣

2

ωk
0(E)− ωl

0(E)

=
N
∑

l=1
l 6=k

8lk(E)8kl(E)

ωk
0(E)− ωl

0(E)
. (99)

and the first order correction to the eigenvectors Ak is given by

Ak
1(E) =

N
∑

j=1
j 6=k

δ8jk(E)

ωk
0(E)− ω

j
0(E)

A
j
0(E) . (100)

Since the bound state energies are determined from the solution
of Equation (78), the bound state energies in the zeroth order
approximation can easily be found from ωk

0(E) = 0. The solution
is given by

E = Ek0 = EkB , (101)

and the corresponding eigenvector is

Ak
0(E

k
B) ≡ Ak

0 ≡ ek ≡

















0
...
1
...
0

















, (102)

where 1 is located in the kth position of the column and other
elements of it are zero or we can write

Aki
0 = eki = δki . (103)

Here eki s form a complete orthonormal set of basis.

N
∑

i=1

eki e
l
i = δkl . (104)

The bound state energies to the full problem up to the second
order is then determined by solving the following equation

ωk(E) = ωk
0(E)+ ǫ2 ωk

2(E) = 0 , (105)

where we have used the first order result

ωk
1 = 0 (106)

from the Equation (98).
Let us now expand ωk

0(E) and8kl(E) for k 6= l around E = EkB:

ωk
0(E) = ∂ωk

0(E)

∂E

∣

∣

∣

∣

∣

E=EkB

δEk +O((δEk)2) ,

8kl(E) = 8kl(E
k
B)+

∂8kl(E)

∂E

∣

∣

∣

∣

E=EkB

δEk +O((δEk)2) ,(107)

where ωk
0(E

k
B) = 0. If we substitute (107) into (105) and (99),

and use Feynman-Hellman theorem given in previous section,
the condition (105) up to the second order turns out be

∂8kk(E)

∂E

∣

∣

∣

∣

E=EkB

δEk − ǫ2
N
∑

l=1
l 6=k

1

8ll(E
k
B)

[

8kl(E
k
B)8lk(E

k
B)

+
(

8kl(E
k
B)
∂8lk(E)

∂E

∣

∣

∣

∣

E=EkB

+8lk(E
k
B)
∂8kl(E)

∂E

∣

∣

∣

∣

E=EkB

)

δEk

]

×
[

1+ 1

8ll(E
k
B)

(

∂8ll(E)

∂E

∣

∣

∣

∣

E=EkB

− ∂8kk(E)

∂E

∣

∣

∣

∣

E=EkB

)

δEk

]−1

+ O((δEk)2) = 0 . (108)

If we also expand the last factor in the powers of (δEk) and
ignore the second order terms and combine the terms using the
symmetry property of principal matrix, we find

[

∂8kk(E)

∂E

∣

∣

∣

∣

E=EkB

+ ǫ2
N
∑

l=1
l 6=k

8kl(E
k
B)8lk(E

k
B)

82
ll
(EkB)

(

∂8ll(E)

∂E

∣

∣

∣

∣

E=EkB

− ∂8kk(E)

∂E

∣

∣

∣

∣

E=EkB

)

− 2

N
∑

l=1
l 6=k

8kl(E
k
B)

8ll(E
k
B)

∂8lk(E)

∂E

∣

∣

∣

∣

E=EkB

]

δEk

= ǫ2
N
∑

l=1
l 6=k

8kl(E
k
B)8lk(E

k
B)

8ll(E
k
B)

+O((δEk)2) .

(109)

Ignoring the second and third terms on the left hand side of
the equality (this is guaranteed by the assumption 8kk(E

k
B) ≫

|8kl(E
k
B)|) and setting ǫ = 1, we get the change in Ek (to first

order) as,

δEk ≃
(

∂8kk(E)

∂E

∣

∣

∣

∣

E=EkB

)−1 N
∑

l=1
l 6=k

8kl(E
k
B)8lk(E

k
B)

8ll(E
k
B)

+O((δEk)2) .

(110)
This is our main formula for all types of singular interactions we
consider. It is striking that it contains the information about the
tunneling regime.
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6. EXPLICIT EXAMPLES FOR THE
SPLITTING IN THE ENERGY

Let us now compute explicitly how the bound state energies
change in the tunneling regime for the above class of singular
potentials.

For point Dirac delta potentials in one dimension, the bound

state energies are negative so EkB = −|EkB| and

δEk ≃
√

|EkB|
N
∑

l=1
l 6=k

1
(

1
λl
− 1

2

√

|EkB|

) exp

(

−2

√

|EkB| |ak − al|
)

, (111)

in the tunneling regime d
√
|EB| ≫ 1.

For point Dirac delta potentials in two dimensions, the bound
state energies are negative and

δEk ≃
N
∑

l=1
l 6=k

2π
√

|EkB||ak − al| log(EkB/ElB)

exp

(

−2

√

|EkB||ak − al|
)

, (112)

again in the tunneling regime. Here we have used the asymptotic
expansion of the modified Bessel function of the third kind

K0(x) ≈
√

π
2x exp(−x) for x≫ 1 [28].

In three dimensions, we have

δEk ≃
N
∑

l=1
l 6=k

2

√

|EkB|
4π2|ak − al|2

exp

(

−2

√

|EkB||ak − al|
)

(

√

|EkB| −
√

|ElB|
) . (113)

For point interactions in three dimensional hyperbolic
manifolds, the bound state energies are below κ2 (see [15]
for details) and

δEk ≃
√

κ2 − EkB

N
∑

l=1
l 6=k

4κ2
√

κ2 − EkB −
√

κ2 − ElB

exp

(

−2d(ak, al)

(

κ +
√

κ2 − EkB

))

, (114)

in the tunneling regime. Here we have used sinh2 x ≈ e2x

4 as x≫1.
For point interactions in two dimensional hyperbolic

manifolds, the bound state energies are below κ2/4 (see [15]) and

δEk ≃
2κ2

√

1
4 −

EkB
κ2

ψ (1)

(

1
2 +

√

1
4 −

EkB
κ2

)

N
∑

l=1
l 6=k

1

ψ

(

1
2 +

√

1
4 −

EkB
κ2

)

− ψ
(

1
2 +

√

1
4 −

ElB
κ2

)

×
∞
∑

m=0

Ŵ

(

m+ 3
2 +

√

1
4 −

EkB
κ2

)

Ŵ(m+ 1
2 )

Ŵ

(

m+ 2+
√

1
4 −

EkB
κ2

)

Ŵ(m+ 1)

exp



−κd(ak, al)



2m+ 3

2
+

√

1

4
− EkB
κ2







 ,

(115)

where ψ (1) is the polygamma function and we have used the
infinite series representation of the Legendre function of second
kind (89).

For semi-relativistic point interactions in one dimensions, the
bound state energies are below m. Let us first find explicitly
integrals in the off-diagonal part of the principal matrix
asymptotically

1

π

∫ ∞

m
dµe−µ|ak−al|

√

µ2 −m2

µ2 −m2 + (EkB)
2

(116)

in the tunneling regime md ≫ 1. For this purpose, let us rescale
the integration variable s = µ/m so that the above integral

becomes m2

π

∫∞
1

e−sm|ak−al |
√
s2−1

m2(s2−1)+(EkB)
2
. Note that −s in the exponent

has its maximum at s = 1 on the interval (1,∞). Then,
only the vicinity of s = 1 contributes to the full asymptotic
expansion of the integral for large m|ak − al|. Thus, we may

approximate the above integral by m2

π

∫ ǫ

1
e−sm|ak−al |

√
s2−1

m2(s2−1)+(EkB)
2
, where

ǫ > 1 and replace the function
√
s2−1

m2(s2−1)+(EkB)
2
in the integrand

by its Taylor expansion [40]. It is important to emphasize that the
full asymptotic expansion of this integral asm|ak−al| → ∞ does
not depend on ǫ since all other integrations are subdominant
compared to the original integral. Hence, we find

m2

π

∫ ǫ

1

e−sm|ak−al|
√
s2 − 1

m2(s2 − 1)+ (EkB)
2

∼ m2

π

∫ ǫ

1
ds e−sm|ak−al|

√
2
√
s− 1

(EkB)
2

∼ m2

π

∫ ∞

1
ds e−sm|ak−al|

√
2
√
s− 1

(EkB)
2

∼ 1√
2π

(

m

EkB

)2
1

m|ak − al|3/2

exp (−m|ak − al|) , (117)

where we have used the fact that the contribution to the integral
outside of the interval (1, ǫ) is exponentially small. Substituting
this result into Equation (110), we find

δEk ≃
(

ϕ′(EkB)
)−1

N
∑

l=1
l 6=k

1

2π

(

m

EkB

)4
1

m|ak − al|3
1

ϕ(EkB)− ϕ(E
l
B)

exp
(

−2m|ak − al|
)

(118)

when EkB < 0 and
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δEk ≃
(

ϕ′(EkB)
)−1

N
∑

l=1
l 6=k

1

ϕ(EkB)− ϕ(ElB)

(

e
−
√

m2−(EkB)
2|ak−al|EkB

√

m2 − (EkB)
2

+ 1√
2π

(

m

EkB

)2
1

m|ak − al|3/2

exp (−m|ak − al|)
)2

(119)

when EkB > 0.
For the field theory motivated relativistic version we can use a

saddle point approximation, assuming that tunneling condition,

given by
√

m2 − (EiB)
2dij >> 1 is satisfied. Here it is enough to

consider the functionm(1+s2)1/2−EiBs and expand it around the

maximum EiB/
√

m2 − (EiB)
2. The denominator can be replaced

by its value at the maximum, we find that the leading behavior
goes as

8ij(E
i
B) ∼ − 1

2π

√

m2 − (EiB)
2

m
e−dij

√
m2−(EiB)

2

∫ ∞

−EiB/
√

m2−(EiB)
2
dξ e

−dij[m
2−(EiB)

2]3/2 ξ2

2m2 , (120)

(assuming that EiBdij’s remain large) evaluating the integral we
end up with,

8ij ∼ − 1√
2π

1

[dij

√

m2 − (EiB)
2]1/2

e−dij
√

m2−(EiB)
2
. (121)

Once we obtain the off-diagonal terms responsible for the
tunneling contributions, calculating the derivatives of the
diagonal parts are simple,

∂8ii(E)

∂E

∣

∣

∣

E=EiB

= − 1

2π

1

m− EiB
. (122)

Substituting these expressions into the general formulae we have
derived, will give the tunneling contribution to energy levels that
leads to small shifts in the binding energies.

For Dirac delta potentials supported by curves in two
dimensions: we define a kind of center of mass by

xi =
1

Li

∫

Ŵi

dsi γ (si) , (123)

and write

|γ (si)− γj(sj)| = |γ (si)− xi − γj(sj)+ xj + (xi − xj)| , (124)

in the argument of the functions in the principal matrix. When
we evaluate the expressions we expand these terms by keeping
only first order terms in the small quantities. The resulting Bessel

functions can be expanded again to find the leading corrections
for the curve to curve interaction terms. We use the expression
above for the off diagonal terms and define dij = |xi − xj| for
simplicity and introduce a unit vector as d̂ij in a similar way. As a
result we have the leading order expansion,

K0(
√
−Edij)−K1(

√
−Edij)

1

dij

[

d̂ij ·(γi(si)−xi)−d̂ij ·(γj(sj)−xj)
]

.

(125)
When we insert this into 8ij expression and integrate over the
curve, we find

∫

dsi d̂ij · (γi(si)− xi) = d̂ij ·
∫

dsi (γi(si)− xi) = 0 , (126)

and similarly for the other part. Thus, we see that the only
contribution comes from the second order which we neglect for
our purposes. However, a systematic expansion in powers of 1

dij

can be developed for higher order correction as described. Using
the asymptotic expansion of K0(z) for large values of z [28],

Kν(z) ∼
√

π

2z
e−z , (127)

for all ν ≥ 0 we get from (110) a more elegant expression,

δEk ≃
(

∂8kk(E)

∂E

∣

∣

∣

∣

E=EkB

)−1 N
∑

l=1
l 6=k

(

LkLl/8π

√

|EkB|dkl
)

(

8ll(E
k
B)
)

exp

(

−2

√

|EkB|dkl
)

+O((δEk)2) , (128)

where 8ll and its derivative at EkB can be computed from the
explicit expression of the principal matrix (54). For Dirac delta
potentials supported by curves in three dimensions, there is
really no change, since renormalization is required only for the
diagonal parts, we have the off-diagonal expressions already in a
simpler form, as a result of the above analysis, the leading order
expression is found to be,

δEk ≃
(

∂8kk(E)

∂E

∣

∣

∣

∣

E=EkB

)−1 N
∑

l=1
l 6=k

(

LkLl/16π
2d2

kl

)

(

8ll(E
k
B)
)

exp

(

−2

√

|EkB|dkl
)

+O((δEk)2) , (129)

where 8ll and its derivative at EkB can be computed from the
explicit expression of the principal matrix (67).

In a similar way, we look at the tunneling correction to bound
state energies for relativistic particle coupled to Dirac potentials
supported over curves. Again we use the approximation that
the separation of the curves are large and the extend of the
curves compared to these distances are small. This is not the only
possible approximation, one can envisage a situation in which the
separations are large but the extend of the curves are also large.
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The essential ideas are captured by our example so to achieve
technical simplicity we keep this approximation. Essential point
is to expand the off-diagonal terms in the leading order. By
scaling t variable in the integral we can write 8ij(E

i
B) term as,

8ij(E
i
B) = − m

√

2LiLjπ2

∫ ∞

0
dt

∫

Ŵi×Ŵj
dsidsj

K1

(

m|γ (si)− γ (sj)|
√
t2 + 1

)

√
t2 + 1

eE
i
Bt|γ (si)−γ (sj)|

∼ −
∫

Ŵi×Ŵj
dsidsj

m1/2

2
√

|γ (si)− γ (sj)|(LiLj)1/2π3/2

∫ ∞

0
dt

e−|γ (si)−γ (sj)|[m
√
t2+1−EiBt]

(t2 + 1)3/4
, (130)

where in the second line we used the asymptotics of K1 for large
argument (127). We may now use the same argument by means
of the center of mass of the curves to define center to center
distances and expand around the center of mass, not surprisingly
we again find that the first order corrections become zero, only
the center to center distance matters. Therefore, to leading order
we have a simpler expression,

8ij(E
i
B) ∼ −

m1/2(LiLj)
1/2

2π3/2d
1/2
ij

∫ ∞

0
dt

e−dij[m
√
t2+1−EiBt]

(t2 + 1)3/4
. (131)

This is of the type we have worked out for the semi-relativistic
particle, and in the same manner, a saddle point approximation
can be applied in a simple way, resulting

8ij(E
i
B) ∼ −

(LiLj)
1/2

√
2πdij

e−dij
√

m2−(EiB)
2
. (132)

We may now employ our general expressions to find the
tunneling corrections. The derivative of the diagonal term can be

simplified by means of ∂K0(z)
∂z = −K1(z).

7. DEGENERATE CASE AND WAVE
FUNCTIONS FOR POINT INTERACTIONS

Let us now compute the energy splitting of two equal strength
delta functions supported by the points −a and a in two
dimensions. This is exactly the problem we discuss in the
introduction, yet this version can be solved exactly. The
approximation we use corresponds to the standard WKB
approach. Let us recall that when we have two degenerate
eigenvalues

ω1
0(E) = ω2

0(E), (133)

the degeneracy is lifted by the diagonal perturbation and as is
well-known the diagonalizing the perturbation matrix in the
degeneracy subspace gives us the first order correction:

ω1
1(E) = +|812(E)| ,
ω2
1(E) = −|812(E)| . (134)

If we call the common bound state as EB, for k = 1, 2 to get the
first order correction we truncate the eigenvalue equations as,

ωk
0(EB + Ek1)+ ωk

1(EB) = 0 (135)

which leads to

Ek1 ∼ (−1)k+12|EB|K0(2
√

|EB|a) ∼ (−1)k+1 |EB|3/4
√
π√

a
e−2

√
|EB|a ,

(136)

where we have used the asymptotic expansion of K0 given by
(127). Thus, the splitting is given by

δE1 = E11 − E21 ∼ 2
|EB|3/4

√
π√

a
e−2

√
|EB|a , (137)

which should be compared with the usual one-dimensional
double well potential splitting given in the introduction. Note
that in the former case, the strength of each harmonic well is
proportional to the square of the separation therefore the initial
energy level is not independent as in the delta function case and
is proportional to the square of the separation. the exponent
thus gets the square of the distance as the suppression factor,
if we assume that EB ∼ |a|2 one can see that the exponents
behave exactly the same way. Actually, one can also compare
the first order perturbation result for the splitting δE1 with the
numerical result by solving det8(ν) = ln(ν/µ) − ±K0(2aν) =
0 numerically for each a by Mathematica (see Figure 2). We
assume that a > eγ in order to guarantee the existence of the
second bound states, where γ is the Euler’s constant.

The same method can also be applied to the one-dimensional
case. In the symmetrically placed Dirac delta potentials with
equal strengths λ, the exact bound state energies when they are
sufficiently far away from each other (when a > 1/λ, there are
two bound state energies) can analytically be computed [41]

E± = −
(

λ

2
+ 1

2a
W
(

±aλe−aλ
)

)2

, (138)

whereW is the LambertW function [42], which is defined as the
solution y(x) of the transcendental equation yey = x. From (17),
the principal matrix in this case reads

8ij(E) =
{ 1
λ
− 1

2
√
−E

if i = j

− 1
2
√
−E

e−2a
√
−E if i 6= j

. (139)

Then, the first order perturbation result following the above
procedure gives

δE1 = λ2e−aλ , (140)

where we have used well-known result EB = − λ2

4 . Then, one can
easily find the error between the exact result δEexact = E+ − E−
and the first order perturbation result δE1 in the splitting of the
energy, see the Figure 3.

The three dimensional case can also be studied in this way and
we can similarly solve det8(ν) = (ν − µ) − ± 1

2a e
−2aν in terms
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FIGURE 2 | Numerical and first order perturbation results for the splitting in the energy as a function of a for µ = 1 unit in two dimensions.

FIGURE 3 | Exact and first order perturbation results for the splitting in the energy as a function of a for λ = 1 unit in one dimension.

of the Lambert W function and compare with the first order
perturbation result for the splitting in the energy (Figure 4):

Here we assume that a > 1/2µ in order to guarantee the
existence of second bound states.

Let us emphasize that in the usual WKB approach one
constructs the wave functions in classically allowed and
forbidden regions respectively and use a subtle argument to
connect the different regions. In this case, there is really no
forbidden region, except the supports of the attractive regions.
Indeed right here classically there is no sensible way to define
the motion of a particle. Nevertheless, it is possible to find the
effect of tunneling for the wave functions from our formalism.

It relies on the first order corrections to the eigenstates of the
principal operator, notice that an expansion of the eigenstates of
the principal operator can be found in the non-degenerate case as

Ak(EkB) = Ak
0(E

k
B)+

∑

r 6=k

〈Ak
0(E

k
B), δ8kr(E

k
B)A

r
0(E

k
B)〉

ωk
0(E

k
B)− ωr

0(E
k
B)

Ar
0(E

k
B) .

(141)
Note that to this order the normalization is not important,
moreover we do not need to use a subtle argument about the
shift of the eigenvalues since the change of eigenvalue is already
second order in the exponentially small quantities, any such
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FIGURE 4 | Exact and first order perturbation results for the splitting in the energy as a function of a for µ = 1 unit in three dimensions.

correction will be of lower order as we have seen in the shift of
energy calculations.

It is well-known that the wave function of the system
associated with the bound states can be found from the explicit
expression of the resolvent formula. Since the eigenvalues
are isolated we can find the projections onto the subspace
corresponding to this eigenvalue by the following contour
integral (Riesz Integral representation) [5]:

Pk = − 1

2π i

∮

Ck

dz R(z), (142)

where Ck is a small contour enclosing the isolated eigenvalue, say
Ek. We note that the free resolvent does not contain any poles
on the negative real axis for the Dirac delta potentials supported
by points, so all the poles on the negative real axis will come
from the poles of inverse principal matrix 8−1(z). Since the
principal matrix is self-adjoint on the real axis, we can apply the
spectral theorem. Moreover, its eigenvalues and eigenprojections
are holomorphic near the real axis, as emphasized in section 3.
Then, we can write the spectral resolution of the inverse principal
matrix,

8−1
ij (z) =

∑

k

1

ωk(z)
Pk(z)ij , (143)

where Pk(z)ij = Aik(z)Ajk(z), Aki(z) is the normalized

eigenvector corresponding to the eigenvalue ωk(z). Then, from
the residue theorem, we find the square integrable wave function
associated with the bound state energy Ek as

ψk(x) =α
N
∑

i=1

R0(x, ai;Ek)Aki(Ek) , (144)

where α = (− ∂ωk

∂E

∣

∣

Ek
)−1/2 is the normalization constant. This is

actually a general formula for the bound state wave function for
the Dirac delta potentials supported by points in R

n. For n = 2,
we have

ψk(x) =
α

2π

N
∑

i=1

K0(
√

−Ek|x− ai|)Aki(Ek) . (145)

Let us recall that the eigenstates for the unperturbed levels are
given by unit vectors (103), when we write this into the formula
for the wave function (145). As a result, using the first order

correction (100) to the eigenstate Ak we find that the change of
the wave original wave function in the first order becomes,

δψk(x) = (4πEkB)
1/2

2π

∑

l 6=k

1

ln(|EB
k
|/|EB

l
|)
K0(

√

|EB||ak − al|)K0(
√

|EB
k
||x− al|)

∼
√
2|EkB|1/4

∑

l 6=k

1

ln(|EB
k
|/|ElB|)

e
−
√

|EkB ||ak−al |
√
|ak − al|

K0(

√

|EkB||x− al|) ,

(146)

where we use

1
(

− ∂ωk
0(E)

∂E

∣

∣

∣

EkB

)
= 4π |EkB| . (147)

This form of the wave function clearly shows the tunneling nature
of the wave functions. It is now quite straightforward to compute
the wave functions in this approximation for all the other cases
we consider.

CONCLUSION

In this paper, we have first reviewed the basic results about
some singular interactions, such as the Dirac delta potentials
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supported by points on flat spaces and hyperbolic manifolds, and
delta potentials supported by curves in flat spaces. Moreover,
the results in the relativistic extensions of the above-mentioned
potentials have been also reviewed which was essentially given
in Altunkaynak et al. [13], Erman and Turgut [14], Erman [15],
Dogan and Turgut [17], Erman et al. [18], and Kaynak and
Turgut[19]. The main result of this paper is to develop some
kind of perturbation theory applied to some class of singular
potentials in order to find the splitting in the energy due to the
tunneling. This was only developed for Dirac delta potentials
supported by points in Erman and Turgut [14], here we extend
the method for various kind of Dirac delta potentials as well as its
relativistic extensions.

It is possible to give some bounds over the error terms if we
assume that the errors in perturbation theory can be estimated.
Typical perturbative expansions are asymptotic therefore a
truncation is needed to get more accurate results, one knows that
it gets worse beyond a few terms. Themore accurate thing to do is
to obtain a Borel summed version but that is beyond the content
of the present paper, it will depend very much of the specifics of
the model whereas we prefer to give a broader perspective.

The comparison with conventional methods certainly would
be very useful, nevertheless at present we do not know how a
more conventional approach, such as WKB or instanton calculus
can be performed in these singular problems. Since the potentials
are localized at points or along the curves, the variation of
the potential relative to any wavelength is always much more

important. Indeed this unusual behavior changes the problem
completely. We need to give a meaning to these potentials first
and redevelop the WKB analysis. Our main point here is that
in this description of the singular potentials via resolvents, the
WKB’s reincarnation is given by a perturbative analysis of the
eigenvalues of the principal operator for large separations of
the supports.
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