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We investigate the effective rheology of two-phase flow in a bundle of parallel capillary

tubes carrying two immiscible fluids under an external pressure drop. The diameter

of the tubes vary along the length which introduce capillary threshold pressures. We

demonstrate through analytical calculations that a transition from a linear Darcy to a

non-linear behavior occurs while decreasing the pressure drop 1P, where the total

flow rate 〈Q〉 varies with 1P with an exponent 2 as 〈Q〉 ∼ 1P2 for uniform threshold

distribution. The exponent changes when a lower cut-off Pm is introduced in the

threshold distribution and in the limit where 1P approaches Pm, the flow rate scales

as 〈Q〉 ∼ (|1P| − Pm)
3/2. While considering threshold distribution with a power α,

we find that the exponent γ for the non-linear regime vary as γ = α + 1 for Pm = 0

and γ = α + 1/2 for Pm > 0. We provide numerical results in support of our

analytical findings.

Keywords: two-phase flow, capillary fiber bundlemodel, effective rheology, non-Darcy flow at low velocity, porous

media

Understanding the hydrodynamic properties of simultaneous flow of two ormore immiscible fluids
is essential due its relevance to a wide variety of different systems in industrial, geophysical and
medical sectors [1, 2]. Different applications, such as bubble generation in microfluidics, blood
flow in capillary vessels, catalyst supports used in the automotive industry, transport in fuel cells,
oil recovery, ground water management and CO2 sequestration, deal with the flow of bubble
trains in different types of systems, ranging from single capillaries to more complex porous media.
The underlying physical mechanisms in multiphase flow are controlled by a number of factors,
such as the capillary forces at the interfaces, viscosity contrast between the fluids, wettability and
geometry of the system, which make the flow properties different from single phase flow. When
one immiscible fluid invades a porous medium filled with another fluid, different types of transient
flow patterns, namely viscous fingering [3, 4], stable displacement [5], and capillary fingering [6]
are observed while tuning the physical parameters [7]. These transient flow patterns were modeled
by invasion percolation [8] and diffusion limited aggregation (DLA) models [9]. When steady state
sets in after the initial instabilities, the flow properties in are characterized by relations between the
global quantities, such as flow rate, pressure drop and fluid saturation [10, 11]. It has been observed
theoretically and experimentally that, in the regime where capillary forces compete with the viscous
forces, the two-phase flow rate of Newtonian fluids in the steady state no longer obeys the linear
Darcy law [12, 13] but varies as a power law with the applied pressure drop [14–17]. Tallakstad et
al. [14, 15] experimentally measured the exponent of the power law to be close to two (= 1/0.54)
in a two-dimensional system and followed this observation up with arguments why the exponent
should be two. Rassi et al. [16] found a value for the exponent varying between 2.2 (= 1/0.45)
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and 3.0 (= 1/0.33) in a three-dimensional system. Sinha et al.
[17] considered a similar system to that which had been studied
by Rassi et al. finding an exponent 2.17±0.24 (= 1/(0.46±0.05)).
The reason behind the discrepancy between the results of Rassi
et al. and those of Sinha et al. is the possibility of a non-zero
threshold pressure that observed in the later study, under which
there would be no flow, which was assumed to be zero in the
former study. The reciprocals in the brackets are provided in
order to compare the exponent values reported in the literature
[14–17] with those we present here in this article, as we express
our results as 〈Q〉 as a power law in 1P, whereas in the cited
papers 1P was expressed as a power law in 〈Q〉.

This power law behavior is in contrast to the assumption of
linearity in the relation between flow rate and pressure drop
that is generally assumed in the relative permeability approach
dominating reservoir simulations [18].

For a single capillary tube with varying diameter, Sinha et
al. [19] showed that the average volumetric flow rate q in the
steady state has a non-linear square-root type relationship with
the pressure drop 1P as q ∼

√

1P2 − P2c . This was shown
analytically by integrating the instantaneous linear two-phase
flow equation over the whole capillary tube. Here Pc is the
threshold pressure difference below which there is no flow.
It appears due to the capillary barriers at the interfaces at
the narrow pore throats. Extending this non-linear relationship
to a network of disordered pores, the relationship between
the steady-state flow rate and an excess pressure drop leads
to a quadratic relationship in the capillary dominated regime
[20]. The quadratic relationship for the pore network, both
in two and in three dimensions, was obtained analytically by
mean-field calculations and numerically with pore network
modeling [17, 20].

While increasing the pressure drop, the capillary forces
become negligible compared to the viscous forces. This leads to
a crossover from the non-linear regime to a linear Darcy regime
for both the single capillary tube and for the pore network. Such
non-linear quadratic relationship at low flow rate and a crossover
to a linear regime at high flow rate was also observed in case of the
single-phase flow of Bingham viscoplastic fluid in porous media
[21, 22]. A Bingham fluid is a yield threshold fluid which behaves
like a solid below the threshold and flows like a Newtonian fluid
above it. The origin of the quadratic regime for the Bingham
fluid flowing in a porous media can be understood intuitively
in this way: the flow starts when one connected channel appears
in the system just above a threshold pressure and the flow rate
varies linearly with the excess pressure drop; while increasing the
applied pressure drop further, more number of connected flow
channels start to appear enhancing the overall flow rate more
rapidly than the applied pressure drop leading to the quadratic
relationship. Finally, when all possible flow paths become active,
the flow become Newtonian following the linear Darcy law. Note
that, in general, the rheology of the Bingham fluid is linear above
the yield threshold. It is the disorder in the yield thresholds due
to the porous medium that creates the quadratic regime.

The argument presented by Tallakstad et al. [14, 15] focused
on the successive opening of fluid channels when the pressure
drop across the system was increased. When |1P| is small, the

flow will occur along isolated channels. The volumetric flow rate
in such a channel will be proportional to |1P|/L. Between the
channels there will be fluid clusters held in place by capillary
forces, say of the order pt . There is a pressure gradient |1P|/L
in the flow direction. A given cluster of length l‖ will be stuck
if pt > l‖|1P|/L. The largest stuck cluster will then have a size
l‖,max = Lpt/|1P|. If we now assume that this length, l‖,max is
same as the distance between the channels where there is flow, l⊥,
then the total flow rate must be equal to the number of channels,
which is proportional to 1/l⊥, multiplied by the flow rate in each
channel. Hence, we have Q ∝ (1/l⊥) |1P| ∝ |1P|2. Though
this argument provides the same behavior as the one based on
the mean field calculation [20] for two-dimensional networks,
a difference appears in three dimensions. When following the
same arguments, it leads the flow rate to vary with the pressure
drop with third power as long as the isolated channels remain
one-dimensional strings rather than two-dimensional sheets in
three dimensions.

We present in this article a capillary fiber bundle model [23,
24], which is a system of N parallel capillary tubes, disconnected
from each other, each carrying an independent bubble trail
of two immiscible fluids under an external pressure drop. In
a porous medium, a typical pore consists of two wide pore
bodies at the ends and a narrow pore throat in the middle.
When an interface moves along the pore, the capillary pressure
associated with the interface becomes position dependent due
to the change in the radius of curvature. This introduces an
overall threshold pressure that depends on the position of all
the interfaces [19]. One can simplify the shape of the pore
by a sinusoidal type and a long capillary tube with varying
radius can be seen as a series of many pores. In the capillary
bundle model, the diameter of each tube varies along the axis
identically and the disorder in the threshold appear due to the
different interface positions in different tubes. This model is
essentially the only model for immiscible two-phase flow which
is analytically tractable. We calculate the total average flow rate
as a function of the applied pressure drop and study the effect
of disorder in the threshold distribution. We point out that,
here we do not address the question of the relation between the
fluid distributions in the capillaries and the respective threshold
distributions. Our aim with this model is to investigate how
the range of the disorder in the threshold distribution controls
the effective flow properties. This provides an insight into the
non-linearities in steady-state two-phase flow. We will see that
the exponent for the non-linear regime depends on the lower
cut-off of the threshold distribution as well as on the behavior
of the distribution near the cut-off. The possibility to study
analytically for this model how the competition between viscous
and capillary forces renders the Darcy relation non-linear, is a
new and useful discovery.

The capillary fiber bundle model is a hydrodynamic analog
of the fiber bundle model used in fracture mechanics to study
mechanical failure under stress [25]. The fiber bundle model is an
ideal example of a disordered system in statistical mechanics that
is driven by threshold activated dynamics. It is a simple, yet very
rich model to understand failure events in mechanical systems.
In its simplest form it is analytically tractable. In more complex
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versions of the model, analytical calculations go hand in hand
with numerical simulations.

Figure 1 illustrates a bundle with N = 5 parallel capillaries.
Each capillary tube has a length L and an average inner area a. For
each capillary, the diameter varies along the long axis identically.
Each capillary is filled with a bubble train of wetting and non-
wetting fluids. Due to the varying diameter, the capillary forces
at the interfaces vary as the bubble train moves along the tubes.
We assume that the wetting fluid does not form films along the
pore walls so that the fluids do not pass each other. The lengths
of the wetting and non-wetting fluids in each tube is Lw and Ln,
respectively such that the volume of the wetting fluid in each tube
is Lwa and the volume of the non-wetting fluid is Lna, where a is
the average cross-sectional area of the capillary tubes. Hence, the
saturations are given by Sw = Lw/L and Sn = Ln/L for each
capillary tube. The cross-sectional pore area of the capillary fiber
bundle is

Ap = Na. (1)

Though each tube contains the same amount of each fluid, it
has its own division of the fluids into bubbles. We average over
the ensemble of capillary tubes in the bundle by averaging over
the fluids in each tube that pass at a given instance through an
imaginary cut as shown in the figure. We will obtain the same
averages if we consider a single capillary tube, averaging over a
time interval the fluid passing the imaginary cut [19, 26]. This
shows that the model is ergodic.

The volumetric flow rate in a capillary tube is given by [19]

q = −
a2

8πµavL
2(|1P| − Pc) [1P − Pc] , (2)

FIGURE 1 | The capillary tube model. There are N = 5 capillaries, each filled

with a bubble train of wetting (white) and non-wetting (black) fluids moving in

the direction of the arrow. The diameter along each tube vary so that the

capillary force from each interface vary with its position. The variation in the

diameters are not illustrated in the figure. The average diameters are the same

for all tubes. The broken line illustrates an imaginary cut through the capillary

fiber bundle.

where 1P is the pressure drop across the capillary tube, Pc the
sum of all the capillary forces along the capillary tube due to the
interfaces and

µav = Swµw + Snµn, (3)

is the effective viscosity. 2(|1P| − Pc) is the Heaviside
function which is zero for negative arguments and one for
positive arguments.

Sinha et al. [19] showed that the time average when the
pressure difference across the tube is kept fixed is given by

q(Pc) =

−
a2

8πµavL
sgn(1P)2(|1P| − Pc)

√

1P2 − P2c , (4)

where the function sgn(1P) is the sign of the argument. Suppose
now that the thresholds Pc are distributed uniformly between
zero and a maximum value PM . The cumulative threshold
probability is then

5(Pc) =







0 , Pc ≤ 0,
Pc
PM

, 0 < Pc ≤ PM ,

1 , Pc > PM .

(5)

We have N capillary tubes. Using order statistics, we may order
the N averaged threshold values,

5(Pc(k)) =
k

N + 1
, (6)

where 1 ≤ k ≤ N. Hence,

Pc(k) = PM
k

N + 1
. (7)

The average volumetric flow rate through the capillary fiber
bundle for |1P| > 0 is then

〈Q〉 =
(N+1)min

(

|1P|
PM

,1
)

∑

k=1

q
(

Pc(k)
)

(8)

We assume the limit N → ∞ turning the sum into an integral,

〈Q〉
N

= −
a2PMsgn(1P)

8πµavL

∫ min(|1P|/PM ,1)

0
dx

√

(

|1P|
PM

)2

− x2 . (9)

This integral is doable and we find

〈Q〉
N

= −
a2

32µavL

∣

∣

∣

∣

1P

PM

∣

∣

∣

∣

1P (10)
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when |1P| ≤ PM and

〈Q〉
N

= −
a2PMsgn(1P)

16πµavL




√

(

|1P|
PM

)2

− 1

+
(

|1P|
PM

)2

arcsin

(

PM

|1P|

)

]

, (11)

when |1P| > PM . In the limit |1P| ≫ PM , Equation (11) gives

〈Q〉
N

= −
a2

8πµavL
1P . (12)

Hence, the Darcy relation for a tube is recovered.
We see that this picture is consistent with that central to the

arguments of Tallakstad et al. [14, 15] leading to the quadratic
dependence of Q on 1P. From Equation (7) we deduce that a
number kc of the capillary tubes are active, where

kc =
|1P|
PM

(N + 1) . (13)

The typical distance between active capillary tubes in units of the
distance between the tubes is then given by

l⊥ =
N + 1

kc
=

PM

|1P|
, (14)

in accordance with the argument of Tallakstad et al.
How stable is the square law Q ∝ |1P|2? That is, how much

does it hinge on the choice of cumulative threshold probability
5(Pc). So far we have only considered the one given in Equation
(5). Let us now generalize it to

5(Pc) =











0 , Pc ≤ 0 ,
(

Pc
PM

)α

, 0 < Pc ≤ PM ,

1 , Pc > PM ,

(15)

where α > 0. The average ordered threshold are then given by

Pc(k) = PM

(

k

N + 1

)1/α

, (16)

and when combined with the expression for 〈Q〉, Equation (8) in
the limit N → ∞, we find

〈Q〉
N

= −
a2PMsgn(1P)

8πµavL

∫ min((|1P|/PM)α ,1)

0
dx

√

(

|1P|
PM

)2

− x2/α .

(17)

Since we are interested in the behavior for |1P| → 0, we do this
integral under the assumption that |1P| < PM finding

〈Q〉
N

= −
a2α

32
√

πµavL

Ŵ
(

α
2

)

Ŵ
(

3+α
2

)

(

|1P|
PM

)α

1P , (18)

where the Ŵ function for real positive z is defined as, Ŵ(z) =
∫ ∞

−∞
tz−1e−tdt. When α = 1, we recover Equation (10).

Equation (10) shows the behavior observed experimentally
in References [14] and [15]. With Equation (18), we have just
shown that 〈Q〉/N ∼ |1P|γ as |1P| → 0, where γ depends
on the threshold distribution, i.e., on α in Equation (15). Does
this imply that there is no universality; that the experimentally
observed behavior is due to the presence of a very specific
threshold distribution?

As we now argue, there is universality. We note that the
threshold distribution p(Pc) = d5(Pc)/dPc behaves as p(Pc) ∝
Pα−1
c . Hence, if α > 1, the distribution vanishes as Pc →

0, whereas it diverges for α < 1. Thus, the behavior of the
distribution is vastly different for these two cases, and this causes
γ to depend on α. However, for α = 1, the distribution reaches a
constant, non-zero value for Pc → 0. Any threshold distribution
with this behavior for small Pc, i.e., p(Pc) reaching a non-zero
value and dp(Pc)/dPc → 0 in the limit Pc → 0 will give rise to the
square power law seen in Equation (10). Such distributions are
ubiquitous, and γ = 2 is universal over this class of distributions.

We now consider α = 1 again, but introduce a minimum
threshold Pm so that the cumulative threshold probability is
given by

5(Pc) =







0 , Pc ≤ Pm ,
Pc−Pm
PM−Pm

, Pm < Pc ≤ PM ,

1 , Pc > PM .

(19)

Equation (6) yields in this case the ordered threshold sequence

Pc(k) = Pm + (PM − Pm)
k

N + 1
. (20)

Equation (8) now becomes in the limit N → ∞

〈Q〉
N

= −
a2(PM − Pm)sgn(1P)

8πµavL

∫
|1P|

PM−Pm

Pm
PM−Pm

dx

√

(

|1P|
PM − Pm

)2

− x2 ,

(21)
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when we assume Pm ≤ |1P| ≤ PM . We find

〈Q〉
N

= −
a2(PM − Pm)sgn(1P)

32πµavL

(

|1P|
PM − Pm

)2



π − 4

(

Pm

|1P|

)2
√

(

|1P|
Pm

)2

− 1

− 2arccot









2

√

(

|1P|
Pm

)2
− 1

2−
(

|1P|
Pm

)2

















.

(22)

We find to lowest order in (|1P| − Pm), that this expression
behaves as

〈Q〉
N

= −
a2sgn(1P)

3
√
2πµavL

√
Pm

(PM − Pm)
(|1P| − Pm)

3/2 , (23)

as |1P| → Pm.

We now turn to numerical simulations and observe that the
numerical results are in good a agreement with the analytical
findings. The numerical simulations also allow us to explore the
regions which are analytically challenging. Results are shown
in Figure 2 for a bundle containing N = 105 capillary tubes
and averaged over 104 configurations. In Figure 2A, we show
the behavior of the volumetric flow rate 〈Q〉 as a function of
increasing pressure drop 1P for uniform threshold distributions
with Pm = 0 and Pm > 0, given by Equations (5, 19), respectively.
The results show that, for each threshold distribution, the
relationship is linear for high 1P obeying the Darcy law as
predicted by Equation (12). For small pressure drops, 〈Q〉 follows
a power law in1Pwith an exponent 2 when there is no lower cut-
off in the threshold distribution, i.e., Pm = 0. This is predicted
in Equation (10). When a lower cut-off is introduced in the
threshold distribution (Pm > 0), this exponent shifts from 2 to

FIGURE 2 | Results from numerical simulations performed with N = 105 capillaries and averaged over 104 configurations. Variation of 〈Q〉/N as a function of pressure

drop 1P for different threshold distributions are shown in (A–C) where non-linear to linear transitions are observed while increasing the pressure drop.

(A) Corresponds to uniform threshold distribution (Equation 5) where the power-law exponent γ for the non-linear regime has a value 2 without a lower cut-off

(Pm = 0). With any non-zero lower cut-off (Pm > 0), the exponent shifts to 3/2 (Equation 23). Results for the threshold distribution with a power α (Equation 24) are

shown in (B,C) for Pm = 0 and Pm > 0, respectively, where γ varies with α as γ = α + 1 for Pm = 0 and as γ = α + 1/2 for Pm > 0. These two relations are shown in

(D) for the range of α which show two distinct straight lines for Pm = 0 and for Pm > 0. Here, the number of active capillaries (kc) vary with 1P as kc/N ∼ (1P−Pm)α

as shown in the insets of (B,C).
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3/2 as predicted in Equation (23). These exponents in the non-
linear regime are not sensitive to the span of the distribution as
shown in Figure 2A. An insight to a more generalized picture is
presented in Figures 2B,C for a threshold distribution given by a
generalization of Equation (15) with an introduction of a lower
cut-off Pm,

5(Pc) =











0 , Pc ≤ Pm ,
(

Pc−Pm
PM−Pm

)α

, Pm < Pc ≤ PM ,

1 , Pc > PM ,

(24)

With this distribution of thresholds, the exponent γ in the non-
linear region shows a continuous variation with α as γ = α + 1
for Pm = 0. Such variation is given in Equation (18) and
matches well with the numerical results as shown in Figure 2D.
In presence of a lower cut-off Pm > 0, γ varies as (α+1/2) instead
of (α + 1) irrespective of the position of the lower cut-off. An
analytical treatment for a general α value with Pm > 0 is rather
challenging. Nevertheless, our numerical result matches with the
analytical study (see Equation 23) in the limit α = 1.

Equation (18) predicts an exponent γ = α + 1. A simple
argument, related to that given by Roux and Herrmann [22], goes
as follows: The number of active capillary tubes is proportional
to (|1P| − Pm)

α . This behavior is observed in the insets in
Figures 2B,C. The flow rate in an active capillary is proportional
to (|1P| − Pm)

1/2. Hence, the total flow rate should be 〈Q〉 ∝
(|1P| − Pm)

α+1/2. It is accidental that this argument works out
for Pm > 0 (Figure 2C), as it does not when Pm = 0, where
γ = α + 1. For the argument to function, the distribution of
active capillaries and the flow rate in each capillary should be
uncorrelated. It is not.

We find the same behavior with respect to the cut-off: An
exponent 3/2 for the cumulative threshold probability

5(Pc) =















0 , Pc ≤ Pm ,

log
(

Pc
Pm

)

log
(

Pc
PM

) , Pm < Pc ≤ PM ,

1 , Pc > PM ,

(25)

where Pm = 10−β and PM = 10β and β ranging from 0.5 to 1.5.
The same goes for the cumulative threshold probability

5(Pc) =
{

0 , Pc ≤ Pm ,

1− e−Pc−Pm/Pd , Pm < Pc ,
(26)

where we have set Pm = 0.1 and Pd = 1. In both of these cases,
the probability density at Pc = Pm is finite.

We have presented an analytical study supported by numerical
simulations of steady-state two-phase flow in a system of parallel

capillary tubes. Considering a uniform distribution for the
threshold pressures for the capillaries, we have calculated the
average flow rate as a function of the applied pressure drop.When
the thresholds are distributed according to a uniform distribution
between zero and a maximum value—or more generally, the
threshold distribution approaches a non-zero value in the limit of
zero thresholds—we obtain a quadratic relationship between the
flow rate and the applied pressure drop when the applied pressure
drop is below the maximum threshold pressure, and the linear
Darcy relationship for higher pressure drops. This crossover
between a quadratic non-linear and linear flow regimes is in
agreement withmany existing results of two-phase flow in porous
media which shows that this simple model can capture effective
two-phase flow properties of more complex porous media. When
a lower cut-off is introduced in the threshold distribution, the
quadratic relationship changes, and the flow rate varies with an
excess pressure drop with an exponent 3/2 as the pressure drop
approaches to the lowest threshold pressure.

The difference between the capillary fiber bundle model and a
porous medium is that in the latter, the fluids meet and mix at the
nodes of the pore network. This is an essential mechanism that
leads to the non-linear Darcy law is a power law with an exponent
two as seen in the experiments, the numerical simulations and the
mean-field calculations. However, it remains a mystery how the
mixing at the nodes leads to this universality.
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