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In this note we consider a quantum mechanical particle moving inside an infinitesimally

thin layer constrained by a parabolic well in the x-direction and, moreover, in the

presence of an impurity modeled by an attractive Gaussian potential. We investigate the

Birman-Schwinger operator associated to a model assuming the presence of a Gaussian

impurity inside the layer and prove that such an integral operator is Hilbert-Schmidt, which

allows the use of the modified Fredholm determinant in order to compute the bound

states created by the impurity. Furthermore, we consider the case where the Gaussian

potential degenerates to a δ-potential in the x-direction and a Gaussian potential in the

y-direction. We construct the corresponding self-adjoint Hamiltonian and prove that it is

the limit in the norm resolvent sense of a sequence of corresponding Hamiltonians with

suitably scaled Gaussian potentials. Satisfactory bounds on the ground state energies

of all Hamiltonians involved are exhibited.

Keywords: Gaussian potential, Birman-Schwinger operator, Hilbert-Schmidt operator, contact interaction,

quantum well

1. INTRODUCTION

The study of point potentials in Quantum Physics has recently received a lot of attention for a
wide range of interests. First of all, point potentials serve as solvable or quasi-solvable models that
approximate the action of intense and very short range potentials [1–3]. They have been used to
model several kinds of extra thin structures [4, 5], to mimic point defects in materials, or to study
heterostructures [6–9]. In addition, point potentials play a role in modeling impurities in quantum
field theory [10–13]. Furthermore, they play an important role after a recent interpretation of the
Casimir effect [14, 15]. The unexpected relations between contact potentials and group theory
should also be noted [16]. They also play a role in modeling Kronig-Penney crystals in condensed
matter physics in various dimensions [1, 17–22].

More examples of physical applications of this kind of interactions are: Bose-Einstein
condensation in a harmonic trap with a tight and deep “dimple” potential, modeled by a Dirac delta
function [23]; non-perturbative study of the entanglement of two directed polymers subjected to
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repulsive interactions given by a Dirac δ-function potential [24];
a periodic array of Dirac delta interactions is useful to investigate
the light propagation in a one-dimensional realistic dielectric
superlattice, which has been investigated for the transverse
electric and magnetic fields and for omnidirectional polarization
modes [25–27].

One-dimensional quantum models with contact interactions
are also useful to study a wide range of quantum properties,
including scattering, since these models are quite often solvable.
They also serve to acquire experience in order to analyse
systems with contact potentials in higher dimensions. However,
an important difference is to be pointed out: while one-
dimensional contact potentials are usually defined through
matching conditions at isolated points, their proper definition in
higher dimensions requires a process of regularization.

Quantum two-dimensional systems are particularly
interesting for their physical applications. In this particular
context, the graphene deserves a special mention because of its
importance, although this is not the only one two-dimensional
quantum system of interest in physics. From a theoretical point
of view, quantum theory in two dimensions has not yet been
developed to the same extent of its one-dimensional and three-
dimensional analogs, in spite of its enormous interest. Although
two-dimensional quantum systems look rather simple, due to
the presence of logarithmic singularities in the resolvent kernel
of their free Hamiltonian, their level of complexity and, hence,
their difficulty of study is far higher than the one-dimensional
case (and, to a great extent, the three-dimensional case).

An important contribution to the understanding of two-
dimensional quantummechanics was provided by Duclos’ article
[28] on the two-dimensional hydrogen atom perturbed by a point
interaction, a model that had not been dealt with in Albeverio
et al. [1]. One of the main results of that paper is that the free
Hamiltonian of that model, namely that of the 2D hydrogen
atom, was rigorously shown to be the norm resolvent limit of
the Hamiltonian of the 3D Hamiltonian of the hydrogen atom
confined to an infinite planar slab of width a > 0 as a → 0+.

A remarkable feature of two-dimensional models with contact
interactions, manifesting itself even in the simple case of
the negative Laplacian perturbed by a point interaction, is
represented by their peculiar dependence of the bound state
energies on the coupling constant. As is well known, the one-
dimensional model exhibits a single bound state only when
the point interaction is attractive and the eigenvalue is a
quadratic function of the strength of the interaction. The three-
dimensional case also exhibits a single bound state only in
the attractive case but the eigenvalue depends quadratically
on the reciprocal of the renormalized coupling constant. In
two dimensions the bound state keeps existing even if the
contact interaction is repulsive and the dependence becomes
exponential (see [1]). The latter behavior is confirmed even when
a confinement potential is present in addition to the contact
potential, which physically mimics the presence of impurities or
thin barriers in the material inside which the quantum particle is
moving [29, 30].

In this note, partly motivated by Duclos’ paper, we intend
to study a different two-dimensional model with the free

Hamiltonian given by:

H0 =
(

−
1

2

d2

dx2
+

x2

2

)

−
1

2

d2

dy2
, (1.1)

to which we add an attractive impurity assumed to be modeled
by the isotropic Gaussian potential

W(x, y) = −λV(x, y) = −λe−(x2+y2), λ > 0 , (1.2)

so that the total Hamiltonian is

Hλ = H0+W(x, y) = H0−λV(x, y) = H0−λe−(x2+y2), λ > 0.
(1.3)

It is worth mentioning that the recent literature [31–34] has
shown a renewed interest in the spectral analysis of the one-
dimensional Hamiltonian with a Gaussian potential, namely

H : = −
1

2

d2

dx2
− λ e−x2/2, λ > 0. (1.4)

Therefore, (1.3) could also be regarded as a possible two-
dimensional generalization of (1.4).

At this point, it is interesting to recall that a three-dimensional
material with confinement in only one dimension is said to be
a quantum well [35], while a 3D material with two-dimensional
confinement is called a quantum wire. Therefore, in the limiting
case of a quantumwell inside a layer with zero thickness, it makes
sense to consider the model in which the confining potential
is parabolic. Due to the mathematical subtleties required, in
this note we have chosen to omit the proof of the resolvent
convergence of the Hamiltonian of a three-dimensional parabolic
quantum well inside a thin layer to the 2D Hamiltonian (1.3) as
the thickness of the layer vanishes.

Instead we start directly by writing the Green function of the
two-dimensional Hamiltonian with a one-dimensional harmonic
potential. Once a perturbation given by an attractive two-
dimensional Gaussian potential is added, we study the properties
of the corresponding Birman-Schwinger operator, that is to say
the crucial part in the interaction term of the resolvent of the
perturbed Hamiltonian. We remind the reader that the resolvent
is the key to obtain the energy eigenvalues. We later consider the
model in which the 2D Gaussian impurity potential gets replaced
by one having a Dirac delta for the coordinate subjected to the
harmonic confinement maintaining the Gaussian character for
the other coordinate.

It may be worth pointing out that the Hamiltonian (1.1) has
been used by Dell’Antonio and collaborators [36] as the free
Hamiltonian in the model of a quantum system consisting of two
one-dimensional particles, one of which is harmonically bound
to its equilibrium position, mutually interacting by means of
the contact interaction δ(x − y). In other words, the interaction
studied in [36] will be replaced by the one in (1.2).

Solving the eigenvalue problem for this kind of Hamiltonians
is not, in general, an easy task and often requires rather
sophisticated tools. One of the most widely used is the Birman-
Schwinger operator, namely the integral operator

BE = (sgnW)|W|
1
2 (H0 − E)−1|W|

1
2 , (1.5)
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and the related technique: as in most applications BE can be
shown to be compact, the solutions of the eigenvalue problem
for the Hamiltonian are given by those values of E for which
BE has an eigenvalue equal to -1 (see [22, 37, 38] and references
therein as well as [39], p. 99). Therefore, the detailed study of the
properties of the Birman-Schwinger operator arising from our
model is quite relevant. In the present note, we show that the
Birman-Schwinger operator is Hilbert-Schmidt. We also show
that Hλ is self-adjoint and bounded from below.

In addition, Hλ has a special relation with a kind of
two-dimensional contact operator that will be studied in
section 2.1. This is given by the Hamiltonian described
heuristically by

B̃2E
(

x, x2, y, y2
)

= e−(x2+y2)/2







∫ ∞

−∞

∫ ∞

−∞





∞
∑

m=0

e
−

√

2
(

m+ 1
2−E

)|y−y′|
√

2
(

m+ 1
2 − E

)

φm(x)φm(x
′)





× e−(x′2+y′2)





∞
∑

n=0

e
−

√

2
(

n+ 1
2−E

)|y′−y2|
√

2
(

n+ 1
2 − E

)

φn(x
′)φn(x2)



 dx′dy′







e−(x22+y22)/2, (2.3)

Hδλ = H0 − λ
√
π δ(x) e−y2 , λ > 0, (1.6)

where δ(x) is the Dirac delta centered at the origin. We show that
Hδλ is self-adjoint on a natural domain and can be obtained as the
limit in the norm resolvent sense as n 7−→ ∞ of the following
sequence of Hamiltonians:

Hn,λ : = H0 − λn e−(n2x2+y2), λ > 0, (1.7)

thus with Gaussian type potentials (as was the case forHλ) which
become increasingly more attractive and anisotropic as n goes
to infinity.

Finally, it will be shown that the Hamiltonian Hλ (resp. Hδλ) is
bounded from below and its lower bound can be obtained using
a certain transcendental equation.

2. THE BIRMAN-SCHWINGER OPERATOR
FOR OUR MODEL

Starting from the Hamiltonian H0 in (1.1), it is rather
straightforward to infer that the associated Green function,
namely the integral kernel of the resolvent operator, reads for any
E < 1

2 :

(H0 − E)−1(x, x′, y, y′) =
∞
∑

n=0

e
−

√

2
(

n+ 1
2−E

) |y−y′|
√

2
(

n+ 1
2 − E

)

φn(x)φn(x
′),

(2.1)
where φn(x) is the normalized n-th eigenfunction of the one-
dimensional harmonic oscillator.

Once the above attractive Gaussian perturbation (1.2) is
added, the total Hamiltonian is Hλ in (1.3). Therefore, its

associated Birman-Schwinger integral kernel [22, 31, 32, 37, 38,
40, 41] given by (1.5) is:

BE = −λ B̃E
(

x, x1, y, y1
)

= −λ |V|
1
2 (H0 − E)−1 |V|

1
2 (x, x1, y, y1) =

= −λe−(x2+y2)/2





∞
∑

n=0

e
−

√

2
(

n+ 1
2−E

)|y−y1|
√

2
(

n+ 1
2 − E

)

φn(x)φn(x1)



 e−(x21+y21)/2,

(2.2)

The main goal of this brief note is to rigorously prove that such an
integral operator is Hilbert-Schmidt, that is to say tr(B̃2E) < ∞,
given the evident positivity of the operator B̃E (and our choice
λ > 0). As the kernel of the positive operator B̃2E is clearly

its trace reads

tr(B̃2E) =
∫ ∞

−∞

∫ ∞

−∞
B̃2E

(

x, x, y, y
)

dxdy

=
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
dxdydx′dy′ e−(x2+y2)e−(x′2+y′2)

×
∞
∑

m=0

∞
∑

n=0

e
−

(

√

2(m+ 1
2−E)+

√

2(n+ 1
2−E)

)

|y−y′|

2
√

(m+ 1
2 − E)(n+ 1

2 − E)

φm(x)φm(x
′)φn(x)φn(x′). (2.4)

The latter multiple integral can be rewritten as:

∞
∑

m=0

∞
∑

n=0









∫ ∞

−∞

∫ ∞

−∞
e−y2 e

−
(

√

2(m+ 1
2−E)+

√

2(n+ 1
2−E)

)

|y−y′|

2
√

(m+ 1
2 − E)(n+ 1

2 − E)
e−y′2dydy′









〈

φm, e
−(·)2φn

〉2
(2.5)

where 〈f , g〉 denotes the standard scalar product of the
two functions.

Let us consider the double integral in (2.5). With the notation,

f (y−y′) : = e
−

(

√

2(m+ 1
2−E)+

√

2(n+ 1
2−E)

)

|y−y′|
, g(y′) = e−y′2 ,

(2.6)
the second integral becomes the convolution (f ∗g)(y), so that the
double integral may be written as

1

2
√

(m+ 1
2 − E)(n+ 1

2 − E)

∫ ∞

−∞
e−y2 [(f ∗ g)(y)] dy . (2.7)
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Using the Schwarz inequality (2.7) is smaller than or equal to

1

2
√

(m+ 1
2 − E)(n+ 1

2 − E)
||e−(·)2 ||2 ||f ∗ g||2 , (2.8)

where || · ||p denotes the norm in Lp(R). Young’s inequality [42]
shows that

||f ∗ g||r ≤ ||f ||p ||g||q , with
1

p
+

1

q
=

1

r
+ 1 . (2.9)

Therefore, with p = r = 2 and q = 1, it follows that (2.8) is
smaller than or equal to

1

2
√

(m+ 1
2 − E)(n+ 1

2 − E)
||e−(·)2 ||22 ||f ||1 . (2.10)

The two norms in (2.9) yield two integrals which can be easily
computed, so as to obtain

√
π

2
3
2

√

(m+ 1
2 − E)(n+ 1

2 − E)

(

√

2(m+ 1
2 − E)+

√

2(n+ 1
2 − E)

)

≤
√
π

4(m+ 1
2 − E)

3
4 (n+ 1

2 − E)
3
4

. (2.11)

Hence, the trace (2.4) is bounded by:

tr(B̃2E) ≤
√
π

4

∞
∑

m=0

∞
∑

n=0

〈

φm, e−(·)2φn
〉2

(m+ 1
2 − E)

3
4 (n+ 1

2 − E)
3
4

=
π

3
2

4

∞
∑

m=0

∞
∑

n=0

〈φmφ0,φ0φn〉2

(m+ 1
2 − E)

3
4 (n+ 1

2 − E)
3
4

. (2.12)

The scalar products inside the double series can be estimated
using Wang’s results on integrals of products of eigenfunctions
of the harmonic oscillator [43]. While the scalar product clearly
vanishes ifm+ n = 2s+ 1, when both indices are either even or
odd we get:

〈φ2mφ0,φ0φ2n〉2 =
1

2π

[

[2(m+ n)]!

(m+ n)!

]2 1

24(m+n)(2m)!(2n)!

≤
1

2π

[

[2(m+ n)]!

22(m+n)[(m+ n)!]2

]2

=
φ42(m+n)(0)

2
, (2.13)

〈

φ2m+1φ0,φ0φ2n+1
〉2 =

1

2π

[

[2(m+ n+ 1)]!

(m+ n+ 1)!

]2

1

24(m+n+1)(2m+ 1)!(2n+ 1)!

≤
1

2π

[

[2(m+ n+ 1)]!

22(m+n+1)[(m+ n+ 1)!]2

]2

=
φ42(m+n+1)(0)

2
, (2.14)

the final equalities in (2.13) and (2.14) resulting from Fassari and
Inglese [44] and Mityagin and Siegl [45]. Therefore, the r.h.s. of
(2.12) is bounded from above by:

tr(B̃2E) ≤
π

3
2

8





∞
∑

m,n=0

φ42(m+n)(0)

(2m+ 1
2 − E)

3
4 (2n+ 1

2 − E)
3
4

+
∞
∑

m,n=0

φ42(m+n+1)(0)

(2m+ 3
2 − E)

3
4 (2n+ 3

2 − E)
3
4



 . (2.15)

As can be gathered from Mityagin and Siegl [45] using
Stirling’s formula,

φ42n(0) ≤
1

π2n
, n ≥ 1,

φ42(m+n)(0) ≤
1

π2(m+ n)
, m, n ≥ 1,

φ42(m+n+1)(0) ≤
1

π2(m+ n+ 1)
, m, n ≥ 0, (2.16)

which implies that (2.15) is bounded by

tr(B̃2E) ≤
1

8π
1
2

[

1

( 12 − E)
3
2

+
2

( 12 − E)
3
4

∞
∑

n=1

1

n(2n+ 1
2 − E)

3
4

]

+
1

8π
1
2

∞
∑

m=1

∞
∑

n=1

1

m
1
2 (2m+ 1

2 − E)
3
4 n

1
2 (2n+ 1

2 − E)
3
4

+
1

8π
1
2

∞
∑

m=0

∞
∑

n=0

1

(m+ 1
2 )

1
2 (2m+ 3

2 − E)
3
4 (n+ 1

2 )
1
2 (2n+ 3

2 − E)
3
4

≤
1

8π
1
2

[

1

( 12 − E)
3
2

+
2

( 12 − E)
3
4

∞
∑

n=1

1

n
1
2 (2n+ 1

2 − E)
3
4

]

(2.17)

+
1

8π
1
2

[ ∞
∑

n=1

1

n
1
2 (2n+ 1

2 − E)
3
4

]2

+
1

8π
1
2

[ ∞
∑

n=0

1

(n+ 1
2 )

1
2 (2n+ 3

2 − E)
3
4

]2

<∞,

since both series involved in the final expression are clearly
absolutely convergent given that the summands are positive

sequences decaying like n−
5
4 . Hence, the trace of the square of

the Birman-Schwinger operator, i.e., its Hilbert-Schmidt norm, is
finite for any E < 1

2 .
Our result is not surprising at all since the norm could have

been bounded by that of the Birman-Schwinger operator with
the same impurity but with the resolvent of our H0 replaced by
that of −1

2 in two dimensions, which is known to be finite [1].
However, it provides us with a far more accurate estimate of the
norm, which in turn leads to a more precise determination of
the spectral lower bound resulting from the use of the Hilbert-
Schmidt norm of the Birman-Schwinger operator in the KLMN
theorem [46]. In fact, the latter bound is what we wish to achieve
by further estimating the bottom lines of (2.17).
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The series in (2.17) can be bounded from above by their
respective improper integrals as follows:

S1 =
∞
∑

n=1

1

n
1
2 (2n+ 1

2 − E)
3
4

=
∞
∑

n=1

√
2

(2n)
1
2 (2n+ 1

2 − E)
3
4

<

∫ ∞

0

√
2 dx

(2x)
1
2 (2x+ 1

2 − E)
3
4

=
3
√
2

4

∫ ∞

0

s
1
2 ds

(s+ 1
2 − E)

7
4

≤
3
√
2

4

∫ ∞

0

ds

(s+ 1
2 − E)

5
4

=
3
√
2

( 12 − E)
1
4

. (2.18)

S2 =
∞
∑

n=0

1

(n+ 1
2 )

1
2 (2n+ 3

2 − E)
3
4

=
√
2

( 12 − E)
3
4

+
∞
∑

n=1

√
2

(2n+ 1)
1
2 (2n+ 3

2 − E)
3
4

<

√
2

( 12 − E)
3
4

+
∫ ∞

0

√
2 dx

(2x+ 1)
1
2 (2x+ 3

2 − E)
3
4

=
√
2

( 12 − E)
3
4

−
√
2

( 12 − E)
3
4

+
3
√
2

4

∫ ∞

0

(s+ 1)
1
2 ds

(s+ 3
2 − E)

7
4

≤
3
√
2

4

∫ ∞

0

ds

(s+ 3
2 − E)

5
4

=
3
√
2

( 32 − E)
1
4

. (2.19)

Therefore, the bottom lines of (2.17) are bounded by:

tr(B̃2E) ≤
1

8π
1
2

[

1

( 12 − E)
3
2

+
6
√
2

1
2 − E

+
18

( 12 − E)
1
2

]

+
1

8π
1
2

18

( 32 − E)
1
2

=
1

8π
1
2 ( 12 − E)

1
2

[

3
√
2+

1

( 12 − E)
1
2

]2

+
1

4π
1
2

9

( 32 − E)
1
2

. (2.20)

Hence, our estimate of the Hilbert-Schmidt norm of the Birman-
Schwinger operator is:

tr(B̃2E) =
∣

∣

∣

∣

∣

∣

∣

∣

e−
x2+y2

2 (H0 − E)−1e−
x2+y2

2

∣

∣

∣

∣

∣

∣

∣

∣

2

2

≤
1

8π
1
2 ( 12 − E)

1
2

[

3
√
2+

1

( 12 − E)
1
2

]2

+
1

4π
1
2

9

( 32 − E)
1
2

.

As is well known [22, 31, 32, 37, 38, 40, 41], the operator

(H0 − E)−1/2e−(x2+y2)(H0 − E)−1/2

is isospectral to the Birman-Schwinger operator so that
their Hilbert-Schmidt norms are identical. Hence, what has
been achieved so far can be summarized by means of the
following claim.

Theorem 2.1 The integral operators

(H0 − E)−1/2e−(x2+y2)(H0 − E)−1/2 and

e−
x2+y2

2 (H0 − E)−1e−
x2+y2

2

are Hilbert-Schmidt and their Hilbert-Schmidt norms satisfy

∣

∣

∣

∣

∣

∣
(H0 − E)−1/2e−(x2+y2)(H0 − E)−1/2

∣

∣

∣

∣

∣

∣

2

2

=
∣

∣

∣

∣

∣

∣

∣

∣

e−
x2+y2

2 (H0 − E)−1e−
x2+y2

2

∣

∣

∣

∣

∣

∣

∣

∣

2

2

≤
1

8π
1
2 ( 12 − E)

1
2

[

3
√
2+

1

( 12 − E)
1
2

]2

+
1

4π
1
2

9

( 32 − E)
1
2

. (2.21)

As an immediate consequence of the above theorem we get:

Corollary 1 The Hamiltonian

Hλ = H0 − λe−(x2+y2),

defined in the sense of quadratic forms, is self-adjoint and bounded
from below by E(λ), the solution of the equation:

1

2( 12 − E)
1
2

[

3
√
2+

1

( 12 − E)
1
2

]2

+
9

( 32 − E)
1
2

=
4π

1
2

λ2
. (2.22)

Proof. For any E < 0 and ψ ∈ Q(H0) = D(H
1
2
0 ) (the form

domain of H0):

λ
〈

ψ , e−(x2+y2)ψ
〉

= λ

〈

(H0 − E)1/2ψ ,
[

(H0 − E)−1/2e−(x2+y2)(H0 − E)−1/2
]

(H0 − E)1/2ψ
〉

≤ λ

∣

∣

∣

∣

∣

∣(H0 − E)−1/2e−(x2+y2)(H0 − E)−1/2
∣

∣

∣

∣

∣

∣

2

∣

∣

∣

∣(H0 − E)1/2ψ
∣

∣

∣

∣

2
2

≤ λ





1

8π
1
2 ( 12 − E)

1
2

[

3
√
2+

1

( 12 − E)
1
2

]2

+
1

4π
1
2

9

( 32 − E)
1
2





1
2

[

(ψ ,H0ψ)− E ||ψ ||22
]

. (2.23)

By taking E sufficiently negative, the first factor in the bottom
line of (2.23) can be made arbitrarily small, which ensures that
the Gaussian perturbation is infinitesimally small with respect to
H0 in the sense of quadratic forms. Hence, we need only invoke
the KLMN theorem (see [42]) to infer that Hλ is self-adjoint and
bounded from below by the quantity

Frontiers in Physics | www.frontiersin.org 5 July 2019 | Volume 7 | Article 102

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Albeverio et al. Parabolic Well With Gaussian Impurity

FIGURE 1 | Approximating potentials Vn (x, y) = ne−(n2x2+y2 ) for n = 15

(pink), 30 (magenta), and 70 (cyan).

λ

2π
1
4







1

2( 12 − E)
1
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

3
√
2+

1

( 12 − E)
1
2





2

+
9

( 32 − E)
1
2







1
2

E,E < 0,

(2.24)
so that the supremum of such lower bounds is attained for that
particular value of E solving (2.22).

In the following subsections we first consider a Hamiltonian
with a point interaction all along the x-direction in place of the
Gaussian potential and then we investigate in detail the solution
of (2.22), that is to say the lower bound of the spectrum of Hλ.

2.1. Hamiltonian With a Point Interaction
Along the x-Direction
Let us consider now the Hamiltonian

Hδλ = H0 − λ
√
πδ(x)e−y2 ,

that is to say the energy operator given by the same H0 as before
but with the interaction term having a point interaction in place
of the Gaussian along the x-direction. Our goal is to prove that
such an operator is self-adjoint and that it is the limit in the norm
resolvent sense of the sequence H0 − λVn(x, y) as n → ∞, with

Vn(x, y) = ne−(n2x2+y2). As is to be expected, our approximating
sequence is quite different from the one used in Albeverio et al.
[1] to get the Laplacian perturbed by a point interaction in two
dimensions. Before stating and proving the main result of this
section, we wish to provide the reader with the visualization of
the approximating potentials in Figure 1.

Corollary 2 The Hamiltonian Hδλ = H0−λ
√
πδ(x)e−y2 , defined

in the sense of quadratic forms, is self-adjoint and is the norm
resolvent limit of the sequence of Hamiltonians

Hn,λ = H0 − λne−(n2x2+y2).

Furthermore, Hδλ is bounded from below by Eδ(λ), the solution of
the equation:

1

( 12 − E)
1
2

[

1

( 12 − E)
1
2

+ 3
√
2

]2

=
4π

1
2

λ2
. (2.25)

Proof. First of all, it is quite straightforward to show that the
integral operator

(H0 − E)−1/2√πδ(x)e−y2 (H0 − E)−1/2, E < 0,

is Hilbert-Schmidt with the square of the Hilbert-Schmidt norm
given by:

π

∣

∣

∣

∣

∣

∣(H0 − E)−1/2δ(x)e−y2 (H0 − E)−1/2
∣

∣

∣

∣

∣

∣

2

2

= π

∣

∣

∣

∣

∣

∣
(δ(x)e−y2 )

1
2 (H0 − E)−1(δ(x)e−y2 )

1
2

∣

∣

∣

∣

∣

∣

2

2

= π

∫ ∞

−∞

∫ ∞

−∞
e−y2e−y′2 [

(H0 − E)−1(0, 0, y, y′)
]2
dydy′

= π

∫ ∞

−∞

∫ ∞

−∞
e−y2e−y′2





∞
∑

n=0

e
−

√

2
(

2n+ 1
2−E

)|y′−y′′|
√

2
(

2n+ 1
2 − E

)

φ22n(0)





2

dydy′

=
π

2

∞
∑

m=0

∞
∑

n=0

φ22m(0)φ
2
2n(0)

∫ ∞

−∞

∫ ∞

−∞
e−y2 e

−
√

2
(

2m+ 1
2−E

)|y−y′|
e
−

√

2
(

2n+ 1
2−E

)|y−y′|
√

(

2m+ 1
2 − E

) (

2n+ 1
2 − E

)

e−y′2dydy′.

As the double integral involving the convolution has already been
estimated in (2.11), the latter expression is bounded by:

π3/2

4

∞
∑

m=0

∞
∑

n=0

φ22m(0)φ
2
2n(0)

(2m+ 1
2 − E)

3
4 (2n+ 1

2 − E)
3
4

=
π3/2

4

[ ∞
∑

n=0

φ22n(0)

(2n+ 1
2 − E)

3
4

]2

, (2.26)

which, using (2.17), is bounded by:

1

4π1/2

[

1

( 12 − E)
3
4

+
∞
∑

n=1

1

n
1
2 (2n+ 1

2 − E)
3
4

]2

≤
1

4π1/2

[

1

( 12 − E)
3
4

+
3
√
2

( 12 − E)
1
4

]2

=
1

4π
1
2 ( 12 − E)

1
2

[

1

( 12 − E)
1
2

+ 3
√
2

]2

,

(2.27)

having taken advantage of (2.18). As the right hand side of (2.27)
can be made arbitrarily small by taking E < 0 large in absolute
value, the KLMN theorem ensures, as was done previously in the
case of Hλ, the self-adjointness of Hδλ as well as the existence of
the spectral lower bound Eδ(λ) given by the solution of (2.25).

As to the convergence of Hn,λ to Hδλ, we start by noting that,

for any E < 0, the operator (H0−E)−1/2ne−(n2x2+y2)(H0−E)−1/2

Frontiers in Physics | www.frontiersin.org 6 July 2019 | Volume 7 | Article 102

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Albeverio et al. Parabolic Well With Gaussian Impurity

converges weakly to (H0 − E)−1/2√πδ(x)e−y2 (H0 − E)−1/2 as
n → ∞. Furthermore,

∣

∣

∣

∣

∣

∣
(H0 − E)−1/2ne−(n2x2+y2)(H0 − E)−1/2

∣

∣

∣

∣

∣

∣

2

2

=
∣

∣

∣

∣

∣

∣

∣

∣

ne−
n2x2+y2

2 (H0 − E)−1e−
n2x2+y2

2

∣

∣

∣

∣

∣

∣

∣

∣

2

2

=
∞
∑

l,m=0









∫ ∞

−∞

∫ ∞

−∞
e−y2 e

−
(

√

2(l+ 1
2−E)+

√

2(m+ 1
2−E)

)

|y−y′|

2
√

(l+ 1
2 − E)(m+ 1

2 − E)
e−y′2dydy′









〈

φl, ne
−n2(·)2φm

〉2
. (2.28)

Since

〈

φl, ne
−n2(·)2φm

〉

= n

∫ ∞

−∞
e−n2x2φl(x)φm(x)dx

=
∫ ∞

−∞
e−x2φl(x/n)φm(x/n)dx →

√
πφl(0)φm(0),

as n → ∞, the right hand side of (2.28) converges to

π

2

∞
∑

l=0

∞
∑

m=0

φ22l(0)φ
2
2m(0)









∫ ∞

−∞

∫ ∞

−∞
e−y2 e

−
(

√
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


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= π

∣

∣

∣

∣

∣

∣
(δ(x)e−y2 )

1
2 (H0 − E)−1(δ(x)e−y2 )

1
2

∣

∣

∣

∣

∣

∣

2

2

= π

∣

∣

∣

∣

∣

∣(H0 − E)−1/2δ(x)e−y2 (H0 − E)−1/2
∣

∣

∣

∣

∣

∣

2

2
.

Hence, the Hilbert-Schmidt norm of (H0 −
E)−1/2ne−(n2x2+y2)(H0 − E)−1/2 converges to the Hilbert-

Schmidt norm of (H0 − E)−1/2√πδ(x)e−y2 (H0 − E)−1/2 as
n → ∞. Due to Theorem 2.21 in Simon [47], this fact and
the previous weak convergence imply that the convergence
actually takes place in the Hilbert-Schmidt norm. Then, the
norm convergence of these integral operators ensures the norm
resolvent convergence of Hn,λ to Hδλ, as guaranteed by Theorem
VIII.25 in Reed and Simon [46], which completes our proof
of Corollary 2.

2.2. The Lower Bound of σ (H0 − λe−(x2+y2))
As anticipated earlier, the lower bound of the spectrum of Hλ in
(1.3) is the function E(λ) given implicitly by the equation (2.22).
From this expression, some approximate results can be easily
obtained in two different regimes. For example, it is possible to
prove that the asymptotic behavior of (2.22) for large values of
both variables E(λ), λ is

E(λ) = −
81

4π2
λ4. (2.29)

FIGURE 2 | A plot of the lower bound of the energy E as a function of λ

resulting from the solution of Equation (2.22) (blue curve), the approximate

expression valid for large values of E and λ obtained in (2.29) (yellow curve)

and the approximation for small values of λ as in (2.30) (green curve). In the

inset we have enlarged the region where λ and E are small. While the similarity

between the solution of (2.22) and the funtion (2.29) is quite acceptable for a

wide range of the parameters, the solution of (2.22) is satisfactorily

approximated by (2.30) only for very small values of λ.

On the other hand, for small values of λ we can prove that (2.22)
behaves approximately as follows

E(λ) =
1

2
−

1

4π2/3
λ4/3. (2.30)

A plot of the λ-dependence (λ being the strength of the potential
of Hλ) of the lower bound of the energy E(λ), resulting from the
solution of (2.22), as well as those of the two approximations
given by (2.29) and (2.30), are given in Figure 2.

3. FINAL REMARKS

In this note we have analyzed in detail the Birman-Schwinger
operator of the two-dimensional Hamiltonian Hλ = H0 −
λe−(x2+y2), namely the integral operator −λe−

x2+y2

2 (H0 −
E)−1e−

x2+y2

2 whereH0 = (− 1
2

d2

dx2
+ x2

2 )−
1
2

d2

dy2
. In particular, we

have rigorously shown that the operator is Hilbert-Schmidt and
have estimated its Hilbert-Schmidt norm. This fact has enabled
us to use the KLMN theorem to determine a lower bound for
the spectrum of Hλ, that is to say E(λ), the implicit function
representing the solution of an equation involving the energy
parameter and the coupling constant. Furthermore, we have

investigated the Hamiltonian Hδλ = H0 − λ
√
πδ(x)e−y2 , having

the Gaussian impurity in the direction subjected to the harmonic
confinement replaced by a point impurity.
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As anticipated in the introduction, the proof of the resolvent
convergence, as the thickness of the layer vanishes, of the
Hamiltonian of a three-dimensional parabolic quantum well
inside a thin layer to the 2D Hamiltonian (1.3) has been put off as
it may deserve a separate paper.

The results of this article will enable us to study the lowest
bound states created by the Gaussian impurity potential of
the aforementioned Hamiltonian by means of the modified

Fredholm determinant det2

[

1− λe
x2+y2

2 (H0 − E)−1e−
x2+y2

2

]

,

the regularized determinant used to handle Hilbert-Schmidt
operators. Work in this direction is in progress.
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