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In this minireview we present the main results regarding the transport properties of

stochastic movement with relocations to known positions. To do so, we formulate the

problem in a general manner to see several cases extensively studied during the last years

as particular situations within a framework of random walks with memory. We focus on

(i) stochastic motion with resets to its initial position followed by a waiting period, and (ii)

diffusive motion with memory-driven relocations to previously visited positions. For both

of them we show how the overall transport regime may be actively modified by the details

of the relocation mechanism.
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1. INTRODUCTION

While Brownian movement is characterized by the well-known diffusive scaling 〈x2〉 ∼ t,
alternative (anomalous) scalings can be obtained when the local motion of the particles is highly
non-stationary or somehow governed by heavy-tailed (e.g., power-law) statistics, for instance, in
the distribution of the local displacements [1]. The physical mechanisms responsible for such
non-standard statistics are wide-ranging, including interaction with the underlying media or with
an external force/field, as well as internal mechanisms. In the present mini-review, we focus in the
latter case and explore recent advances that have been achieved in exploring anomalous properties
of random walk processes when particles are assumed to possess some level of internal memory,
such that their displacements are conditioned by the information acquired during its ongoing
trajectory. While the framework of random-walks with memory includes many different models
(as self-avoiding walks [2], elephant or alzheimer random-walks [3, 4], infotactic strategies [5],...)
we focus here in the particular case where particles use their memory from time to time to relocate
to known, or familiar, positions in the domain.

As a first case of interest, relocations to the initial position (resets) have been recurrently studied
in recent years. One-dimensional unbounded diffusion with resets happening at a constant rate
was initially introduced in [6]. Originally its interest was focused on their ability to make the
mean first passage time finite, with a minimum value found for an intermediate reset rate [7–10].
However, it has been subsequently shown that their intrinsic transport properties are also of
interest. For example, as a consequence of such resetting, dispersal is asymptotically suppressed
and a steady state is reached. Thereafter, this property has been confirmed by numerous works on
Markovian resets in different contexts, as multi-dimensional diffusion [11], coagulation-diffusion
processes [12], confined diffusion [13, 14], diffusion with a refractory period after the resets [15],
anomalous subdiffusion [16, 17], monotonic stochastic motion [18, 19], continuous-time random
walk (CTRW) velocity models [20], the telegraphic process [21], and underdamped Brownian
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motion [22]. Likewise, in [23], a steady state is shown to appear
when a diffusion process is restarted at a time-dependent rate
and in [24] power-law reset time probability density functions
(pdf) are considered and conditions for a steady state to exist are
found. Finally, general conditions on the reset time pdf for the
appearance of a steady state have been found in [25, 26].

In contrast with the aforementioned cases, where a steady state
is reached, some works have shown that unbounded dispersal
is still possible at a population level when the reset time is
governed by heavy-tailed distributions so making resets less and
less frequent with time (see [20, 25–27]). Particularly, in [15, 27]
it is shown that the diffusivity of a walker which resets its position
followed by a residence or refractory period at the origin is
strongly dependent on the tail of the reset and residence time
pdfs. Also, asymptotic transport appears when the resetting is
soft [17], meaning that the walker is relocated to the origin but
the other properties of the motion (e.g., a dynamic diffusion
coefficient) are not renewed.

Alternatively, random walks with relocations to any
previously visited place have been seen to modify the transport
regime of a given motion process. In [28] it was proved that
if such relocations are equiprobable among all visited sites
in the past, then unbounded dispersal is not suppressed as
in the resetting case but becomes ultraslow, with a mean
squared displacement (MSD) that grows logarithmically [i.e.,
〈x2(t)〉 ∼ ln(t)], a result that is kept when relocation events
follow a time-continuous dynamics [28–30]. This can be
generalized to include a weight function for the memory to chose
the relocation position; in such case, the MSD of the process can
exhibit a range of behaviors, from diffusive or sub-diffusive to
logarithmic, as a function of the distribution [31]. Also, a rich
variety of transport regimes have been proved to arise in the
continuous time and space version of this model [29], ranging
from an ultraslow growth 〈x2(t)〉 ∼ ln(ln(t)) to the diffusive
scaling. Finally, a more specific relocation mechanism consisting
of stochastically taking the walker to the maximum position
attained in the past has also been proven to also let the motion
spread [32].

In the following, we employ a general framework that includes
these two types of models (resets and/or relocations to visited
sites) as particular cases, and so allows us to review the results
mentioned above from the unified perspective of random-
walks with memory-induced jumps, and detect opportunities of
research in the field for the near future. We focus our efforts on
recovering the different transport regimes mentioned above, so
illustrating the capacity of internal memory to modify the scaling
properties governing the transport regime of the process.

2. GENERAL FRAMEWORK

The framework we consider here follows a time dynamics based
on the alternation between two states (one for standard motion
and another for relocations), an approach which is quite usual in
models of random walks with memory [27, 33]. First, a normal
state (i = 1) where the walker motion is governed by a given by
a jump length distribution and a probability time distribution, as

in the classical CTRW. The duration of this state is determined by
a given pdf ϕ1(t). Second, a memory-induced state (i = 2) which
results from introducing a relocation to a particular position
without explicit dependence of memory and waiting there until
a new normal period is started. The relocation position is chosen
from a generalized relocation distribution p0(x, t). After the
relocation takes place, we assume that there exists a refractory, or
waiting, period during which the particle remains at the position
of relocation, governed by another pdf denoted as ϕ2(t).

If the walker starts at t = 0 from position x = 0 at state i = 1,
the transition probability j1(x, t) from state i = 2 to i = 1 at
position x and the transition probability j2(x, t) from state i = 1
to i = 2 at x will follow, respectively:

j1(x, t) = δ(x)δ(t)+

∫ t

0
j2(x, t − t′)ϕ2(t

′)dt′ (2.1)

j2(x, t) = p0(x, t)

∫ +∞

−∞

dx′
∫ t

0
j1(x

′, t − t′)ϕ1(t
′)dt′. (2.2)

Let us now introduce the spatial dynamics for both states. In
the normal state, the motion can be described by a general
propagator P(x, t; x′, t′), being the probability of finding the
walker at point x at time t if it was at point x′ at time t′. Otherwise,
in the memory-induced state the walker stays at the relocation
position x′, so its “propagator” reduces to δ(x − x′). As a whole,
the pdf of the particles in state i = 1 and i = 2 at time t,
respectively read

ρ1(x, t) =

∫ +∞

−∞

dx′
∫ t

0
dt′j1(x

′, t − t′)ϕ∗
1 (t

′)P(x, t′; x′, 0) (2.3)

ρ2(x, t) =

∫ +∞

−∞

dx′
∫ t

0
dt′j2(x

′, t − t′)ϕ∗
2 (t

′)δ(x− x′), (2.4)

where ϕ∗
i (t) ≡

∫ ∞
t ϕi(t

′)dt′, for i = {1, 2}. The meaning of the
first equation can be stated as follows: the pdf for particles in
the memory-free state (i = 1) is described by the propagator
P(x, t′; x′, 0), provided the system entered this state at time t − t′

at any position x′, and it has remained in that state (i.e., without
relocating) for the subsequent time t′. Equation (2.4) represents
the equivalent for the memory-induced state, with the position
described by the delta function δ(x−x′) instead of the propagator.

3. SPATIAL DISPERSAL WITH RESETS

Resets can be defined as relocations which are used by the particle
to come back from time to time to its initial position, an idea
which can be satisfactorily adapted to study situations like animal
foraging [10, 34], searches on the Internet [35, 36] or genetic
networks [37, 38], and the kinetics of chemical reactions [39, 40]
or molecular proofreading [41, 42]. Using the general formalism
in the previous section, this corresponds to a time-independent
relocation distribution p0(x, t) = δ(x). Also, for the sake of
simplicity we can restrict our analysis to propagators which are
space homogenous, such that motion in the memory-free state
satisfies P(x, t; x′, 0) = P(x− x′, t; 0, 0) ≡ P(x− x′, t).

Performing the Fourier-Laplace transform of the Equations
(2.1–2.4) above and solving for theMSD of the overall propagator
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as 〈x2(t)〉 ≡
∫ ∞
−∞ dx x2ρ(x, t) =

∫ ∞
−∞ dx x2

(

ρ1(x, t)+ ρ2(x, t)
)

,
it can be found that

L
[

〈x2(t)〉
]

=
L

[

ϕ∗
1 (t)〈x

2(t)〉P
]

1− ϕ̂1(s)ϕ̂2(s)
, (3.1)

where L[f (t)] = f̂ (s) ≡
∫ ∞
0 e−stf (t)dt represents the Laplace

transform of f (t), and 〈x2(t)〉P is the MSD of the propagator
P(x, t; x0, 0) by assuming that it is symmetric in space.

Seminal works on random walks with resets were focused on
the situation where the process restarts immediately after the
reset happens, i.e., ϕ2(t) = δ(t) [6, 7]. In such case, it is known
that if the memory-free propagation scales as 〈x2(t)〉P ∼ tp

and the resets are Markovian [i.e., ϕ1(t) = re−rt], a stationary
state is always reached (so, there is propagation failure), and the
relaxation to that stationary situation can be also characterized
[43]. This scenario, where the resetting is strong enough to
localize the walker around the origin, has been later studied from
different perspectives. In some cases, a modified Fokker-Planck
equation formalism [6, 11–14, 21, 22] has been employed to study
Markovian resetting in, for instance, the diffusion equation [6],
the Telegrapher’s equation [21] and the underdamped Brownian
motion equation [22]. Other works have found this same result by
interpreting resets as a renewal of the motion and consequently
building a renewal master equation for the overall pdf as done in
the general formalism herein [16–20].

Otherwise, for the same propagation scaling but a long-tailed
statistics of reset times with diverging first moment (ϕ1(t) ∼

t−1−γ1 , with 0 < γ1 < 1), the overall MSD scales also as 〈x2(t)〉 ∼
tp. Therefore, the properties of the memory-free movement can
be modified or not depending on the specific properties of the
refractory or waiting time. This was found in [25] for diffusive
motion (i.e., p = 1) and later in [26] for the general case.

The model turns out to be more interesting, however, when
the resting time after the resets is non-zero, this is, for a non-
trivial choice of the waiting time pdf as ϕ2(t) ∼ t−1−γ2 .
This scenario, which has been recently studied in [10, 15, 27]
from a renewal perspective, yields a wide range of situations
for the asymptotic behavior of the overall MSD in the case
when memory-free propagation scales again as 〈x2(t)〉P ∼ tp.
Depending on the finiteness/infiniteness of the moments of ϕ1(t)
and ϕ2(t), the following cases can be identified:

(i) γ1 > 1, γ2 > 1. The propagation ceases and a stationary state
is reached as for the non-resting period case, yielding

〈x2(t)〉 ∼ const.

(ii) γ1 > 1, 0 < γ2 < 1. The propagation ceases and the system
tends to collapse toward the origin.

〈x2(t)〉 ∼ tγ2−1

(iii) 0 < γ1 < 1, γ2 > 1. The propagation is only affected by the
resetting mechanism in a multiplicative factor, but it does not
affect the scaling:

〈x2(t)〉 ∼ tp

FIGURE 1 | Schematic plot of the different overall transport regimes in terms

of the transport regime of the movement process p and the difference

between the decaying exponents of the reset and residence time pdfs γ1 − γ2,

corresponding to case (iv) in the main text. In the blue region the overall

behavior is super-diffusive. In the yellow region it is sub-diffusive and the green

represents the values for which we have transport failure. We can see that, for

instance, an originally super-diffusive process (p > 1) can become

sub-diffusive (yellow region) with the properly chosen tail exponents.

(iv) 0 < γ1 < 1, 0 < γ2 < 1. The propagation is actively
modified by the resetting mechanism when the tail of ϕ2 ∼

t−1−γ2 is longer than the tail of ϕ1 ∼ t−1−γ1 , i.e., γ2 < γ1.
Otherwise, when γ2 ≥ γ1, the overall process behaves as in
case iii). In short,

〈x2(t)〉 ∼ tp−(γ1−γ2)θ(γ1−γ2),

where θ(γ1 − γ2) denotes the Heaviside function.

According to this, scenario iv) turns out to be particularly
interesting and all its casuistic is visually summarized in Figure 1.
When the resting period is asymptotically longer than the active
period, the diffusivity of the propagation is reduced by a factor
γ1 − γ2 as a result of the competition between the heavy-tailed
effects of the movement and the refractory period. This, for
instance, may turn a superdiffusive (or diffusive) process into
subdiffusive by only tuning the asymptotic decay of the active and
resting times pdf.

In the light of what we have seen in this section, some
questions regarding the asymptotic transport properties of
motion with resetting remain still unanswered. For instance,
without the residence time after the resetting, it seems that
resetting either leaves the transport regim unaltered or it makes
the transport cease and a stationary state is reached. Is there
any resetting mechanism able to smoothly modify the transport
regime of the motion? Also, resetting has been mainly treated as
an internal mechanism of the motion. What would be the overall
dynamics of a set of walkers which interact to suddenly reset their
individual position? Despite this has been shown to be hard from
an analytical point of view [44], it would be extremely interesting
for the description of many ecological systems.
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4. SPATIAL DISPERSAL WITH
RELOCATIONS TO VISITED PLACES

Relocation processes in which particles are allowed to return to
already visited places is another case of interest for which the
properties of the overall MSD have been recurrently explored
[28, 30, 31, 45]. If expressed in terms of the general framework
presented in section II, this case would correspond to a relocation
distribution of the type

p0(x, t) =

∫ t
0 φ(t′)ρ(x, t′)
∫ t
0 φ(t′)dt′

, (4.1)

where φ(t) is a memory function which weights all possible
relocation places as a function of the time elapsed since they were
visited. This is, if φ(t) is an increasing function, then relocation
to recent positions is more likely to occur, which would implicitly
assume that memory is a vanishing process. On the other hand,
if φ(t) is a decreasing function of time then the initial positions
are the most probable ones. Finally, one could even recover the
resetting mechanism by choosing φ(t) ∼ δ(t).

Since the mathematical treatment for a general situation
as a function of φ(t) becomes cumbersome, we can restrict
ourselves to Markovian relocations [so ϕ1(t) = re−rt] and
mule resting times after the relocation, ϕ2(t) = δ(t). For this
particularly simple case, the four general Equations (2.1–2.4) lead
to the following implicit solution for the overall MSD; if the
propagation is diffusive with 〈x2(t)〉P = 2Dt, we get

L
[

x2(t)
]

=
2D

s(r + s)
+

r

r + s
L

[

∫ t
0 φ(t′)〈x2(t′)〉
∫ t
0 φ(t′)dt′

]

. (4.2)

From this expression, the long time behavior of the MSD can
be deduced for different weight functions for the memory; this
has been done, using a relatively different perspective, in [29].
There it is shown that up to five different regimes emerge, which
illustrates the rich variety of the model:

i) φ(t) ∼ t−a, with a > 1. The transport ceases and a stationary
state is reached.

〈x2(t)〉 ∼ const.

ii) φ(t) ∼ t−a, with a = 1. The transport becomes
extremely slow.

〈x2(t)〉 ∼ ln(ln(t))

iii) φ(t) ∼ t−a, with a < 1. The transport becomes ultra slow.

〈x2(t)〉 ∼ ln(t)

iv) φ(t) ∼ et
b
, with 0 < b ≤ 1. The transport becomes sub-

diffusive when b < 1 and it is not affected by the memory for
b = 1.

〈x2(t)〉 ∼ tb

v) φ(t) ∼ et
b
, with 1 < b. The transport is not qualitatively

affected by the memory, so it remains diffusive.

〈x2(t)〉 ∼ t.

These results have progressively been found during the last
years. While case (iii) was originally found in [28] and later
in [30], scalings (iv) and (iv) were found in [31] and, finally,
all the asymptotic scalings derived herein were found in [29].
Likewise, transitions between different transport regimes have
can possibly emerge as a consequence of spatial [46] or temporal
[45] heterogeneities in the resetting process.

This range of situations is already obtained for fixed (and
particularly simple) forms of ϕ1(t) and ϕ2(t), while the situation
is susceptible to become evenmore complex as more general pdfs
are taken into account. All this enlights the theoretical interest of
the memory-induced mechanism as a way to reproduce different
propagation regimes.

5. FUTURE PERSPECTIVES

Mostly inspired by the movement of biological individuals
and other systems of intelligent walkers, random-walk models
with memory-induced relocations (either resets or relocation to
visited places) have been widely explored in recent years. In this
minireview we have tried to condense the current knowledge
we have about their transport properties in order to illustrate
the richness of macroscopic transport properties they are able
to yield. New situations of interest can arise in the future as
long as different choices for the relocation distribution p0(x, t) in
Equation (2.2) are explored instead of the two (resetting, uniform
relocation) reviewed here. This may include the case of resetting
to a distribution of fixed points, visited or not (a topic which
has also received attention in the biological literature [47, 48]),
or a relocation dynamics based on returns to those sites that
were more beneficial in the past (so introducing an additional
variable representing food available or assigning a value to the
visited sites). As long as more general models and conclusions
are obtained, a meaningful comparison to real data from animals
or other organisms can represent a promising way to explore
memory capacities in these living systems; or, alternatively, they
can also become a useful tool to study the properties of active
matter when subject to memory effects [49]. So, we envision that
the following years will probably witness an increasing interest
of researchers for the intricate interplays between memory and
transport properties.
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