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We develop an approach on how to define single-point interactions under the application

of external fields. The essential feature relies on an asymptotic method based on

the one-point approximation of multi-layered heterostructures that are subject to bias

potentials. In this approach, the zero-thickness limit of the transmission matrices of

specific structures is analyzed and shown to result in matrices connecting the two-sided

boundary conditions of the wave function at the origin. The reflection and transmission

amplitudes are computed in terms of these matrix elements as well as biased data.

Several one-point interaction models of two- and three-terminal devices are elaborated.

The typical transistor in the semiconductor physics is modeled in the “squeezed limit”

as a δ- and a δ′-potential and referred to as a “point” transistor. The basic property of

these one-point interaction models is the existence of several extremely sharp peaks

as an applied voltage tunes, at which the transmission amplitude is non-zero, while

beyond these resonance values, the heterostructure behaves as a fully reflecting wall.

The location of these peaks referred to as a “resonance set” is shown to depend

on both system parameters and applied voltages. An interesting effect of resonant

transmission through a δ-like barrier under the presence of an adjacent well is observed.

This transmission occurs at a countable set of the well depth values.

Keywords: one-dimensional quantum systems, transmission, point interactions, resonant tunneling, controllable

potentials, heterostructures

1. INTRODUCTION

One-dimensional quantum systems modeled by Schrödinger operators with singular zero-range
potentials have been discussed widely in both the physical and mathematical literature [see
books [1–3] for details and references]. Additionally, a whole body of literature beginning from the
early publications [4–11] (to mention just a few) has been published, where the one-dimensional
stationary Schrödinger equation

− ψ ′′(x)+ V(x)ψ(x) = Eψ(x), (1)

with the potentialV(x) given in the form of distributions, whereψ(x) is the wave function and E the
energy of an electron, was shown to exhibit a number of peculiar features with possible applications
to quantum physics. Currently, because of the rapid progress in fabricating nanoscale quantum
devices, of particular importance is the point modeling of different structures like quantum
waveguides [12, 13], spectral filters [14, 15], or infinitesimally thin sheets [16, 17].
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In the present paper we follow the traditional approach [see
the work [7] by Albeverio et al. and references therein], according
to which there exists a one-to-one correspondence between
the full set of self-adjoint extensions of the one-dimensional
free Schrödinger operator and the two families of boundary
conditions: non-separated and separated. The non-separated
extensions describe non-trivial four-parameter point interactions
subject to the two-sided at x = ±0 boundary conditions on
the wave function ψ(x) and its derivative ψ ′(x) given by the
connection matrix of the form

(

ψ(+0)
ψ ′(+0)

)

= 3

(

ψ(−0)
ψ ′(−0)

)

, 3 = eiχ
(

λ11 λ12
λ21 λ22

)

, (2)

where χ ∈ [0, π), λij ∈ R fulfilling the condition λ11λ22 −
λ12λ21 = 1. The separated point interactions are described by
the direct sum of the free Schrödinger operators defined on the
half-lines (−∞, 0), (0, ∞) and subject to the following pair of
boundary conditions:

ψ ′(−0) = h−ψ(−0) and ψ ′(+0) = h+ψ(+0), (3)

where h± ∈ R ∪ {∞}. For instance, if {h−, h+} = {∞, ∞},
Equation (3) describe the Dirichlet boundary conditions
ψ(± 0) = 0. In physical terms, a separated self-adjoint
extension means that the corresponding point potential is
completely opaque for an incident particle. Alternatively, the
boundary conditions can be connected using the Asorey-Ibort-
Marmo formalism [18] or the Cheon-Fülöp-Tsutsui approach
[19, 20]. The advantage of both these connecting representations
is that they enable to include all the self-adjoint extensions
without treating the particular cases as any parameters tend to
infinity. In other words, the relations (3) are excluded from
the consideration.

Some particular examples of Equation (1) and the
corresponding 3-matrix (2) are important in applications.
The most simple and widespread potential is Dirac’s delta
function δ(x), i.e., V(x) = αδ(x) where α is a strength constant
(or intensity). The wave function ψ(x) for this interaction (called
the δ-interaction or δ-potential) is continuous at the origin
x = 0, whereas its derivative undergoes a jump, so that the
boundary conditions read ψ(− 0) = ψ(+ 0) = :ψ(0) and
ψ ′(+ 0)− ψ ′(− 0) = αψ(0) yielding the3-matrix in the form

3 =
(

1 0
α 1

)

. (4)

In the simplest case, this point potential is constructed from
constant functions defined on a squeezed interval.

The dual point interaction for which the derivative ψ ′(x) is
continuous at the origin, but ψ(x) discontinuous, is called a δ′-
interaction (the notation adopted in the literature [2]). This point
interaction with strength β defined by the boundary conditions
ψ ′(− 0) = ψ ′(+ 0) = :ψ ′(0) and ψ(+ 0) = ψ(− 0) = βψ ′(0)
has the3-matrix of the form

3 =
(

1 β

0 1

)

. (5)

As a particular example of the Cheon-Shigehara approach
[21], the δ′-interaction can be constructed from the spatially
symmetric configuration consisting of three separated δ-
potentials having the intensities scaled in a non-linear way as
the distances between the potentials tend to zero. Following this
approach, Exner et al. [22] have approximated the δ-potentials by
regular functions and realized rigorously the similar one-point
limit in the norm resolvent topology. In particular, they have
proved that the resulting limit takes place if the distances between
the peaks of δ-like regularized potentials tend to zero sufficiently
slow relative to shrinking these potentials to the origin. The
other aspects of the δ′-interaction and its approximations by local
and non-local potentials have been investigated, for instance, by
Albeverio and Nizhnik [23–27], Fassari and Rinaldi [28] (see also
references therein). The δ′-interaction can be used together with
background potentials. Thus, Albeverio et al. [29] have rigorously
defined the self-adjoint Hamiltonian of the harmonic oscillator
perturbed by an attractive δ′-interaction of strength β centered at
the origin x = 0 (the bottom of a confining parabolic potential),
explicitly providing its resolvent. In a subsequent publication
[30], their study has been extended for the perturbation by a
triple of attractive δ′-interactions using the Cheon-Shigehara
approximation. It is worth mentioning the recent publication
[31], where Golovaty has constructed a new approximation to
the δ′-interaction involving two parameters in the boundary
conditions. Here the connection matrix

3 =
(

θ β

0 θ−1

)

(6)

describes the two-parametric family of point interactions being
the generalization of the δ′-interaction with θ = 1.

It should be emphasized that the term “δ′-interaction” is
somewhat misleading because the point interaction described by
the 3-matrix (5) does not correspond to Equation (1) in which
the potential part is the derivative of the Dirac delta function
in the distributional sense, i.e., V(x) = γ δ′(x) with strength γ .
Since the term δ′(x)ψ(x) is not defined for discontinuous ψ(x),
Kurasov [5] has developed the distribution theory based on the
space of discontinuous at x = 0 test functions.Within this theory,
as a particular example, the point interaction that corresponds to
the potential V(x) = γ δ′(x) is given by the connection matrix

3 =
(

θ 0
0 θ−1

)

, (7)

where θ = (2 + γ )/(2 − γ ), γ ∈ R \ {± 2}. Since the term “δ′-
interaction” is reserved for the case with the connectionmatrix of
the type (5), Brasche andNizhnik [32] suggested to refer the point
interactions described by the matrices of the form (7) even if the
element θ 6= 1 does not correspond to the delta prime potential.
We will follow this terminology in the present paper.

The Kurasov approach has been followed in many
applications (see, e.g., [32–39]) including more general examples.
Thus, in the context of this approach, Gadella et al. [33] have
shown that Equation (1) with the potentialV(x) = aδ(x)+bδ′(x),
a < 0, b ∈ R, has a bound state and calculated the energy of
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this state in terms of the parameters a and b. A new approach
based on the integral form of the Schrödinger Equation (1)
has been developed by Lange [35, 36] with some revision of
Kurasov’s theory. The potential V(x) = aδ(x) + bδ′(x) has
also been used by Gadella and coworkers as a perturbation of
some background potential, such as a constant electric field
and the harmonic oscillator [34] or the infinite square well
[37]. The spectrum of a one-dimensional V-shaped quantum
well perturbed by three types of a point impurity as well as
three solvable two-dimensional systems (the isotropic harmonic
oscillator, a square pyramidal potential and their combination)
perturbed by a point interaction centered at the origin has been
studied by Fassari et al. in the recent papers [40–42].

On the other hand, as derived in the series of publications
[43–47] for some particular cases and proved rigorously by
Golovaty with coworkers [48–52] in a general case, the potential
V(x) = γ δ′(x) appears to be partially transparent at some
discrete values forming a countable set {γn} in the γ -space.
The corresponding 3-matrix is diagonal, i.e., of the form (7)
where the element θ = {θn} takes discrete values that depend
on the sequence {γn}. Except the distribution δ′(x), which is
obtained as a limit of regular δ′-like functions, the diagonal
form of the 3-matrix can be realized even if the squeezed limit
of regular functions does not exist. Beyond the “resonance” set
{γn}, the δ′-potential is fully opaque satisfying the boundary
conditions of the type (3). However, this resonant-tunneling
behavior contradicts with the 3-matrix (7) where the element
θ continuously depends on strength γ . It is remarkable that this
controversy can be resolved using the one-dimensional model for
the heterostructure consisting of two or three squeezed parallel
homogeneous layers approaching to one point [53, 54]. Here a
“splitting” effect of one-point interactions has been described.

As for two-point interactions in one dimension, one should
mention the recent studies concerning quantum tunneling times
and the associated questions such as, for instance, the Hartman
effect and its generalized version [see, e.g., [55–59] and references
therein]. Another important aspect regarding the application
of double-point potentials is the Casimir effect that arises in
the behavior of the vacuum energy between two homogeneous
parallel plates. For the interpretation of this effect, Muñoz-
Castañeda and coworkers [60–66] reformulated the theory of
self-adjoint extensions of symmetric operators over bounded
domains in the framework of quantum field theory. Particularly,
they have calculated the vacuum energy and identified which
boundary conditions generate attractive or repulsive Casimir
forces between the plates. Bordag and Muñoz-Castañeda [67]
have calculated the quantum vacuum interaction energy between
two kinks of the sine-Gordon equation (for a review on non-
linear localized excitations including topological solitons see,
e.g., the work [68]) and shown that this interaction induces an
attractive force between the kinks in parallel to the Casimir force
between conducting mirrors. A rigorous mathematical model
of real metamaterials has been suggested in Nieto et al. [69].
The resonant tunneling through double-barrier scatters is still an
active area of research for the applications to nanotechnology.
In the context of the Cheon-Fülöp-Tsutsui approach [19, 20],
the conditions for the parameter space under which the perfect

resonant transmission occurs through two point interactions,
each of which is described by four parameters, have been found
by Konno et al. [70, 71].

The pioneering studies [72–74] demonstrated that
the resonant transmission through quantum multilayer
heterostructures of electronic tunnel systems are of considerable
general interest. These structures are not only important in
micro- and nanodevices, but their study involves a great deal
of basic physics. In recent years it has been realized that the
study of the electron transmission through heterostructures
can be investigated in the zero-thickness limit approximation
materialized when their width shrinks to zero. Within such an
approximation it is possible to produce various point interaction
models, particularly those as described above which admit exact
closed analytic solutions. These models are required to provide
relatively simple configurations where an appropriate way of
squeezing to the zero-width limit must be compatible with the
original real structure. Additionally, as a rule, the nanodevices
are subject to electric fields applied externally. In this regard,
is of great interest to produce point interaction models with
bias potentials. So far no models have been elaborated for such
devices using one-point approximation methods.

The present paper is devoted to the investigation of planar
heterostructures composed of extremely thin layers separated by
small distances in the limit where both the layer thickness and
the distance between the layers simultaneously tend to zero. The
electron motion in the systems of this type is usually confined
in the longitudinal direction (say, along the x-axis); the latter is
perpendicular to the transverse planes where electronic motion
is free. The three-dimensional Schrödinger equation of such
a structure can be separated into longitudinal and transverse
parts, writing the total electron energy as the sum of the
longitudinal and transverse energies: El + h̄2k2t /2m

∗, where m∗

is an effective electron mass and kt the transverse wave vector;
for such additive Hamiltonian the wave function is expressed
as a product, i.e. ψ = ψlψt . As a result, we arrive at the
reduced one-dimensional Schrödinger equation with respect to
the longitudinal component of the wave function ψl(x) and the
electron energy El. For brevity of notations, in the following we
omit the subscript “l” at both ψl(x) and El. Thus, in the units
as h̄2/2m∗ = 1, the one-dimensional stationary Schrödinger
equation reduces to the form (1) where V(x) is a potential
for electrons. Concerning the dimensions of the longitudinal
electron position x, the potential V(x) and the electron energy
E, in the system h̄2/2m∗ = 1 we have [x] = nm and [V ,E] =
nm−2. For computations we choosem∗ = 0.1me and in this case,
1 eV = 2.62464 nm−2.

2. TRANSMISSION CHARACTERISTICS OF
MULTI-LAYERED STRUCTURES

This introductory section generalizes the approach described in
Lui and Fukuma [75]. We consider the Schrödinger Equation
(1), where the potential V(x) is an arbitrary piecewise function
defined on the interval (x0, xN) with N subsets (xi−1, xi), i =
1,N, N = 1, 2, . . . . Each Vi(x) is a real bounded function
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defined on this interval, so that we have the set of functions:
V1(x), . . . ,VN(x). Next, we express the transmission matrix in
terms of the interface values of the linearly independent solutions
of the Schrödinger equation.

The solution of the Schrödinger equation across the interval
(xi−1, xi), ψi(x), will be given as

ψi(x) = C
(1)
i ui(x)+ C

(2)
i vi(x), 1,N, (8)

where ui(x) and vi(x) are linearly independent solutions on
the interval (xi−1, xi). At the interface xi, i = 1,N − 1, the
particle conservation requires the continuity of the wave function
ψ(x), while themomentum conservation demands the continuity
of the first derivative of the wave function ψ ′(x) resulting in
the equations

ψi(xi) = ψi+1(xi), ψ
′
i (xi) = ψ ′

i+1(xi), i = 1,N − 1, (9)

where the prime denotes first derivative with respect to x.

2.1. Transmission Matrix
Using Equation (8), the boundary conditions (9) can be realized
as a system of two linear equations with two unknowns such that

Mi(xi)Ci = Mi+1(xi)Ci+1, i = 1,N − 1, N ≥ 2, (10)

where

Ci : = col
(

C
(1)
i ,C(2)

i

)

=

(

C
(1)
i

C
(2)
i

)

and Mi(x) : =
(

ui(x) vi(x)
u′i(x) v′i(x)

)

(11)
are Wronskian matrices. Next, using Equation (10), one can
connect the column vectors C1 and CN as follows

CN = M−1
N (xN−1)MN−1(xN−1)M

−1
N−1(xN−2) . . .M2(x2)M

−1
2 (x1)M1(x1)C1

= M−1
N (xN−1)3N−1(xN−2, xN−1) . . . 32(x1, x2)M1(x1)C1, N ≥ 2,

(12)

where we have introduced the following matrices:

3i(xi−1, xi) : = Mi(xi)M
−1
i (xi−1), i = 2,N − 1, N ≥ 3. (13)

Here eachmatrix3i(xi−1, xi) connects the boundary values of the
corresponding Wronskian matrix Mi(x) at x = xi−1 and x = xi.
Yet, it is not obvious that the matrices 3i’s are transmission
matrices connecting the boundary conditions imposed on the
wave functions ψi(x) at x = xi−1 and x = xi. To prove this fact,
we compute the right-hand matrix product of (13) and obtain

3i(xi−1, xi) =
(

λi,11 λi,12
λi,21 λi,22

)

, (14)

where

λi,11(xi−1, xi) =
[

ui(xi)v
′
i(xi−1)− u′i(xi−1)vi(xi)

]

/Wi ,

λi,12(xi−1, xi) =
[

ui(xi−1)vi(xi)− ui(xi)vi(xi−1)
]

/Wi ,

λi,21(xi−1, xi) =
[

u′i(xi)v
′
i(xi−1)− u′i(xi−1)v

′
i(xi)

]

/Wi ,

λi,22(xi−1, xi) =
[

ui(xi−1)v
′
i(xi)− u′i(xi)vi(xi−1)

]

/Wi , (15)

with the Wronskian

Wi = Wi(xi−1) = ui(xi−1)v
′
i(xi−1)− u′i(xi−1)vi(xi−1) (16)

computed at x = xi−1, which does not depend on x on the
interval (xi−1, xi). Using Equations (15) and (16), one can check
the equality

|3i| = λi,11λi,22 − λi,12λi,21 = 1. (17)

There is an infinite number of the linearly independent solutions
ui(x) and vi(x). The representation of the 3i-matrix elements
can be simplified if we choose these solutions satisfying the
initial conditions:

ui(xi−1) = 1, u′i(xi−1) = 0, vi(xi−1) = 0, v′i(xi−1) = 1. (18)

Inserting thus these conditions into Equations (15) and (16), we
get thatWi = 1 and, as a result,

3i(xi−1, xi) =
(

ui(xi) vi(xi)
u′i(xi) v′i(xi)

)

. (19)

The next step is to compute the product
3i(xi−1, xi)col

(

ψi(xi−1),ψ ′
i (xi−1)

)

. This computation
immediately results in col

(

ψi(xi),ψ ′
i (xi)

)

, so that we have
the matrix relation

(

ψi(xi)
ψ ′
i (xi)

)

= 3i(xi−1, xi)

(

ψi(xi−1)
ψ ′
i (xi−1)

)

, (20)

confirming that Equation (13) indeed defines the transmission
matrix 3i(xi−1, xi) expressed in terms of the matrices Mi(xi−1)
andMi(xi). Thus, each transmission matrix3i(xi−1, xi) connects
the boundary conditions at x = xi−1 and x = xi.

Equation (12) that connects the column vectors C1 and CN

can be transformed to the equation connecting the boundary
conditions at x = x0 and x = xN . To this end, we define the
lateral transmission matrices3i(xi−1, xi) with i = 0,N. Thus, on
one side, one can write

M1(x1)C1 =
(

ψ1(x1)
ψ ′
1(x1)

)

= 31(x0, x1)

(

ψ1(x0)
ψ ′
1(x0)

)

. (21)

On the other hand, multiplying from the left Equation (12) by
MN(xN) and using that

MN(xN)CN =
(

ψN(xN)
ψ ′
N(xN)

)

, (22)

one finds the relation that connects the boundary conditions at
x = x0 and x = xN :

(

ψN(xN)
ψ ′
N(xN)

)

= 3(x0, xN)

(

ψ1(x0)
ψ ′
1(x0)

)

(23)
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with

3(x0, xN) = 3N(xN−1, xN) . . . 31(x0, x1). (24)

Thus, the transmission matrix for each layer defined on the
interval (xi−1, xi) can be computed through the solutions ui(x)
and vi(x) and their derivatives taken at the boundaries x = xi−1

and x = xi, resulting in the elements given by Equations (15)
and (16).

2.2. Reflection-Transmission Coefficients
Consider now the solutions outside the interval (x0, xN). In the
region x < x0 and x > xN where the potential is a constant,
the wave function is the well-known free particle solution of the
Schrödinger Equation (1) as follows

ψ0(x) = A1 exp[ikL(x− x0)]+ A2 exp[−ikL(x− x0)] (25)

for x < x0 and

ψN+1(x) = B1 exp[ikR(x− xN)]+ B2 exp[−ikR(x− xN)] (26)

for x > xN , where kL : =
√
E− VL and kR : =

√
E− VR . Then

the continuity of the boundary conditions at x = x0 and x = xN
leads to the following equations:

ψ0(x0) = ψ1(x0), ψ
′
0(x0) = ψ ′

1(x0),

ψN(xN) = ψN+1(xN), ψ
′
N(xN) = ψ ′

N+1(xN), (27)

which can be represented in the matrix form as follows

MLA = M1(x0)C1, MN(xN)CN = MRB, (28)

where A : = col(A1,A2), B : = col(B1,B2) and

ML : =
(

1 1
ikL − ikL

)

, MR : =
(

1 1
ikR − ikR

)

. (29)

Using these matrix equations in Equation (12), we obtain the
following basic equation, which allows us to represent the
reflection-transmission coefficients through the elements (15) of
the transmission matrix3(x0, xN):

3(x0, xN)MLA = MRB. (30)

Thus, if there is no incidental particle coming from the right, one
can set

A1 = 1, A2 = RL, B1 = TL, B2 = 0, (31)

so that in Equation (30) we have A = col(1,RL) and B =
col(TL, 0). Similarly, if there is no incidental particle from the left,
we put

A1 = 0, A2 = TR, B1 = RR, B2 = 1, (32)

hence A = col(0,TR) and B = col(RR, 1) in (30). Then Equation
(29) becomes a set of two linear equations with respect to the

pair {RL,TL} or {RR,TR}. Solving these equations and using the
relation λ11λ22 − λ12λ21 = 1, we find

RL = −
p+ iq

D
, TL =

2kL/kR
D

, RR =
p− iq

D
, TR =

2

D
, (33)

where

p : = λ11 − (kL/kR)λ22 , q : = kLλ12 + k−1
R λ21 (34)

and

D : = λ11 + (kL/kR)λ22 − i(kLλ12 − k−1
R λ21). (35)

The current j(x) = (i/2)(ψ∂xψ∗ − ψ∗∂xψ) has to be conserved
across the transition region x0 ≤ x ≤ xN . Using the definition of
the reflection-transmission coefficients given above, we find the
left-to-right current jL(x0) = kL(1 − |RL|2), jL(xN) = kR|TL|2
and the right-to-left current jR(x0) = − kL|TR|2, jR(xN) =
− kR(1 − |RR|2). From the equations jL,R(x0) = jL,R(xN) we
obtain the conservation law for both the directions of the current:
RL,R + TL,R = 1, where

RL : = |RL|2, TL : = (kR/kL)|TL|2, RR : = |RR|2, TR : = (kL/kR)|TR|2.
(36)

One can derive that |D|2 = 4kL/kR + p2 + q2 and, as a result,
the reflection-transmission amplitudes can be represented in
the form

RL,R =
p2 + q2

4kL/kR + p2 + q2
, TL,R =

4kL/kR
4kL/kR + p2 + q2

. (37)

In its turn, the scattering matrix can also be represented in terms
of the elements of the transmission matrix 3. Indeed, due to
Equations (33) and (36), this representation reads

S =
(

RL
√

kL/kR TR
√

kR/kL TL RR

)

=
1

D

(

− p− iq 2
√

kL/kR
2
√

kL/kR p− iq

)

,

(38)
where p, q and D are defined by Equations (34) and (35).

3. SCHRÖDINGER EQUATION AND
TRANSMISSION MATRIX FOR THE LAYER
WITH A LINEAR POTENTIAL PROFILE

Consider now the particular case of a linear potential profile
for the layer defined on the interval (xi−1, xi). In this case
the solutions ui(x) and vi(x) and thus the transmission matrix
3i(xi−1, xi) can be written explicitly. The Schrödinger Equation
(1) for the ith layer, i = 1,N, can be rewritten as

− ψ ′′
i (x)+ Vi(x)ψi(x) = Eψi(x), (39)

where the potential Vi(x) is a linear function defined on the
interval xi−1 < x < xi of length li : = xi − xi−i, i.e.,

Vi(x) = ηi(x− xi)+ Vi(xi), ηi : =
Vi(xi)− Vi(xi−1)

li
. (40)
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These equations can be transformed to the Airy equation

d2ψi(zi)

dz2i
− ziψi(zi) = 0, (41)

by setting zi(x) = σi(x − si), where the constants σi and si are
given by

σi = η
1/3
i , si = xi + η−1

i [E− Vi(xi)]. (42)

According to the general expressions (15), we use the Airy
functions of the first and the second order as linearly independent
solutions to Equation (41), setting ui(x) = Ai(zi(x)) and vi(x) =
Bi(zi(x)). On the interval−∞ < zi <∞, these solutions are real-
valued. The interface (boundary) values of the (dimensionless)
function zi(x) at the edges of the ith layer, to be used in Equations
(15) and (16), are

zi,i−1 : = zi(x)|x=xi−1 = − η−2/3
i k2i,i−1, (43)

zi,i : = zi(x)|x=xi = − η−2/3
i k2i,i ,

where

ki,i−1 : =
√

E− Vi,i−1 , ki,i : =
√

E− Vi,i , Vi,i−1 (44)

: = Vi(xi−1), Vi,i : = Vi(xi).

TheWronskian with respect to the variable z isW{Ai(z),Bi(z)} =
1/π , therefore with respect to x, it is W{Ai(zi(x)),Bi(zi(x))} =
σi/π . Then the elements of the3i-matrix are

λi,11(xi−1, xi) = π
[

Ai(zi,i)Bi
′(zi,i−1)− Ai′(zi,i−1)Bi(zi,i)

]

,

λi,12(xi−1, xi) = (π/σi)
[

Ai(zi,i−1)Bi(zi,i)− Ai(zi,i)Bi(zi,i−1)
]

,

λi,21(xi−1, xi) = σiπ
[

Ai′(zi,i)Bi
′(zi,i−1)− Ai′(zi,i−1)Bi

′(zi,i)
]

,

λi,22(xi−1, xi) = π
[

Ai(zi,i−1)Bi
′(zi,i)− Ai′(zi,i)Bi(zi,i−1)

]

, (45)

where the prime denotes the differentiation with respect to z.
In the ηi → 0 limit as Vi(xi−1) → Vi(xi), we obtain

zi(x) → − σisi = σi

[

−xi −
E− Vi(xi)

σ 3
i

]

→ σ−2
i

[

Vi(xi)− E
]

,

(46)
yielding Equation (39) with a constant profile Vi(x) ≡ Vi. In this
limit case, one can choose the linearly independent solutions to
Equation (39) as

ui(x) = cos[ki(x− xi−1)],

vi(x) = k−1
i sin[ki(x− xi−1)], ki : =

√

k2 − Vi , (47)

satisfying the initial conditions (18). Therefore, due to Equations
(19) and (47), the3i-matrix becomes

3i(xi−1, xi) =
(

cos(kili) k−1
i sin(kili)

− ki sin(kili) cos(kili)

)

. (48)

4. ASYMPTOTIC REPRESENTATIONS OF
THE SINGLE-LAYER TRANSMISSION
MATRIX

Similarly to the previous section, here we also focus on one of
the layers and for brevity of notations we replace for while in the
above expressions the subscripts {i, i−1} and {i, i} by “0” and “1”,
respectively. Then, according to Equations (43) and (44), we write

z0 = −
(

l

V1 − V0

)2/3

k20, z1 = −
(

l

V1 − V0

)2/3

k21, (49)

σ =
(

V1 − V0

l

)1/3

,

where we have replaced Vi,i−1, Vi,i, ki,i−1, ki,i by V0, V1, k0,
k1, respectively. Using next the two asymptotic expressions for
the Airy functions and their derivatives known in the limit as
z → 0 and z → ±∞, below we will derive the corresponding
asymptotic representations of the elements (45) in the two limits
as (i) z0, z1 → 0 and (ii) z0, z1 → ±∞. It is reasonable to assume
that everywhere z0 and z1 are of the same sign. We omit for a
while the subscript “i” for the matrix3i and its elements.

4.1. Asymptotic Representation of the
3-Matrix in the Limit as z0, z1 → 0
For the z0, z1 → 0 limit to be carried out in Equation (45), one
can use the series representation of the Airy functions and their
first derivatives in the neighborhood of the origin z = 0. It is
sufficient to explore only the two first terms:

Ai(z) →
1

32/3Ŵ(2/3)
−

z

31/3Ŵ(1/3)
+ . . . ,

Ai′(z) → −
1

31/3Ŵ(1/3)
+

z2

2 · 32/3Ŵ(2/3)
+ . . . ,

Bi(z) →
1

31/6Ŵ(2/3)
+

31/6z

Ŵ(1/3)
+ . . . ,

Bi′(z) →
31/6

Ŵ(1/3)
+

z2

2 · 31/6Ŵ(2/3)
+ . . . . (50)

As a result of applying these expansion formulae to Equation
(45) and using Euler’s reflection formula for the gamma function,
Ŵ(1 − z)Ŵ(z) = π/ sin(πz), z /∈ Z, we get the following
asymptotic representation of the3-matrix elements:

λ11 → 1− z20z1/2, λ22 → 1− z0z
2
1/2,

λ12 →
z1 − z0

σ
= l, λ21 →

σ

2
(z21 − z20) = −

l

2
(k20 + k21) (51)

as z0, z1 → 0.
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4.2. Asymptotic Representation of the
3-Matrix in the Limit as z0, z1 → ±∞

In the limit as z → −∞, for the Airy functions and their
derivatives we have the following asymptotics:

Ai(z) →
sin
[ 2
3 (−z)3/2 + π/4

]

√
π(−z)1/4

, Bi(z) →
cos
[ 2
3 (−z)3/2 + π/4

]

√
π(−z)1/4

,

(52)

Ai′(z) →
1
4 (−z)−3/4 sin

[ 2
3 (−z)3/2 + π/4

]

− (−z)3/4 cos
[ 2
3 (−z)3/2 + π/4

]

√
π(−z)1/2

,

Bi′(z) →
1
4 (−z)−3/4 cos

[ 2
3 (−z)3/2 + π/4

]

+ (−z)3/4 sin
[ 2
3 (−z)3/2 + π/4

]

√
π(−z)1/2

.

(53)

Using this asymptotic representation in Equations (45) as
z0, z1 → −∞, we obtain

λ11 → (−z0)
1/4(−z1)

−1/4 cosχ− − (4z0)
−1(−z0)

−1/4(−z1)
−1/4 sinχ− ,

λ12 → − σ−1(−z0)
−1/4(−z1)

−1/4 sinχ− ,

λ21 → σ (−z0)
−1/2(−z1)

−1/2

×
{[

(−z0)
3/4(−z1)

3/4 + 4−2(−z0)
−3/4(−z1)

−3/4] sinχ−

+ 4−1 [(−z0)
3/4(−z1)

−3/4 − (−z1)
3/4(−z0)

−3/4] cosχ−
}

,

λ22 → (−z1)
1/4(−z0)

−1/4 cosχ− + (4z1)
−1(−z0)

−1/4(−z1)
−1/4 sinχ− ,

(54)

where

χ− : =
2

3

[

(−z1)
3/2 − (−z0)

3/2 ] . (55)

One can check that |3| = λ11λ22 − λ12λ21 = 1. According to
Equations (50), this representation corresponds to a well (Vj < 0,
j = 0, 1). However, these formulae can be “continued” to positive
values of z0 and z1 that correspond to a barrier with E < Vj.
To prove this, we use the asymptotic representation of the Airy
functions and their derivatives in the limit as z0, z1 → +∞:

Ai(z) →
e−

2
3 z

3/2

2
√
πz1/4

, Bi(z) →
e
2
3 z

3/2

√
πz1/4

, (56)

Ai′(z) → −
z3/4 + 1

4 z
−3/4

2
√
πz1/2

e−
2
3 z

3/2
, Bi′(z) →

z3/4 − 1
4 z

−3/4

√
πz1/2

e
2
3 z

3/2

(57)

and, as a result, we find

λ11 → (z0/z1)
1/4 coshχ+ + (4z0)

−1(z0z1)
−1/4 sinhχ+ ,

λ12 → σ−1(z0z1)
−1/4 sinhχ+ ,

λ21 → σ (z0z1)
−1/2 {[(z0z1)

3/4 − 4−2(z0z1)
−3/4] sinhχ+

+ 4−1 [(z1/z0)
3/4 − (z0/z1)

3/4] coshχ+
}

,

λ22 → (z1/z0)
1/4 coshχ+ − (4z1)

−1(z0z1)
−1/4 sinhχ+ , (58)

where z0 and z1 are positive and

χ+ : =
2

3

(

z
3/2
1 − z

3/2
0

)

. (59)

Similarly, for the elements (58) one can also check that |3| =
1. In fact, Equations (58) with (59) appear to coincide with
Equations (54) and (55) if we assume that in the latter equations
z0 and z1 are positive. To show this, we note that (−z)3/2 =
i3z3/2 = −iz3/2 and, as a result, we get the relation χ− = −iχ+
for positive z0 and z1 in both Equations (55) and (59). Next,
the elements (58) are obtained from the representation (54) if
we note that (−z0)1/4(−z1)1/4 = i(z0z1)1/4, (−z0)1/2(−z1)1/2 =
−(z0z1)1/2 and (−z0)3/4(−z1)3/4 = −i(z0z1)3/4. Therefore, in
the following it is sufficient to consider only the representation
given by Equations (54) and (55), being valid for both negative
and positive z0 and z1.

Using the explicit values for z0 and z1 given by Equations (49),
the expression (55) for χ− can be transformed to

χ− = sgn(V0 − V1) k1,0 l, (60)

where

k1,0 : =
2(k20 + k21 + k0k1)

3(k0 + k1)
, kj : =

√

E− Vj j = 0, 1. (61)

Inserting next the expressions (49) and (60) into Equations (54),
one can write the elements of the3-matrix in terms of k0 and k1
as follows

λ11 →
(

k0

k1

)1/2

cos(κ l)+
k21 − k20

4l
k
−5/2
0 k

−1/2
1 sin(k1,0 l),

λ12 → k
−1/2
0 k

−1/2
1 sin(k1,0 l),

λ21 →
3(k20 − k21)

2k1,0

8lk5/20 k
5/2
1

cos(k1,0 l)

− k
1/2
0 k

1/2
1

[

1+
(

k20 − k21
4l

)2

k−3
0 k−3

1

]

sin(k1,0 l),

λ22 →
(

k1

k0

)1/2

cos(κ l)+
k20 − k21

4l
k
−1/2
0 k

−5/2
1 sin(k1,0 l), (62)

where k1,0 is defined by Equation (61). One can check that the
matrix elements (62) together with the argument (61) satisfy
the condition |3| = 1. Note that the only restriction for the
existence of the representation (62) are the asymptotics z0, z1 →
±∞. Both k0 and k1 are either real-valued or imaginary. In the
particular case V1 = V0 (k1 = k0), Equations (61) and (62)
reduce to the matrix representation (48).

5. REALIZATION OF POINT
INTERACTIONS IN THE ZERO-THICKNESS
LIMIT FOR ONE LAYER

Keeping in the following the same notations with respect to the
subscripts “0” and “1”, let us consider the linear potential (40)
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rewritten as

V(x) = V0 +
V1 − V0

l
x, V0, V1 ∈ R, (63)

on the interval 0 < x < l, where V0 and V1 are the potential
values at the left and right edges of the layer with width l.
Consider first the case when this potential is constant, i.e., V0 =
V1. A point interaction can be realized in the limit as the layer
thickness l → 0, whereas V0 → ±∞. To this end, one can use
the parametrization of the potential V(x) ≡ V0 introducing a
dimensionless parameter ε > 0 that controls the shrinking of the
layer to zero width as ε → 0. It is natural to consider the power
parametrization setting

V0 = a ε−µ, l = εd, a ∈ R, µ, d > 0. (64)

In the squeezed limit (as ε → 0), a one-parameter family of
point interactions at x = 0 is realized. It is determined by the
power µ ∈ (0,∞): the transmission is perfect for µ ∈ (0, 1), at
µ = 1 the potential takes the form of Dirac’s delta function αδ(x)
with the transmission matrix (4), where α = ad is the strength
of the δ-interaction, and for µ ∈ (1,∞) the interaction acts as
a fully reflecting wall satisfying the Dirichlet boundary condition
ψ(±0) = 0 for the wave function ψ(x).

In the case when the difference V1 −V0 is non-zero, as shown
in Figure 1, one deals with two potential values V0 and V1 at
the layer edges that must tend to infinity in the zero-thickness
limit. Both the potential values V0 and V1 are supposed to be of
the same sign. In general, the rate of this divergence to infinity
can differ and therefore the parametrization of the potential (63)
should involve two parameters. We introduce the two powers µ
and ν, where the parameters µ and ν describe how rapidly the
potential V0 at the left layer edge and the difference V1−V0 tend
(escape) to infinity as ε → 0, respectively. The particular case
when this difference is a constant not depending on ε can also be

FIGURE 1 | Schematics of one-layer potential (63) tilted by difference V1 − V0
(solid line) with notations given in (65) at ε = 1: V1 − V0 = b = VR. The dashed

line represents potential with b = 0.

included. Thus, we set

V0 = aε−µ,

V1 = V0 + b ε−ν , 0 < µ <∞, 0 ≤ ν ≤ µ, a, b ∈ R, l = ε d,
(65)

including the following two situations in the squeezed limit: (i)
V1 − V0 is constant (ν = 0) and (ii) the “escaping-to-infinity”
rate of V1 − V0 does not exceed the rate of V0 (ν ≤ µ). In the
electronics domain the difference V1 − V0 or bmay play the role
of a bias voltage.

Due to Equations (43), we have the asymptotics z0, z1 ∼
ε2(1+ν)/3−µ. Consequently, the line L0,∞ : = {0 < µ ≤
2, ν = 3µ/2 − 1} separates the asymptotic representations
z0, z1 → 0 and z0, z1 → ±∞ on the (µ, ν)-plane as illustrated
by the diagram depicted in Figure 2. Here, we have the two
triangle sets:

S0 : = {0 < µ < 2, max{0, 3µ/2− 1} < ν ≤ µ} (66)

∪{0 < µ < 2/3, ν = 0},
S∞ : = {2/3 < µ ≤ 2, 0 ≤ ν < 3µ/2− 1},

where the asymptotic representations z0, z1 → 0 and z0, z1 →
±∞ take place, respectively. The corresponding angles are
formed by the boundary lines: S0 by L0,1 : = {0 < µ < 2/3, ν =
0}, L0,2 : = {0 < µ < 2, ν = µ} and S∞ by L∞,1 : = {2/3 < µ ≤
2, ν = 0}, L∞,2 : = {µ = 2, 0 < ν < 2}.

FIGURE 2 | Regions of asymptotic representations z0, z1 → 0 (S0) and

z0, z1 → ±∞ (S∞) with separating line L0,∞. Three balls indicate

characteristic points P1,1 : = {µ = ν = 1} ∈ S0 ,

P2,0 : = {µ = 2, ν = 0} ∈ S∞ and P2,1 : = {µ = 2, ν = 1} ∈ S∞.
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5.1. Point Interactions Realized in the Limit
as z0, z1 → 0
Let us consider the boundary lines L0,1 and L0,2 of the angle
S0. On the line L0,1, we find that z0, z1 ∼ ε2/3−µ, so that the
z0, z1 → 0 limit takes place on the interval 0 < µ < 2/3. Next,
we have k20, k

2
1 ∼ ε−µ and according to Equations (51), λ12 → 0

and λ21 ∼ ε1−µ → 0, so that the3-matrix becomes the identity
(3 = I) because µ < 1.

Similarly, on the line L0,2 , where z0, z1 ∼ ε(2−µ)/3, from
Equations (49) and (51) we get the asymptotics

λ11 → 1− c1ε
2−µ, λ12 → εd,

λ21 → (a+ b/2)d ε1−µ, λ22 → 1− c2 ε
2−µ (67)

with

c1 : = (a2/2)(a+ b)(d/b)2, c2 : = (a/2)(a+ b)2(d/b)2. (68)

Therefore, on the interval 0 < µ < 1 the transmission matrix is
the identity I, while on the interval 1 < µ < 2 the transmission
matrix does not exist. In this case the point interaction acts as
a fully reflecting wall (the boundary conditions for this point
interaction are of the Dirichlet type). The value µ = 1 describes
the intermediate situation with a partial transmission through
the system, namely the δ-interaction with bias b, which separates
both these regimes. The limit transmission matrix (as ε → 0)
corresponds to the δ-interaction described by the connection
matrix (4) with the strength constant

α = (a+ b/2)d. (69)

This result also includes the constant case when V0 = V1, i.e.,
b = 0. This approximation is appropriate for modeling the δ-
potential. Note that similar analysis can be done for µ and ν
belonging to the interior of S0. In this case in the above equations
we have to set b = 0.

Using the second formula (37), one can compute the
transmission amplitude for this δ-interaction. We get

T =
4k kR

(k+ kR)2 + α2
, (70)

where α is given by (69). In the unbiased case (b = 0, kR = k) this

formula reduces to T =
[

1+ (α/2k)2
]−1

with α = ad, the well
known expression for the constant potential. Equation (70) has
been obtained for any a ∈ R. However, for negative values of a,
i.e., for a δ-like well, it does not describe the oscillating behavior
with respect to the constant α that takes place under tunneling
across a well with finite thickness l.

5.2. Point Interactions Realized in the Limit
as z0, z1 → ±∞

Consider now the characteristic point P2,1 ∈ S∞ setting in
Equation (62) µ = 2 and ν = 1. Here k20 − k21 = V1 −
V0 = b ε−1 and k0, k1, k1,0 →

√
− a ε−1, so that the asymptotic

representation of Equation (62) in the limit as ε → 0 becomes

λ11 → cos(κd)− ε g sin(κd),

λ12 → ε κ−1 sin(κd),

λ21 → − ε−1κ sin(κd)+O(ε),

λ22 → cos(κd)+ ε g sin(κd), (71)

where

κ : =
√
− a, g : = κ−3(b/4d). (72)

As follows from these asymptotic expressions derived at the point
P2,1, in the limit as ε → 0, the transmission through a barrier is
zero, while across a well (a < 0) it appears to be resonant. The
resonance set consists of the roots of the equation sin(κd) = 0.
At fixed d > 0, these roots form the countable set 6 = ∪∞

n=0σn
formed from the points σn : = − (nπ/d)2. On this resonance set,
the discrete-valued matrix is 3n : = 3|6 = (−1)nI. Beyond
these resonance values, the δ-like well is opaque and, instead of
the identity matrix I, the two-sided boundary conditions for the
wave function are of the Dirichlet type: (ψ(± 0) = 0).

6. MULTI-LAYERED
HETEROSTRUCTURES WITH BIAS

Now we are ready to apply the expressions obtained above for
a single layer to the total structure consisting of an arbitrary
number N of layers replacing µ → µi , ν → νi , b →
bi , d → di . Taking for account that the left boundary value for
the potential of the ith layer ai is shifted because of the biases
b1 , . . . bi−1 in the left-hand layers, we need to use the following
replacement rule:

a → ai +
i−1
∑

j=1

bj , i = 1,N, (73)

where the sum vanishes if i = 1. Then Equation (65) are
transformed to

V0 → Vi,i−1 =



ai +
i−1
∑

j=1

bj



ε−µi ,

V1 → Vi,i = Vi,i−1 + bi ε
− νi . (74)

Next, all the other expressions derived above should be rewritten
for the ith layer using the following replacement rules:

z0 → zi,i−1 =
(

di

bi

)2/3






ai +
i−1
∑

j=1

bj



ε−µi − E



ε2(1+νi)/3,

z1 → zi,i =
(

di

bi

)2/3






ai +
i−1
∑

j=1

bj



ε−µi + bi ε
−νi − E



ε2(1+νi)/3,

α → αi =



ai +
i−1
∑

j=1

bj + bi/2



di , σ → σi =
(

bi

di

)1/3

ε−(1+νi)/3,

κ → κi =

√

√

√

√

√−



ai +
i−1
∑

j=1

bj



, g → gi =
bi

4κ3i di
,
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c1 → ci,1 =
1

2



ai +
i−1
∑

j=1

bj





2

ai +
i
∑

j=1

bj





(

di

bi

)2

,

c2 → ci,2 =
1

2



ai +
i−1
∑

j=1

bj







ai +
i
∑

j=1

bj





2
(

di

bi

)2

. (75)

In the following we will consider some particular examples of
multi-layered structures with N = 2, 3. It will be shown that
in some cases two- and three-lateral quantum devices can be
approximated by one-point interactions.

6.1. Two-Layered Structures
Consider now the structure consisting of two layers (N =
2). The piecewise linear potential of a barrier-well form is
shown in Figure 3. For an arbitrary two-layered structure,
the limit transmission matrix is the product 3 = 3231,
where the matrices 3i’s can be constructed from the asymptotic
approximations (67) and (71) by applying the replacement rules
(73)–(75). Applying these rules in Equations (67), (68) and (71),
(72) to the matrices31 and32, below we compute their product
for two different situations. Note that due to the presence of
the factor ε−1 in the expression λ21 [see Equation (71)], the
terms of order O(ε) must be kept in the product 3231 because
limε→032 · limε→031 6= limε→0(3231).

Point interactions of a δ′-type: Consider the zero-thickness
limit determined by the powers µ1 = µ2 = 2 and ν1 =
ν2 = 1. Then, the product 3 = 3231 yields the following

FIGURE 3 | Schematics of tilted (solid line) and piecewise constant (dashed

line) barrier-well potential, where notations correspond to Equations (73) and

(74) for N = 2 and ε = 1. Potential values at layer edges are V1,0 = a1,

V1,1 = a1 + b1 (barrier, a1 > 0) and V2,1 = a2 + b1, V2,2 = a2 + b1 + b2
(well, a2 < 0). Polarity is shown positive (left-to-right electron flow, b1 ,b2 < 0).

Dashed lines show unbiased potential (b1 = b2 = 0).

asymptotic representation of the 3-matrix elements for the total
double-layer system:

λ11 → cos(κ1d1) cos(κ2d2)− (κ1/κ2) sin(κ1d1) sin(κ2d2),

λ12 → 0,

λ21 → α − ε−1 [κ1 sin(κ1d1) cos(κ2d2)+ κ2 cos(κ1d1) sin(κ2d2)
]

,

λ22 = cos(κ1d1) cos(κ2d2)− (κ2/κ1) sin(κ1d1) sin(κ2d2), (76)

where the ε → 0 limit has been performed and

α = (κ2g1 − κ1g2) sin(κ1d1) sin(κ2d2). (77)

The second term in the element λ21 diverges as ε → 0 and it
vanishes if the equation

κ1 tan(κ1d1)+ κ2 tan(κ2d2) = 0 (78)

takes place. Using this equation in the elements λ11 and λ22 [see
Equation (76)], we find the total transmission matrix

3 =
(

cos(κ1d1)/ cos(κ2d2) 0
α cos(κ2d2)/ cos(κ1d1)

)

. (79)

Equation (78) admits a countable set of solutions if at least one
of the layer potential has a well profile. In particular, if a1 > 0
(barrier) and a2 + b1 < 0 (well), Equation (78) reduces to

√
a1 tanh(

√
a1 d1) =

√

|a2 + b1| tan(
√

|a2 + b1| d2). (80)

It is reasonable to assume that − b1 < a1 (otherwise the right-
edge barrier potential becomes negative), so that on the interval
(− a1, 0), under appropriate values of the layer parameters, only
a finite set of discrete (resonance) values of b1 can be found.
According to the classification of point interactions given in
Brasche and Nizhnik [32], the interactions described by the
connection matrix with diagonal elements λ11, λ22 6= 1 may
be referred to as a family of (resonant) δ′-potentials, despite
the distribution δ′(x) in general does not exist. Similarly to the
single δ-well potential, beyond the resonance set, the two-sided
boundary conditions are of the Dirichlet type: ψ(±0) = 0.

On the resonance set 6 = ∪nσn, the explicit expressions for
the3-matrix (79) and the element (77) become

3|6 =
(

θn 0
αn θ−1

n

)

, (81)

where

θn =
cosh(

√
a1 d1)

cos(
√

|a2 + b1,n| d2)
6= ± 1,

αn =
1

4

[ √
a1 b2

|a2 + b1,n|3/2d2
−
√

|a2 + b1,n| b1,n
a
3/2
1 d1

]

× sinh(
√
a1 d1) sin(

√

|a2 + b1,n| d2). (82)
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The transmission amplitude on the resonance set6 is

Tn =
4k kR,n

(kθ−1
n + kR,nθn)2 + α2n

, (83)

where kR,n =
√

k2 − b1,n .
Resonant transmission through a δ-barrier: Let us consider

now the two-layered structure in which the potential of one of
the layers in the squeezed limit has a δ-like form. We specify this
situation by the power parameters µ1 = ν1 = 1 (point P1,1 ∈ S0)
for the barrier, and µ2 = 2 and ν2 = 1 (point P2,1 ∈ S∞) for the
well. Even in the unbiased case this potential has no distributional
limit, however the transmission matrix does exist. Applying the
replacement rules (73)-(75) in the asymptotics (67) with µ = 1
yielding the 31-matrix, and in the representation (71) creating
the32-matrix, we obtain the ε → 0 limit for the elements of the
total matrix3 = 3231 in the form

λ11 → cos(κ2d2),

λ12 → 0,

λ21 → α1 cos(κ2d2)+ c1,1κ2 sin(κ2d2)− ε−1κ2 sin(κ2d2),

λ22 → cos(κ2d2)− κ2d1 sin(κ2d2). (84)

While the first and the second terms in λ21 are finite, the third one
diverges as ε → 0. However, it vanishes at the values satisfying
the equation sin(κ2d2) = 0, i.e., for

a2 + b1,n = − (nπ/d2)
2, (85)

where the integer n = n0, n0 + 1, . . . with some n0. These values
form the countable resonance set 6 on which the transmission
matrix 3 corresponds to the δ-interaction, whereas beyond
this set the interaction acts as a fully reflecting wall. The limit
transmission matrix is

3|6 = (−1)n
(

1 0
αn 1

)

, (86)

where αn = α1,n = (a1 + b1,n)/2)d1 . Note that the effect of the
resonant transmission through a δ-barrier keeps to be valid in the
unbiased case when b1 = b2 = 0.

Thus, we have realized the resonant δ-interaction, due to the
presence of an adjacent well with depth a2 < 0. In the case
when the system parameters a1, a2, d1, d2 are supposed to be
fixed, the biased potential b1 may be considered as a tunable
parameter. The transmission is resonant on the set given by (85).
The potential at the right edge of the first layer keeps to be positive
for all values of b1 satisfying the inequality− b1 < a1. Therefore,
this is a constraint that limits the resonance set to a finite number
of resonances.

The existence of the resonant tunneling through a δ-
like barrier can be supported numerically calculating the
transmission amplitude T according to Equations (37) and (34),
where the matrix elements are given by Equation (45). For
different values of the squeezing parameter ε, the result of these
calculations is illustrated by Figure 4.

FIGURE 4 | Transmission amplitude T as a function of bias −b1 plotted for

parameter values: E = 0.1 eV, a1 = 0.5 eV, a2 = − 0.1 eV, d1 = 2 nm,

d2 = 10 nm. Computations have been carried out with powers µ1 = ν1 = 1

(point P1,1) and µ2 = 2, ν2 = 1 (point P2,1). Squeezing scenario is displayed

for ε = 0.5 (curve 1, black), 0.25 (curve 2, red), and 0.1 (curve 3, blue).

Location of all three peaks converges to set {−b1,n} defined by Equation (85)

with n = 2, 3, 4.

FIGURE 5 | Schematics of typical transistor, where notations correspond to

Equations (73) and (74) for N = 3 and ε = 1 with replacement: b1 → −VEB
(emitter-to-base voltage) and b3 → −VCB (collector-to-base voltage).

Potential values at layer edges are V1,0 = a1, V1,1 = a1 − VEB (a1 > 0),

V2,1 = V2,2 = −VEB and V3,2 = a3 − VEB, V3,3 = a3 + VR (a3 > 0). Polarity

is shown to be positive (left-to-right electron flow, VEB ,VCB > 0).

6.2. Modeling of Point Transistors
It is of interest to give an interpretation for a semiconductor
transistor in the limit as its dimensions are extremely tiny. This
is a three-terminal device [76] described by a tilted double-
barrier potential profile as illustrated by Figure 5. Here the
potential between the barriers is constant depending on the
emitter-to-base voltage VEB as a parameter tuned externally. The
other external parameter VCB is the collector-to-base voltage
being fixed. For the description of this device by a one-point
interaction model, we assume that in the zero-thickness limit
both the barriers as well as the distance between them tend to
the point x = 0.
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Similarly to the double-layer structure [see the general
formula (24)], the transmission matrix for the total system is
the product 3 = 333231, where the matrices 31 and 33

correspond to the barriers and the 32-matrix to the space
between the barriers. Setting b1 ≡ −VEB, b2 = 0 and b3 ≡
−VCB, according to (73), we replace: a → a1 for31, a → −VEB

(a2 = 0) for 32 and a → a3 − VEB for 33. In the case of
positive polarity, as shown in the figure, both the voltages are
non-negative parameters. Applying next the replacement rules
(75) in the terms (68), (69), and (72), we write the following
explicit expressions for the matrices31 and33:

κ1 =
√
− a1 , κ2 =

√

VEB , κ3 =
√

VEB − a3 ,

α1 = (a1 − VEB/2)d1 , α3 = (a3 − VEB − VCB/2)d3 ,

c1,1 = (a21/2)(a1 − VEB)(d1/VEB)
2,

c1,2 = (a1/2)(a1 − VEB)
2(d1/VEB)

2,

c3,1 = [(a3 − VEB)
2/2](a3 − VEB − VCB)(d3/VCB)

2,

c3,2 = [(a3 − VEB)/2](a3 − VEB − VCB)
2(d3/VCB)

2,

g1 = − κ−3
1 (VEB/4d1), g3 = − κ−3

3 (VCB/4d3). (87)

The 32-matrix is defined by (48) for i = 2, where k2 = κ2ε
−1

and l2 = εd2.
Below we examine the following two zero-thickness limits: (i)

µ1 = µ3 = ν1 = ν3 = 1 (points P1,1) and (ii) µ1 = µ3 = 2,
ν1 = ν3 = 1 (points P2,1).

(i) δ-potential model: The matrix multiplication yields the
asymptotic representation in the limit as ε → 0:

λ11 → cos(κ2d2)− κ2d3 sin(κ2d2),
λ12 → 0,

λ21 → (α1 + α3) cos(κ2d2)+ (c1,1 + c3,2)κ2 sin(κ2d2)−
ε−1κ2 sin(κ2d2),

λ22 → cos(κ2d2)− κ2d1 sin(κ2d2). (88)

Here, the element λ21 diverges as ε → 0 and it will be finite if
sin(κ2d2) = 0, resulting in the resonance set

VEB,n = (nπ/d2)
2, n = 1, n0 , (89)

where the integer n0 depends on the interval of admissible values
of the bias potential VEB. This interval is determined by the
requirement that the barrier potential values V1,1 and V3,3 must
be positive, leading to the inequalities 0 < VEB < a1 and
0 < VEB + VCB < a3. Therefore, the potential VEB is allowed
to tune within the interval 0 < VEB < min{a1, a3 − VCB}.

Thus, the limit transmission matrix is of the form (86) with

αn = α1,n+α3,n = (a1−VEB,n/2)d1+(a3−VEB,n−VCB/2)d3 > 0.
(90)

realizing the δ-potential defined on the resonance set described
by Equation (89).

According to the general expressions (37) and (34), the
transmission amplitude, being non-zero on this resonance set,
is given by the formula (83), where θn = 1 and kR,n =
√

k2 + VEB,n + VCB . The transmission amplitude T displayed

FIGURE 6 | Transmission amplitude T as a function of emitter-to-base

voltage VEB for parameter values: E = 0.1 eV, a1 = a3 = 0.5 eV, a2 = 0,

VCB = 0.2 eV, d1 = d3 = 2 nm, d2 = 10 nm. Computations have been

carried out with powers µ1 = ν1 = µ3 = ν3 = 1 (points P1,1) and µ2 = 2,

ν2 = 0. Squeezing scenario is displayed for ε = 0.5 (curve 1, black), 0.25

(curve 2, red), and 0.1 (curve 3, blue). Location of all three peaks approaches

set {VEB,n} given by Equation (89) with n = 1, 2, 3.

in Figure 6 illustrates the convergence of the location of the peaks
to the roots of Equation (89).

(ii) δ′-potential model: The three-lateral device can also be
approximated by a δ′-interaction with a bias if we choose for
the zero-thickness limit the powers µ1 = µ2 = µ3 = 2 and
ν1 = ν3 = 1. The multiplication of the matrices yields

λ11 → cos(κ1d1) cos(κ2d2) cos(κ3d3)

−(κ1/κ2) sin(κ1d1) sin(κ2d2) cos(κ3d3)

− (κ1/κ3) sin(κ1d1) cos(κ2d2) sin(κ3d3)

−(κ2/κ3) cos(κ1d1) sin(κ2d2) sin(κ3d3),

λ12 → 0,

λ21 → κ2[g1 sin(κ1d1) cos(κ3d3)

−g3 cos(κ1d1) sin(κ3d3)] sin(κ2d2)

+ (κ3g1 − κ1g3) sin(κ1d1) cos(κ2d2) sin(κ3d3)
− ε−1[κ1 sin(κ1d1) cos(κ2d2) cos(κ3d3)

+ κ2 cos(κ1d1) sin(κ2d2) cos(κ3d3)
+κ3 cos(κ1d1) cos(κ2d2) sin(κ3d3)
− (κ1κ3/κ2) sin(κ1d1) sin(κ2d2) sin(κ3d3)],

λ22 → cos(κ1d1) cos(κ2d2) cos(κ3d3)

−(κ2/κ1) sin(κ1d1) sin(κ2d2) cos(κ3d3)

− (κ3/κ1) sin(κ1d1) cos(κ2d2) sin(κ3d3)

− (κ3/κ2) cos(κ1d1) sin(κ2d2) sin(κ3d3), (91)

where the notations for κ1 , κ2 , κ3, and g1 , g3 can be found in
Equation (87). The arguments of the trigonometric functions are
finite and the element λ21 diverges as ε → 0 because of the
presence of the factor ε−1. Therefore, the only opportunity to
define properly a point interaction is a full cancelation of all the
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terms at this factor, so that λ21 becomes finite. As a result, this
cancelation yields the following equation:

κ1κ3

κ2

3
∏

i=1

tan(κidi) =
3
∑

i=1

κi tan(κidi). (92)

Using the resonance equation (92), we derive that the pair
{λ11, λ22} admits the following sixteen representations:

{λ11, λ22} = {I1, I2, J−1
1 , J−1

2 } × {I−1
1 , I−1

2 , J1, J2}, (93)

where

I1 =
cos(κ1d1) cos(κ2d2)− (κ1/κ2) sin(κ1d1) sin(κ2d2)

cos(κ3d3)
,

I2 = −
κ1 sin(κ1d1) cos(κ2d2)+ κ2 cos(κ1d1) sin(κ2d2)

κ3 sin(κ3d3)
,

J1 =
cos(κ2d2) cos(κ3d3)− (κ3/κ2) sin(κ2d2) sin(κ3d3)

cos(κ1d1)
,

J2 = −
κ2 sin(κ2d2) cos(κ3d3)+ κ3 cos(κ2d2) sin(κ3d3)

κ1 sin(κ1d1)
.(94)

These representations follow from the equations I1 = I2, J1 =
J2, and I1J1 = 1, which can be checked using the condition
(92). As a result, we have |3| = λ11λ22 = 1 if Equation (92)
is fulfilled.

Equation (92) can be rewritten in the explicit form as follows

√

a1/VEB tanh(
√
a1 d1)+

√

a3/VEB − 1 tanh(
√

a3 − VEB d3)

=
[

1−
√

a1/VEB

√

a3/VEB − 1 tanh(
√
a1 d1) tanh(

√

a3 − VEB d3)
]

× tan(
√

VEB d2). (95)

This form shows the existence of the roots forming a resonance
set 6 = {VEB,n}. Inserting next these roots into Equation (94),
one can get the discrete values of the diagonal elements λ11,n and
λ22,n of the matrix set 3|6 . One can write then θn : = λ11,n =
λ−1
22,n = I1,n = I2,n = J−1

1,n = J−1
2,n . Finally, one can represent the

off-diagonal element λ21,n = αn as

αn = a
−3/2
1 (VEB,n/4d1) sinh(

√
a1 d1)

× [
√

VEB,n cosh(
√

a3 − VEB,n d3) sin(
√

VEB,n d2)

−
√

a3 − VEB,n sinh(
√

a3 − VEB,n d3) cos(
√

VEB,n d2)]

− (a3 − VEB,n)
−3/2(VCB/4d3) sinh(

√

a3 − VEB,n d3)

× [
√

VEB,n cosh(
√
a1 d1) sin(

√

VEB,n d2)

−
√
a1 sinh(

√
a1 d1) cos(

√

VEB,n d2)]. (96)

Similarly to the double-layer structure with the limit
transmission matrix (81), we refer this one-point interaction
to as the δ′-potential because λ11,n , λ22,n 6= 1. The
transmission amplitude is given by the same formula
(83) in which θn = λ11,n and αn = λ21,n is given by the
expression (96).

7. CONCLUDING REMARKS

In the present work we addressed the family of point interactions
as the zero-thickness limit of heterostructures composed of
several layers. The latter have energy diagrams stemming from
tilted linear potentials that arise as a result of the application
of external electric fields. The analysis starts from the solution
of the one-dimensional stationary Schrödinger equation for the
structure with finite size using the transfer matrix approach.
Within this approach, we find the transmission matrices for
each layer; their product quantifies the penetration amplitude
of electrons through the whole system. In order to realize
point interactions we introduce a squeezing parameter ε >

0 in the structural parameters of the system (layer width,
potentials at layer edges, etc.) leading to shrinking the thickness
of the system as ε → 0. In this limit the potential values
at the interfaces of layers must go to infinity if we wish to
create a point interaction in the squeezed limit. At ε =
1, the structural parameters correspond to realistic values of
the device.

One of interesting features discovered in the previous
publications [17, 43–45, 48, 49, 51] is the appearance of
electron tunneling through one-point barriers that occurs at
some discrete values of system parameters, whereas beyond
these values the system behaves as a fully reflecting wall. The
origin of this phenomenon is an oscillating behavior of particle
transmission. Surprisingly, as the system shrinks to a point,
the oscillating regular function that describes the transmission
amplitude, converges pointwise to the function with non-
zero finite values only at some discrete points in the space
of system parameters, whereas beyond this (resonance) set,
the system acts a fully reflecting wall (see, e.g., Figure 1 in
Zolotaryuk and Zolotaryuk [17]). In other words, the maxima
of the oscillating amplitude correspond in the squeezing limit
to the set of extremely sharp peaks. On the other hand, in
many devices the oscillating behavior of transmitted particles
appears as a function of tuning some controllable (not system)
parameters. For instance, in the typical point transistor, an
emitter-to-base voltage may be served as such a parameter.
Indeed, the electron flow across this device is an oscillating
function of this voltage. In this regard, it is of interest to
construct the point interactions with a resonance set controllable
by parameters applied externally and this is the main goal of the
present paper.

In conclusion, in the present paper we have tried to develop
the general approach on how to realize the point interactions
as a zero-thickness limit of structures composed of an arbitrary
number of layers with biased potentials. This approach is
specified by the examples describing one layer, the double-
and three-layer systems. The piecewise linear potentials are
not required to have any distributional limit as ε → 0.
Despite this, the ε → 0 limit of the transmission matrices
has been shown to exist enable us to compute analytically
the transmission amplitude. The most interesting phenomenon
discussed in the present paper is the appearance of the
resonant transmission through a δ-like barrier in the presence
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of an adjacent well. The origin of this effect emerges from
the fact that the particle transmission across a well has an
oscillating behavior. This behavior keeps to be of the same
nature after tunneling through a barrier. Therefore, in the
squeezed limit this oscillating transforms into the function
with non-zero values only at discrete points, whereas on
the intervals between these points, this function converges
pointwise to zero resulting in blocking the tunneling trough
the barrier.
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