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In this paper we investigate the spectral properties of a third-order differential operator

generated by a formally-symmetric differential expression and maximal dissipative

boundary conditions. In fact, using the boundary value space of the minimal operator

we introduce maximal selfadjoint and maximal non-selfadjoint (dissipative, accumulative)

extensions. Using Solomyak’s method on characteristic function of the contractive

operator associated with a maximal dissipative operator we obtain some results on the

root vectors of the dissipative operator. Finally, we introduce the selfadjoint dilation of the

maximal dissipative operator and incoming and outgoing eigenfunctions of the dilation.
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1. INTRODUCTION

Amodel operator may be regarded as an equivalent operator to another operator in a certain sense.
Such an equivalent representation has been constructed by Szokefalvi-Nagy and Foiaş [1] for a
contractive operator. The main idea for this construction is to obtain the unitary dilation of the
contraction. In fact, if the following equality holds

Tny = PUny,

where T is a contraction on the Hilbert space H and U is the operator on H, y ∈ H, n ≥ 0 and
P is the orthogonal projection of H onto H, then U is called a dilation of T. U is called unitary
provided that U is a unitary operator and in this case U is called unitary dilation of T. There exists
a geometric meaning of the dilation space. This meaning has been given by Sarason [2]. Sarason
showed that U is a dilation of T if and only ifH has the representation

H = G∗ ⊕H ⊕ G,

whereUG ⊂ G andU∗G∗ ⊂ G∗. This representation is closely related with incoming and outgoing
spaces in the scattering theory [3]. In the case that

H = span
{
UnH, n ∈ Z

}

then G and G∗ are uniquely determined and U is called minimal. If U is unitary minimal dilation
of T then one may consider the decomposition [4]
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U =



PG∗U | G∗ 0 0
DT∗V∗

∗ T 0
−VT∗V∗

∗ VDT U | G


 ,

where DT∗ and DT are so called defect operators of T defined by

DT = (I − TT∗)1/2,DT∗ = (I − T∗T)1/2,

DT andDT∗ are the defect spaces defined by

DT = closDTH,DT∗ = closDT∗H,

V is a partial isometry with the initial space DT and final space
E = G ⊖ UG and V∗ is a partial isometry with initial space DT∗

and the final space E∗ = G∗ ⊖ U∗G∗.
Now consider the transformations

π : L2(E) →
⊕

n∈Z
Un(G⊖ UG),

∑
n
znen →

∑
n
Unυen,

and

π∗ : L
2(E∗) →

⊕

n∈Z
Un(G∗ ⊖ U∗G∗),

∑
n
zne∗n →

∑
n
Un+1υ∗e

∗
n,

where υ and υ∗ are the unitary mappings defined by

υ :E → G⊖ UG

and

υ∗ :E∗ → G∗ ⊖ U∗G∗.

In the literature the operators π and π∗ are called functional
embeddings. The function π∗

∗π acting from E into E∗ is called
the characteristic function of the contraction T. If υ and υ∗ are
chosen as the unitary identifications between DT and E, and,
DT∗ and E∗, respectively, then the characteristic function can be
introduced as

π∗
∗π = 2T(ζ )a = V∗(−T + ζDT∗ (I − ζT∗)−1DT)V

∗a, a ∈ E.

Nagy and Foiaş introduced the characteristic function of a
contraction as [1]

2T = −T + ζDT∗ (I − ζT∗)−1DT

and this can be obtained from the previous equation by choosing
E = DT and E∗ = DT∗ .

Solomyak [5] using the connection between dissipative
operators and their Cayley transforms introduced an effective
way to obtain the characteristic function of both dissipative
operators and related contractions generated by Cayley
transforms. By a dissipative operator it is meant an operator A
with a dense domain D(A) acting on a Hilbert space K satisfying

Im(Ah, h) ≥ 0, h ∈ D(A).

An immediate result on dissipative operators is that all
eigenvalues lie in the closed upper half-plane. If a dissipative
operator does not have a proper dissipative extension then
A is called maximal dissipative. The Cayley transform of a
dissipative operator

C(A) = (A− iI)(A+ iI)−1

is a contraction from (A+ iI)D(A) onto (A− iI)D(A), i.e.,

∥∥C(A)
∥∥ ≤ 1.

It is known that a dissipative operator is maximal if and only
if C(A) is a contraction such that domain of C(A) is the
Hilbert space K and 1 can not belong to the point spectrum
of C(A). Solomyak used these connections and boundary spaces
associated with A to construct the characteristic function SA(λ)
with the rule

SA(λ) = P∗(A
∗ − λI)−1(A− λI)P−1, (1.1)

where P and P∗ are the natural projections. To be more precise
we should note that for a maximal dissipative operator A the
Hermitian part AH of A is defined as the restriction of A to the
following subspace

GA =
{
f ∈ D(A) ∩ D(A∗) :Af = A∗f

}
.

The natural projection P is defined by

P :D(A) → D(A)/GA,

where D(A)/GA is the quotient space. Similarly P∗ is defined by

P∗ :D(A
∗) → D(A∗)/GA.

On the quotient spaces the following inner products are defined

〈Pϕ, Pψ〉 =
i

2
((ϕ, Pψ)− (Pϕ,ψ)) ,ϕ,ψ ∈ D(A)

and

〈
P∗ϕ∗, P∗ψ∗

〉
=

i

2

((
ϕ∗, P∗ψ∗

)
−

(
P∗ϕ∗,ψ∗

))
,ϕ∗,ψ∗ ∈ D(A∗).

Let F(A) be the completion of the quotient space D(A)/GA with
respect to the norm

‖Pϕ‖2F = Im(Aϕ,ϕ).

In a similar way one may define F∗(A) : = F(−A∗) and F∗(A) is
equipped with the norm

∥∥P∗ϕ∗
∥∥2
F∗

= − Im(A∗ϕ∗,ϕ∗).

These spaces F(A) and F∗(A) are called boundary spaces.
Solomyak showed for a maximal dissipative operator A and its
Cayley transform C(A) that there exist isometric isomorphisms

ρ : F(A) → DC, ρ∗ : F∗(A) → DC∗
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with the rules

ρP(I − C) = DC, ρ∗P∗(I − C∗) = DC∗ .

Then fixing arbitrary isometric isomorphisms � :E → DC,
�∗ :E∗ → DC∗ the characteristic function 2C of the Cayley
transform C(A) can be introduced by

2C(ζ ) = �∗
∗(−C + ζDC∗ (I − ζC∗)DC)�.

Finally taking � = ρ, �∗ = ρ∗, E = F(A), E∗ = F∗(A) one
obtains (1.1).

In this paper using the results of Solomyak we investigate
some spectral properties of a regular third-order dissipative
operator. We should note that such an investigation with the aid
of Solomyak’s approach has not been introduced for the third-
order case. In fact, the literature has less works on odd-order
operators than on even-order equations even if there exists some
results in the literature [6–13]. The main reason is the confusion
of imposing the boundary conditions because as Everitt says in
[9] that it is impossible to impose separated boundary conditions
for the solutions of a third-order equation. Consequently, this
paper may give an idea to use Solomyak’s method for the odd-
order dissipative or accumulative operators.

2. MAXIMAL DISSIPATIVE OPERATOR

Throughout the paper we consider the following third-order
differential expression

ℓ(y) =
1

w

{
−i

(
q0

(
q0y

′)′)′ − (p0y
′)′ + i

[
q1y

′ + (q1y)
′] + p1y

}

, x ∈ [a, b],

where qj, pj, j = 0, 1, w are real-valued and continuous functions
on [a, b] and q0 > 0 or q0 < 0 and w > 0 on [a, b].

The quasi-derivative y[r] of the function y is defined by

y[0] = y, y[1] = − 1+i√
2
q0y

′, y[2] = iq0(q0y
′)′ + p0y

′ − iq1y.

Let H denote the Hilbert space with the usual inner product

(y, z) =
b∫

a

yzwdx

and with the norm
∥∥y

∥∥2 = (y, y).

Now consider the subspaceD ofH which consists of the functions
y ∈ H such that y[r], 0 ≤ r ≤ 2, is locally absolutely continuous
on [a, b] and ℓ(y) ∈ H. The maximal operator L is defined on
D by

Ly = ℓ(y), y ∈ D, x ∈ [a, b].

For y, z ∈ D following Lagrange’s formula can be introduced

(Ly, z)− (y, Lz) = [y, z](b)− [y, z](a), (2.1)

where

[y, z] : = yz[2] − y[2]z + iy[1]z[1].

(2.1) particulary implies the meaning of [y, z](a) and [y, z](b) for
y, z ∈ D.

Let D′
0 be a set of D that consists of those functions y ∈ D

such that y has a compact support on [a, b]. The operator L′0
which is the restriction of L to D′

0 is a densely defined symmetric
operator and therefore it admits the closure. Let L0 be the closure
of L′0. L0 then becomes a densely defined, symmetric operator
with domain D0 that consists of the functions y ∈ D satisfying

y[r](a) = y[r](b) = 0, 0 ≤ r ≤ 2.

Moreover one has L∗0 = L [14, 15].
For the symmetric operators there exists a useful theory called

deficiency indices theory to construct the extensions. In fact, let
M be a symmetric operator on a Hilbert space B and Rλ denoted
the range ofM − λI, where λ is a parameter and I is the identity
operator in B. The deficiency spaces Nλ and Nλ are defined by
Naimark [14]

Nλ = B⊖ Rλ,Nλ = B⊖ Rλ.

The deficiency indices (m, n) of the operatorM are defined by

(m, n) = (dimNi, dimN−i).

Note that the deficiency indices of L0 are (3, 3).
To describe the extensions of a closed, symmetric operator

with equal deficiency indices one may use the boundary value
space. Boundary value space of the closed symmetric operatorM
is a triple (K, σ 1, σ 2) such that σ 1, σ 2 are linear mappings from
D(M∗) (domain ofM∗) into K and following holds:

(i) for any f , g ∈ D(M∗)

(M∗f , g)− (f ,M∗g) = (σ 1f , σ 2g)K − (σ 2f , σ 1g)K ,

(ii) for and F1, F2 ∈ K, there exists a vector f ∈ D(M∗) such
that σ 1f = F1 and σ 2f = F.

Now for y ∈ D consider the following mappings

σ 1y =
(
y[2](a),

1

2
y[1](a)+

i

2
y[1](b), y(b)

)

and

σ 2y =
(
y(a), iy[1](a)+ y[1](b), y[2](b)

)
.

Then we have the following Lemma.

Lemma 2.1. Fory, z ∈ D

(σ 1y, σ 2z)C3−(σ 2y, σ 1z)C3= [y, z](b)− [y, z](a).
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Proof: Let y, z ∈ D. Then

(σ 1y, σ 2z)C3 − (σ 2y, σ 1z)C3 = σ 1y(σ 2z)
∗ − σ 2y(σ 1z)

∗

= y[2](a)z(a)+
(
1
2y

[1](a)+ i
2y

[1](b)
) (

−iz[1](a)+ z[1](b)
)

+y(b)z[2](b)−
[
y(a)z[2](a)+

(
iy[1](a)+ y[1](b)

) (
1
2 z

[1](a)

− i
2 z

[1](b)
)
+y[2](b)z(b)

]
= [y, z](b)− [y, z](a).

This completes the proof.

One of our aim is to impose some suitable boundary
conditions for the solution y of the equation

−i
(
q0

(
q0y

′)′)′−(p0y
′)′+i

[
q1y

′ + (q1y)
′]+p1y = λwy, x ∈ [a, b],

(2.2)
where λ is the spectral parameter and y ∈ D. We should note
that the Equation (2.2) has a unique solution χ(x, λ) satisfying
the initial conditions

χ [r](c, λ) = lr , 0 ≤ r ≤ 2,

where lr is a complex number. This fact follows from the
assumptions on the coefficients q0, q1, p0, p1,w, and following
representation

Y ′ = A(x, λ)Y , (2.3)

where

Y =



y[0]

y[1]

y[2]


 , A =




0 −
√
2

(1+i)q0
0

− 1+i√
2

q1
q0

i
p0
q20

−
√
2

(1+i)q0

p1 − λw − 1+i√
2

q1
q0

0


 .

Then the theory on ordinary differential equations may be
applied to the first-order system (2.3), where the elements of A
are integrable on each compact subintervals of [a, b].

Now the next Lemma can be introduced with the aid of
Naimark’s patching Lemma [14].

Lemma 2.2. There existsy ∈ D satisfying

y[r](a) = αr , y
[r](b) = βr , 0 ≤ r ≤ 2,

where αr ,βr are arbitrary complex numbers.
Now we may introduce the following.

Theorem 2.3. (C3, σ 1, σ 2) is a boundary value space for L0.

Proof: Since L∗0 = L we obtain for y, z ∈ D that

(L∗0y, z)− (y, L∗0z) = [y, z](b)− [y, z](a).

Therefore, Lemma 2.1 and Lemma 2.2 complete the proof.

Let S be a contraction and N be a selfadjoint operator on
C
3. Then using the Theorem of Gorbachuks’ [16], p. 156, the

following abstract Theorem can be introduced.

Theorem 2.4. Let f ∈ D. Then the conditions

(sinN) σ 1f − (cosN)σ 2f = 0,
(S− I)σ 1f + i(S+ I)σ 2f = 0,
(S− I)σ 1f − i(S+ I)σ 2f = 0,

describe, respectively, the maximal selfadjoint, maximal
dissipative, and maximal accumulative extensions of L0.

Since we will investigate the spectral properties of themaximal
dissipative extension of L0 we shall introduce the following.

Corollary 2.5. For y ∈ D the maximal dissipative extension
of L0 is described by

y(a)+ h1y
[2](a) = 0, Im h1≥ 0,

iy[1](a)+ y[1](b)+ h2,∗
(
1
2y

[1](a)+ i
2y

[1](b)
)
= 0, Im h2,∗≥ 0,

y[2](b)+ h3y(b) = 0, Im h3≥ 0.

Corollary 2.6. For y ∈ D the conditions

y(a)+ h1y
[2](a) = 0, Im h1= 0,

(i+ h2)y
[1](a)+ (1+ ih2)y

[1](b) = 0, Im h2> 0, h2 6= i,

y[2](b)+ h3y(b) = 0, Im h3> 0,

(2.4)

where h2 = h2,∗/2, describe the maximal dissipative extension
of L0.

Remark 2.7. As may be seen in the next sections, the caseh2 =
i may give rise to some complications. Therefore, we exclude
this case.

Now let D(L) be a set consisting of all functions y ∈ D
satisfying the conditions (2.4). Let us define the operator L on
D(L) with the rule

Ly = ℓ(y), y ∈ D(L), x ∈ [a, b].

Then L is a maximal dissipative operator on H.
The adjoint operator L∗ of L is given by

L
∗y = ℓ(y), y ∈ D(L∗), x ∈ [a, b],

whereD(L∗) is the domain ofL∗ consisting of all functions y ∈ D
satisfying

y(a)+ h1y
[2](a) = 0, Im h1 = 0,

(−i+ h2)y
[1](a)+ (1− ih2)y

[1](b) = 0, Im h2 > 0, h2 6= −i,

y[2](b)+ h3y(b) = 0, Im h3 > 0.

Theorem 2.8. L is totally dissipative (simple) in H.

Proof: This follows from choosing h2 and h3 with positive
imaginary parts. Indeed, for y ∈ D(L) one gets

Im(Ly, y) =
2 Im h2∣∣1+ ih2

∣∣2
∣∣∣y[1](a)

∣∣∣
2
+ Im h3

∣∣y(b)
∣∣2 . (2.5)

If L had a selfadjoint part Ls in Hs ⊂ H then from (2.5) one
would get

y(b) = y[1](b) = y[2](b) = 0

and therefore y ≡ 0. This completes the proof.
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3. CONTRACTIVE OPERATOR

There exists a connection between dissipative operator L and
the contractive operator C. This connection can be given by the
following relation

C = (L− iI)(L+ iI)−1.

Since L is maximal dissipative the domain of C is the whole
Hilbert space H.

An important class of contractions on a Hilbert space consists
of completely non-unitary (c.n.u.) contractions. A contraction C
is said to be c.n.u. if there exists no non-zero reducing subspace
H0 such that C | H0 is a unitary operator.

From the simplicity of L we have the following.

Theorem 3.1. C is a c.n.u. contraction onH.

Proof: Let (L + iI)−1f = y, where y ∈ D(L) and f ∈ H. Then
we get

∥∥(L− iI)y
∥∥2 <

∥∥(L+ iI)y
∥∥2 (3.1)

because

Im(Ly, y) > 0, y ∈ D(L).

(3.1) implies that

‖C‖ < 1 (3.2)

and this completes the proof.

Now we define the defect operators of C as

DC = (I − C
∗
C)1/2,DC∗ = (I − CC

∗)1/2

and the defect spaces of C as

DC = DCH,DC∗ = DC∗H.

The numbers dC and dC∗ defined by

dC = dimDC , dC∗ = dimDC∗

are called the defect indices of C.

Theorem 3.2. dC = dC∗ = 2.

Proof: Consider the equation

D2
C
f = (L+ iI)y− (L∗ + iI)z,

where f = (L+ iI)y, y ∈ D(L), f ∈ H and z ∈ D(L∗). Then

z = (L∗ − iI)−1(L− iI)y

or

(L∗ − iI)z = (L− iI)y. (3.3)

Equation (3.3) implies that DC is spanned by two independent
solutions. In fact, let ϕ(x, λ) and ϕ̃(x, λ) be two solutions of
(2.2) satisfying

ϕ(a, λ) = −h1,ϕ
[2](a, λ) = 1,ϕ[1](a, λ) = c( 6= 0), (3.4)

where c is a constant and

ϕ̃(a, λ) = −h1, ϕ̃
[2](a, λ) = 1,ϕ[1](a, λ) = 0.

(2.5) needs the solutions of (2.2) satisfying the condition

y(a)+ h1y
[2](a) = 0, h1 ∈ R (3.5)

Clearly ϕ and ϕ̃ satisfies (3.5) and ϕ can not be represented
by a constant of ϕ̃. If there exists any other solution ψ(x, λ) of
(2.2) satisfying

ψ(a, λ) = −h1,ψ
[2](a, λ) = 1,ψ [1](a, λ) = c1,

where c1 is another constant different from c then
ψ̃(x, λ) : = (c1/c)ϕ(x, λ) becomes a solution of (2.2) satisfying
(3.5) and ψ(x, λ) may be introduced by ϕ(x, λ).

Therefore,

D2
C
f = (ℓ+ iI)(y− z) = 2i(d1ϕ + d2ϕ̃),

where d1 and d2 are constants and DC is spanned by ϕ(x, i) and
ϕ̃(x, i).

With a similar argument one may see that

D2
C∗ f = (ℓ− iI)(y− z) = −2i(d1ϕ + d2ϕ̃),

and thereforeDC∗ is spanned by ϕ(x,−i) and ϕ̃(x,−i).
This completes the proof.

Definition 3.3. [17] The classesC0. andC.0 are defined as

C0. =
{
T : ‖T‖ ≤ 1, limn

∥∥Tnf
∥∥ = 0 for allf

}
,

C.0 =
{
T : ‖T‖ ≤ 1, limn

∥∥T∗nf
∥∥ = 0 for allf

}
.

C00 is defined by C00 = C0. ∩ C.0.

Theorem 3.4. C ∈ C00.

Proof: This follows from (3.2), ‖C‖ = ‖C∗‖ and the equalities

∥∥Cnf
∥∥ ≤ ‖C‖n

∥∥f
∥∥ ,

and
∥∥C∗nf

∥∥ ≤
∥∥C∗∥∥n ∥∥f

∥∥ .

The class C0 consists of those c.n.u. contractions T for which
there exists a non-zero function u ∈ H∞ (Hp denotes the Hardy
class) such that u(T) = 0. Since C belongs to the class C00 with
finite defect numbers this implies the following [1].

Theorem 3.5. C ∈ C0.
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4. CHARACTERISTIC FUNCTION

We shall consider the inner product on the quotient space
D(L)/GL as follows

(
Py, Pz

)
=

i

2

((
y,Ly

)
−

(
Ly, y

))
, y, z ∈ D(L),

where P is the natural projection with P :D(L) → D(L)/GL.
The completion of D(L)/GL is denoted by F(L) with respect to
the corresponding norm. Similarly F∗(L) := F(−L

∗) and P∗ is
defined by P∗ :D(L

∗) → D(L∗)/GL. One has

∥∥Py
∥∥2
F
= Im(Ly, y),

∥∥P∗y
∥∥2
F∗

= − Im(L∗y, y). (4.1)

F(L) and F(L∗) are the boundary spaces of L. From (4.1) we get

∥∥Py
∥∥2
F
=

2 Im h2∣∣1+ ih2
∣∣2

∣∣∣y[1](a)
∣∣∣
2
+ Im h3

∣∣y(b)
∣∣2 (4.2)

and

‖P∗z‖2F∗ =
2 Im h2∣∣1+ ih2

∣∣2
∣∣∣z[1](a)

∣∣∣
2
+ Im h3

∣∣z(b)
∣∣2 . (4.3)

From (4.2) and (4.3) we may set

Py =

[ √
2 Im h2
|1+ih2| y

[1](a)
√
Im h3y(b)

]
, P∗z =

[ √
2 Im h2
|1+ih2| z

[1](a)
√
Im h3z(b)

]
.

Setting E = E∗ = C
2 we define the following isometric

isomorphisms

9 : E → F(L),

c =
[
c1
c2

]
→ 9(c) = Py =

[ √
2 Im h2
|1+ih2| y

[1](a)
√
Im h3y(b)

]
,

(4.4)

where y ∈ D(L), y[1](a) = c2
∣∣1+ ih2

∣∣ (2 Im h2
)−1/2

, y(b) =
c1(Im h3)

−1/2 and

9∗ : E∗ → F∗(L),

c =
[
c1
c2

]
→ 9∗(c) = P∗z =

[ √
2 Im h2
|1+ih2| z

[1](a)
√
Im h3z(b)

]
,

(4.5)

where z ∈ D(L∗), z[1](a) = c2
∣∣1+ ih2

∣∣ (2 Im h2
)−1/2

,

z(b) = c1(Im h3)
−1/2. Then we may introduce the characteristic

function of L.

Theorem 4.1. The characteristic matrix-function 2L ofL is
given by

2L(λ) =




−i+h2
i+h2

(1+ih2)ϕ
[1](b)−(i+h2)ϕ

[1](a)

(1−ih2)ϕ[1](b)−(−i+h2)ϕ[1](a)
0

0 ϕ[2](b)+h3ϕ(b)

ϕ[2](b)+h3ϕ(b)


 , Im λ > 0.

Proof: Consider the equation

2L(λ)c = 9∗
∗P∗(L

∗ − λI)−1(L− λI)P−19c. (4.6)

(4.4) implies that y ∈ P−19c with y ∈ D(L) and therefore

(L∗ − λI)−1(L− λI)y = z, (4.7)

where z ∈ D(L∗) and

(L− λI)y = (L∗ − λI)z. (4.8)

Using (4.6) and (4.7) we obtain

9∗
∗P∗z =

[ √
2 Im h2
|1+ih2| z

[1](a)
√
Im h3z(b)

]
. (4.9)

From (4.8) we should find a solution u = z − y of the Equation
(2.2) satisfying (3.5). Therefore, we may set u = B(λ)ϕ(x, λ),
where ϕ is the solution of (2.2) satisfying the conditions in (3.4).
Consider the equation

(z − y)[2](b) =
ϕ[2](b, λ)

ϕ(b, λ)
(z − y)(b). (4.10)

Since y ∈ D(L) and z ∈ D(L∗) we get from (4.10)

z(b)(ϕ[2](b, λ)+ h3ϕ
[2](b, λ)) = y(b)(ϕ[2](b, λ)+ h3ϕ

[2](b, λ)).
(4.11)

Similarly the equation

(z − y)[1](a) =
ϕ[1](a, λ)

ϕ[1](b, λ)
(z − y)[1](b)

gives

z[1](a)−i+h2
1−ih2

(
ϕ[1](a, λ)− 1−ih2

−i+h2
ϕ[1](b, λ)

)

= y[1](a) i+h2
1+ih2

(
1+ih2
i+h2

ϕ[1](b, λ)− ϕ[1](a, λ)
)
.

(4.12)

(4.6) and (4.9) show that

2L(λ)

[
c1
c2

]
=




z[1](a)
y[1](a)

0

0 z(b)
y(b)




[
c1
c2

]
. (4.13)

Consequently (4.11)–(4.13) complete the proof.

Remind that a function 2(ζ ) whose values are bounded
operators from a Hilbert space H to a Hilbert space H∗, both
separable and which has a power series expansion

2(ζ ) =
∞∑

k=0

ζ k2k

whose coefficients are bounded operators from H to H∗.
Moreover assume that

∥∥2(ζ )
∥∥ ≤ const.
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Such a function with the spaces H and H∗ is called bounded
analytic function. If const = 1 then it is called contractive analytic
function. The contractive analytic function 2 is said to be inner
if2(eit) is isometry fromH intoH∗ for almost all t.

Since there exists a connection between the characteristic
function 2L of L and the characteristic function 2C of C with
the rule

2L(λ) = 2C

(
λ− i

λ+ i

)

we have the following.

Corollary 4.2. The characteristic function2C of C is given by

2C(µ) = 2L(λ),µ =
λ− i

λ+ i
, Im λ > 0.

Since C is a c.n.u. contraction belonging to the class C.0 we have
the following.

Theorem 4.3.2C(µ) is inner.

Corollary 4.4. det2C(µ) is inner.

An operator A ≥ 0 on a Hilbert space H is said to be of finite
trace if A is compact and its eigenvalues is finite. This sum is
called the trace of A [1, 18]. A contraction C on a Hilbert spaceH
is called weak contraction if

(i) its spectrum does not fill the unit disc D,
(ii) I − C∗C is of finite trace.

Since every C0 contraction with finite-multiplicity is a weak
contraction [18], p. 437, we may introduce the following.

Theorem 4.5. I − C
∗
C is of finite trace.

The following Theorem is obtained from Nikolskĭi
[17], p. 134.

Theorem 4.6. The followings are satisfied:

(i) The root functions of C are complete in H,
(ii) The roots functions of C∗ are complete in H,

(iii) det(C∗C) = det
∣∣2C(0)

∣∣2 = ∏
µ

|µ|2d(µ) ,

where µ belongs to the point spectrum of C and d(µ) is the rank
of the Riesz projection at a point µ in the set of point spectrum.

Proof: The proof follows from the fact det2C is a Blashke
product. So we shall prove this fact.

By Corollary 4.4 we may write

−i+ h2

i+ h2

(1+ ih2)ϕ
[1](b)− (i+ h2)ϕ

[1](a)

(1− ih2)ϕ[1](b)− (−i+ h2)ϕ[1](a)

ϕ[2](b)+ h3ϕ(b)

ϕ[2](b)+ h3ϕ(b)

= B(λ)eiλb, (4.14)

where b > 0, Im λ > 0 andB(λ) is a Blashke product in the upper
half-plane. Hence

∣∣∣∣
(1+ ih2)ϕ

[1](b)− (i+ h2)ϕ
[1](a)

(1− ih2)ϕ[1](b)− (−i+ h2)ϕ[1](a)

ϕ[2](b)+h3ϕ(b)

ϕ[2](b)+h3ϕ(b)

∣∣∣∣≤e−b Imλ.

(4.15)
For λs = is we have from (4.15) that the following possibilities
may occur:

(i) ϕ
[2](b)+h3ϕ(b)

ϕ[2](b)+h3ϕ(b)
→ 0 as s → ∞,

(ii) (1+ih2)ϕ
[1](b)−(i+h2)ϕ

[1](a)

(1−ih2)ϕ[1](b)−(−i+h2)ϕ[1](a)
→ 0 as s → ∞,

(iii) ϕ
[2](b)+h3ϕ(b)

ϕ[2](b)+h3ϕ(b)
→ 0 and (1+ih2)ϕ

[1](b)−(i+h2)ϕ
[1](a)

(1−ih2)ϕ[1](b)−(−i+h2)ϕ[1](a)
→ 0

as s → ∞.

In fact (iii) is possible because in this case λ is an eigenvalue
of L and this implies that λ∞ is an eigenvalue of the operator
L or equivalently 1 is an eigenvalue of the c.n.u. contraction C.
However the latter one is not possible. Therefore, this completes
the proof.

Definition 4.7. Let all root functions of the operatorL span
the Hilbert spaceH. Such an operator is called complete operator.
If everyL−invariant subspace is generated by root vectors of L
belonging to the subspace then it is said L admits spectral synthesis.

Since every complete operator in C0 admits spectral synthesis
[17], we obtain the following.

Theorem 4.8. C admits spectral synthesis.
Since the root functions ofL spanH then those of Cmust span

H [19] (p. 42). Consequently we may introduce the following.

Theorem 4.9. Root functions ofL associated with the point
spectrum of L in the open upper half-planeIm λ > 0 span the
Hilbert space H.

5. DILATION OPERATOR AND ITS

EIGENFUNCTIONS

In this section we investigate the properties of selfadjoint dilation
of the operator L and eigenfunctions of selfadjoint dilation.

5.1. Selfadjoint Dilation of the Maximal

Dissipative Operator
Following theorem gives the selfadjoint operator with free
parameters [5].

Theorem 5.1.1. The minimal selfadjoint dilationL of the
maximal dissipative operatorL in the space

HL = L2(R−,E∗)⊕H ⊕ L2(R+,E)

has the form

L



ϕ−
f
ϕ+


 =



iϕ′−
i
{
2 (I − C)−1

[
f − i√

2
DC∗�∗ϕ−(0)

]
− ρ

}

iϕ′+



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and the domain ofL is given by the conditions

ϕ− ∈ W1
2 (R−,E∗),ϕ+ ∈ W1

2 (R+,E),
f − i√

2
DC∗�∗ϕ−(0) ∈ (I − C)H = D(L),

√
2iDC(I−C)−1

[
f − i√

2
DC∗�∗ϕ−(0)

]
= C

∗�∗ϕ−(0)+�ϕ+(0),

where W1
2 denotes the Sobolev space.

The isometries � :E → DC , �∗ :E∗ → DC∗ are the free
parameters. In the case that dimDC < ∞, dimDC∗ < ∞ then
one may consider the boundary spaces F(L) and F∗(L) instead
of DC and DC∗ . Then following Lemma gives a direct approach
for the dilation [5].

Lemma 5.1.2. The minimal selfadjoint dilationL in the
spaceHL of the maximial dissipative operatorL inH with finite
defects has the form

L



ϕ−
f
ϕ+


 =



iϕ′−
L

(
f − i√

2

[
9∗ϕ−(0)

])
+ i√

2
L
∗ [
9∗ϕ−(0)

]

iϕ′+




where 9 :E → F(L) and 9∗ :E∗ → F∗(L) are the isometric
isomorphisms and the domain of L is given by the conditions

ϕ−∈ W1
2(R−,E∗), ϕ+∈ W1

2(R+,E),
f− i√

2

[
9∗ϕ−(0)

]
∈ D(L),

f− i√
2

[
9∗ϕ−(0)

]
+ i√

2

[
9ϕ+(0)

]
∈ GL.

If GL is dense in H one may consider GL = D(L) ∩ D(L∗) and

L̃ :=
{
L on D(L),
L
∗ on D(L∗).

The following Corollary now may be introduced [5].

Corollary 5.1.3. The selfadjoint dilation L of the maximal
dissipative operator L with finite defects such that GL is dense in
H has the form

L



ϕ−
f
ϕ+


=



iϕ′−
L̃f
iϕ′+


 , L̃= (L | GL)

∗ ,

and the domain ofL is given by the conditions

ϕ−∈ W1
2(R−,E∗),ϕ+∈ W1

2(R+,E),
f− i√

2

[
9∗ϕ−(0)

]
∈ D(L),

f+ i√
2

[
9ϕ+(0)

]
∈ D(L∗).

Now using Corollary 5.1.3 we may introduce the following.

Theorem 5.1.4. The selfadjoint dilation L of the maximal
dissipative operator L in the space

HL = L2(R−;C2)⊕H ⊕ L2(R+;C2)

is given by the rule

L



ϕ−
f
ϕ+


=



iϕ′−
ℓ(f )
iϕ′+




whose domain is given by the conditions

(i+ h2)f
[1](a)+ (1+ ih2)f

[1](b) = (1−|h2|)(1+ih2)√
Im h2|1+ih2| ϕ

(1)
− (0),

f [2](b)+ h3f (b) = −
√
2 Im h3ϕ

(2)
− (0),

(−i+ h2)f
[1](a)+ (1− ih2)f

[1](b) = (|h2|−1)(1−ih2)√
Im h2|1+ih2| ϕ

(1)
+ (0),

f [2](b)+ h3f (b) = −
√
2 Im h3ϕ

(2)
+ (0),

where

ϕ±:=

[
ϕ
(1)
±
ϕ
(2)
±

]
∈ W1

2(R±;C2).

Proof: Let y ∈ D(L) with y[1](a) = (2 Im h2)
−1/2

∣∣1+ ih2
∣∣ϕ(1)+ (0), y(b) = (Im h3)

−1/2ϕ
(2)
+ (0) and

z ∈ D(L∗) with z[1](a) = (2 Im h2)
−1/2

∣∣1+ ih2
∣∣ϕ(1)− (0),

z(b) = (Im h3)
−1/2ϕ

(2)
− (0). Then f − i2−1/2

[
9∗ϕ−(0)

]
∈ D(L)

if and only if

f [2](b)−
i

√
2
z[2](b) = −h3

(
f (b)−

i
√
2
z(b)

)
(5.1)

and

(i+h2)

(
f [1](a)−

i
√
2
z[1](a)

)
=−(1+ih2)

(
f [1](b)−

i
√
2
z[1](b)

)
.

(5.2)
(5.1) gives

f [2](b)+ h3f (b) = −2
√
Im h3ϕ

(2)
− (0)

and (5.2) implies

(i+ h2)f
[1](a)+ (1+ ih2)f

[1](b) =
(1−

∣∣h2
∣∣)(1+ ih2)√

Im h2
∣∣1+ ih2

∣∣ ϕ
(1)
− (0).

Similarly f + i2−1/2
[
9ϕ+(0)

]
∈ D(L∗) if and only if

f [2](b)+
i

√
2
z[2](b) = −h3

(
f (b)+

i
√
2
z(b)

)
(5.3)

and

(−i− h2)

(
f [1](a)+

i
√
2
z[1](a)

)

= −(1− ih2)

(
f [1](b)+

i
√
2
z[1](b)

)
. (5.4)

(5.3) shows that

f [2](b)+ h3f (b) = −2
√
Im h3ϕ

(2)
+ (0)
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and (5.4) shows

(−i+h2)f
[1](a)+(1− ih2)f

[1](b) =
−(1−

∣∣h2
∣∣)(1+ ih2)√

Im h2
∣∣1+ ih2

∣∣ ϕ
(1)
+ (0).

Therefore the proof is completed.

5.2. Eigenfunctions of the Dilation
As is pointed out in Solomyak [5] the generalized eigenfunctions
of the dilationLmay be introduced by incoming eigenfunctions



2L(λ) exp(−iλr)c
i√
2

((
L
∗ − λI

)−1 (
L− λI

)
− I

)
P−19c

exp(−iλs)c




and outgoing eigenfunctions



exp(−iλr)̃c

− i√
2

(
(L− λI)−1 (L∗ − λI)− I

)
P−1
∗ 9∗̃c

2∗
L
(λ) exp(−iλs)̃c


 ,

where r ∈ R−, s ∈ R+, c ∈ E, c̃ ∈ E∗ and λ ∈ R.
Therefore we may introduce the following.

Theorem 5.2.1. The incoming and outgoing eigenfunction ofL
can be introduced by




2L(λ) exp(−iλr)c


−
√
2 Im h3

ϕ[2](b,λ)+h3ϕ(b,λ)
0

0
(
1+ih2
i+h2

ϕ[1](b,λ)

ϕ[1](a,λ)
− 1− 1

ϕ[1](a,λ)

) |1+ih2|√
2 Im h2




exp(−iλs)̃c



,




exp(−iλr)c


−
√
2 Im h3

ϕ[2](b,λ)+h3ϕ(b,λ)
0

0
(
1+ih2
i+h2

ϕ[1](b,λ)

ϕ[1](a,λ)
− 1− 1

ϕ[1](a,λ)

)



2∗
L
(λ) exp(−iλs)̃c




or




2L(λ) exp(−iλr)c


√
2 Im h3

ϕ[2](b,λ)+h3ϕ(b,λ)
0

0 −
(

1−ih2
−i+h2

ϕ[1](b,λ)
ϕ[1](a,λ)

− 1− 1
ϕ[1](a,λ)

)



exp(−iλs)̃c



,




exp(−iλr)c


√
2 Im h3

ϕ[2](b,λ)+h3ϕ(b,λ)

|1+ih2|√
2 Im h2

0

0 −
(

1−ih2
−i+h2

ϕ[1](b,λ)
ϕ[1](a,λ)

− 1− 1
ϕ[1](a,λ)

)



2∗
L
(λ) exp(−iλs)̃c



,

wherer ∈ R−, s ∈ R+, λ ∈ R.

Proof: Consider the equation

((
L
∗ − λI

)−1 (
L− λI

)
− I

)
P−19c = B(λ)ϕ(x, λ)c, (5.5)

where z − y = B(λ)ϕ(x, λ), z ∈ D(L∗) and y ∈ D(L).

One gets

(
z − y

)
(b) =

2i Im h3ϕ(b, λ)

ϕ[2](b, λ)+ h3ϕ(b, λ)
y(b)

or

B(λ)ϕ(b, λ) =
i2
√
Im h3

ϕ[2](b, λ)+ h3ϕ(b, λ)
ϕ(b, λ)c1

and

(
z − y

)[1]
(a) =

(
1+ ih2

i+ h2
ϕ[1](b, λ)− ϕ[1](a, λ)− 1

)
y[1](a)

or

B(λ)ϕ[1](a, λ)=
(
1+ ih2

i+ h2
ϕ[1](b, λ)− ϕ[1](a, λ)−1

) ∣∣1+ ih2
∣∣

√
2 Im h2

c2.

Therefore the left-hand side of (5.5) can be introduced as

B(λ)




i2
√
Im h3

ϕ[2](b,λ)+h3ϕ(b,λ)
0

0
(
1+ih2
i+h2

ϕ[1](b, λ)− ϕ[1](a, λ)− 1
) |1+ih2|√

2 Im h2




[
c1
c2

]
.

Now consider the equation

(
(L− λI)−1

(
L
∗ − λI

)
− I

)
P−1
∗ 9∗c = B(λ)ϕ(x, λ),

where y − z = B(λ)ϕ(x, λ), y ∈ D(L) and z ∈ D(L∗). A similar
argument completes the proof.

6. CONCLUSION AND REMARKS

This paper provides a new method to analyze the spectral
properties of some third-order dissipative boundary value
problems and it seems that such a method has not been
introduced previously for third-order case. This method is very
effective and can be applied for other odd-order dissipative
operators generated by suitable odd-order differential equation
and boundary conditions.

Finally we should note that the differential expression ℓ can
also be handled as the following

ℓ(y) =
1

w

{
−i

[
(ry′)′′ + (ry′′)′

]
− (p0y

′)′ + i
[
q1y

′+(q1y)
′]+p1y

}
,

where r is a suitable function. Then with some modifications a
similar boundary value problem as (2.2), (2.4) can be analyzed.
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