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Imagined activities could actually be a cognitive basis for creative thinking. However, it is

still unknown how they might be related with the architecture of the brain. A recent study

has proved the relevance of the imagined activity when investigating neuronal diseases by

comparing variations in the neuronal activity of patients with brain diseases and healthy

subjects. One important aspect of the scientific methodologies focused on neuronal

diseases is therefore to provide a trustable methodology that could allow us to distinguish

between realized and imagined activities in the brain. The electroencephalogram is the

result of synchronized action of the cerebrum, and our end is portraying the network

dynamics through the neuronal responses when the subjects perform visuomotor and

specific imaginary assignments. We use a subtle information theoretical approach

accounting for the time causality of the signal and the closeness centrality of the different

nodes. More specifically we perform estimations of the probability distribution of the

data associated to each node using the Bandt and Pompe approach to account for

the causality of the electroencephalographic signals. We calculate the Jensen-Shannon

distance across different nodes, and then we quantify how fast the information flowwould

be through a given node to other nodes computing the closeness centrality. We perform a

statistical analysis to compare the closeness centrality considering the different rhythmic

oscillation bands for each node taking into account imagined and visuomotor tasks. Our

discoveries stress the pertinence of the alpha band while performing and distinguishing

the specific imaginary or visuomotor assignments.

Keywords: neuronal dynamics, EEG, alpha oscillations, visuomotor tasks, imagined tasks

1. INTRODUCTION

One of the principal assumptions in neuroscience is that the brain computes, and this is accepted by
most scientists in the area. That is, the cerebrum takes approaching tangible information, encodes
it into a few biophysical factors consisting of membrane voltage or neuronal activation costs, after
which a wide variety of dynamic operations are played to extract applicable features of the input.
The result is that some of these computations can be stored for later access and ultimately, to control
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the behavior of the animal in the most convenient way. In
addition, the brain processes sensory information in multiple
stages in neural circuits. The information is transmitted through
trains of action potential or less frequently by local field
potentials (LFPs). More specifically for the action potentials, the
information can also be transmitted through the counting of
spikes, the temporal precision of them, the structure of the time
series, the synchronization between groups of neurons, or some
combination of these [1–11]. Thus, the brain does not have a
single code but multiple which depend on multiple complex
dynamic variables.

In particular, the scalp electroencephalogram (EEG),
recorded by means of a given electrode, can be taken into
consideration as a spatiotemporally smoothed version of the
LFP that is incorporated over an area of 10 cm2 or greater.
Electroencephalography can accurately detect brain activity at
a time resolution of a single millisecond [12]. This technique
provides continuous recording of the brain’s electrical processes
which allows us to relate changes in signal with a particular
cognitive task. It is conceivable to extract from the EEG the
functional connectivity network. However, the elucidation
of the inter-connectivity from sensor level recordings is not
straightforward [13]. In this manner some endeavors to use
convenient techniques on the time series dynamics recreated
from scalp EEG signals can be found in the literature [14–17].
Network theory is usually based on graph theory, probability
theory, statistical mechanics, and dynamical systems [14–28].

The brain is a large-scale complex network and discovering
interdependencies between at least two EEG electrodes can be
described utilizing a few methodologies [29]. Let us remark
that the network analysis of EEG data can help us to gain
a deeper understanding of the brain functions as finding the
correct functional connectivity of the brain through EEG signal
can be used as a biomarker to diagnose mental disorders
[17, 30, 31]. Investigating the dynamics of the EEG signals
complex network means to estimate the degree of correlation
across the different temporal patterns for the different electrodes
or nodes. Fluctuations of electrical activity registered by EEG
show correlated neuronal activity [32]. The extent of oscillatory
coupling between two EEG signals can be used as a measure of
strength to reflect network activity of the brain. The human brain
can be understood as a large-scale complex network [15, 33, 34],
the topological properties of EEG-derived networks describe
working memory phases [35], and variations in the path length
connectivity across nodes can be linked with mental diseases
[17, 31].

Methods of EEG analysis are based on the investigation of
dynamic changes of electrical activity in time, frequency, and
space. A straight methodology for assessing the associations
is finding how comparable the signals’ waveforms are of each
frequency when a time-lag is used to one of them. This
is evaluated through cross-correlation [30, 36, 37]. However,
non-linear components of coupling can control the neuronal
activity. In this way non-linear affinity measures ought to be
considered to determine the brain complex network. Bandt and
Pompe (BP) proposed a novel methodology that comprises in
changing the signal, by means of a symbolic methodology, into

a sequence of patterns and then making inference over them
[38–40]. In view of the evaluation of the ordinal structures
present in the time series and their neighborhood impact on the
related probability density function they include the signals’ own
temporal causality through a methodology of simple application
and direct estimation [38–42]. Thus, the BP approach permits us
to find important causative data associated with the hidden non-
linear variables that regulate the system. Statistical complexity
measures are useful to quantify stochastic systems and to detect
whether a system is not deterministic or random. The perfect
order and the maximum randomness can be depicted all around
effectively on the grounds that they do not have any structure
and in the two cases the statistical complexity is zero. In
any case, between these two limits there is a wide scope of
ordinal structures of important stochastic nature. The complexity
measure has been effectively utilized in perception and portrayal
of various dynamical regimes [38–43]. The non-linear elements
of the cerebrum are of dissipative nature, and subject to non-
equilibrium conditions that describe the developing properties of
the neurons and portray the conduct of the neuronal capacities.
The Jensen-Shannon divergence, which evaluates the contrast
between (at least two) probability distribution functions (PDFs),
is particularly valuable to compare the symbol-composition of
different sequences. Statistical complexity enables us to measure
basic features about the dynamic of the PDF related to the
EEG recorded activity [38–43]. This measure originally obtained
from Information Theory enables us to evaluate the non-linear
dynamics of the electro-cortical responses [38–43]. The statistical
complexity is the result of two entropies, the Shannon entropy
and Jensen–Shannon divergence, however it is a non-trivial
mathematical relation of the entropy since it relies upon two
probability functions, i.e., the one relating to the condition of the
system and the uniform PDF taken as reference state. Essentially,
in the present work we estimate the normalized Jensen-Shannon
distance between two probabilities, however one comparing to
the condition of the electrical activity in one electrode and the
state PDF taken from another electrode as reference [44]. The
aim of this study is to perform a discrimination of imagined [45]
and non-imagined tasks through the application of the Jensen–
Shannon divergence of the BP probabilities across different
electrodes sites in combination with estimation of the closeness
centrality of nodes. We conduct a statistical analysis to examine
the closeness centrality for the different rhythmic oscillation
bands and nodes, considering imagined and visuomotor tasks.
Our current approach allows us to discriminate imagined and
non-imagined tasks characterizing the most important nodes
within a graph for the different rhythmic oscillation bands using
a functional network based on the BP formalism and the Jensen–
Shannon divergence.

2. METHODOLOGY

2.1. Time Series Analysis and Ordinal
Patterns
Consider X ≡ {xt}

M
t=1 a time signal of length M, and at first,

we expect that there are not equivalent abundance esteems in
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the time signal, that is the probability P(xt1 = xt2 ) = 0 ∀ t1 6=

t2. Bandt and Pompe presented in their foundational paper
an effective technique for the assessment of PDF related to a
time signal utilizing a symbolization system [38]. For a point
by point portrayal of the methodology we allude the reader
to [46]. The significant symbolic descriptions are (i) made by
ranking the magnitudes of the signal and (ii) characterized
by reordering the symbols in upward order; this is similar
to a state space reconstruction with embedding dimension D
and time lag τ . Further subtleties portraying the focal points
that make the BP system more helpful than regular techniques
dependent on range dividing (i.e., PDF amplitude histograms)
can be discovered in Olivares et al. [47, 48], Rosso et al. [49,
50], Rosso and Masoller [39, 40], Saco et al. [51], and Keller
and Sinn [52]. The BP approach can be used for any kind of
signals, and the main condition for the appropriateness of this
procedure is a stationary hypothesis (that is, for k ≤ D, the
likelihood for xt < xt+k ought not be conditional on t [38]).
To utilize the Bandt and Pompe [38] procedure for assessing
the PDF, P, related with the signal, one starts considering
parcellings of the appropriate D-dimensional space that will
“uncover” pertinent subtleties of the ordinal structure of a signal
X (t) = {xt; t = 1, · · · ,M} with D > 1 (D ∈ N) and τ

(τ ∈ N). Consider the “ordinal pattern” of order (length) D
produced by (s) 7→

(

xs−(D−1)τ , xs−(D−2)τ , · · · , xs−τ , xs
)

,
that gives to each time s the D-dimensional vector of
magnitudes in instants s, s − τ , · · · , s − (D − 1)τ . Notice
that when the D−value is greater, more data about the past
are incorporated into our vectors. We designate “ordinal
pattern” identified with the time (s) to the configuration
π = (r0, r1, · · · , rD−1) of [0, 1, · · · ,D − 1] characterized by
xs−rD−1τ ≤ xs−rD−2τ ≤ · · · ≤ xs−r1τ ≤ xs−r0τ . Vitally,
to get a one of a kind outcome we take ri < ri−1 if xs−ri = xs−ri−1 .
This can be warranted if the xt comes from a continuous PDF,
so similar magnitudes are unlikely. In this manner, for all the
D! conceivable configurations π of order D, their related relative
frequencies can be determined by the occasions this specific
arrangement is found in the signal divided by the full number
of configurations:

p(πi) =
♯{s|s ≤ M − (D− 1)τ ; (s) is of kind πi}

M − (D− 1)τ
. (1)

We allude the image ♯ to “number.” That is, an ordinal PDF
P = {p(πi), i = 1, · · · ,D!} is obtained from the signal.
In this way it is conceivable to measure the variety of the
permutations of length D got from a scalar signal by estimating
the Shannon Entropy and MPR statistical complexity. The
embeddingmeasurementD decides the quantity of possible states
D!. The signal of length M that one needs so as to work with
truthful estimators is M ≫ D! [49]. We wish to underline that
Bandt and Pompe recommended working with 4 ≤ D ≤ 6
and explicitly considered a delay τ = 1 in their foundational
paper [38]. Be that as it may, another estimation of τ can likewise
generate extra knowledge [47, 48, 53–57].

3. THE JENSEN SHANNON DIVERGENCE

Entropy gives us an amount of incertitude and is the most
representative case of the information quantifiers. For a PDF f (x)
with x ∈ 1 ⊂ R and

∫

1
f (x) dx = 1, we characterize the Shannon

Entropy S [58] as

S[f ] = −

∫

1

f log2(f ) dx . (2)

In the discrete case, let be X (t) ≡ {xt; t = 1, · · · ,M}, a
time series with M samples and the related PDF, given by P ≡

{pj; j = 1, · · · ,N} with
∑N

j=1 pj = 1 and N the quantity

of conceivable states of the examined physical system. Then,
Shannon’s logarithmic data measure [58] is characterized by

S[P] = −

N
∑

j=1

pj log2(pj). (3)

This quantity is equivalent to zero when we can anticipate with
sureness which of the conceivable outcomes j, whose probabilities
are given by P0 = {pj∗ = 1 and pj = 0, ∀j∗ 6= j}, it will
truly occur. So, in this condition we have maximum information
about the hidden procedure. In contrast, this information is
negligible for a uniform PDF Pe = {pj = 1/N, ∀j = 1, · · · ,N}.
Regarding the interpretation, the entropy of P(X) indicates the
base number of bits expected to encode the estimations of an
arbitrary variable X with probability density function P(X). The
Shannon entropy S is a quantity of “global character" that is not
extremely susceptible to high changes in the PDF that happens in
a short zone. Nonetheless, it is essential to bring up that ordinal
structures present in a signal are not evaluated by haphazardness
or randomness measures.

Let us now consider a time series measured by a given
electrode that can be represented by a symbolization alphabet
to which we assign a probability distribution Q = {qj, j =

1, · · · ,N}, and another electrode measures a different time series
represented also by different symbols that were drawn from a
different probability distribution, P ≡ {pj; j = 1, · · · ,N}. The
“cross-entropy" between Q and P is the Kullback-Leibler (KL)
distance that is a very useful way to measure the difference
between two probability distributions. The KL distance is

KL[P||Q] = −

N
∑

j=1

pj log2

(

qj

pj

)

. (4)

This can be rewritten as

KL[P||Q] = S[P,Q]− S[P]. (5)

Thus the KL divergence represents the number of extra bits
necessary to code a source whose symbols were drawn from the
distribution P, given that the coder was designed for a source
whose symbols were drawn from Q. Despite KL usually being
referred as a distance measure between probability distributions,
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Kullback–Leibler divergence is not a true metric as it does not
have the property of symmetry.

On the other hand, Jensen–Shannon divergence enables us to
quantify the similitude between two distributions and has been
utilized in statistics and probability theory. The Jensen–Shannon
divergence is defined as

JS(P||Q) = S[(P + Q)/2]− S[P]/2− S[Q]/2. (6)

It is based on the Kullback–Leibler divergence, with some
remarkable and important differences: it is symmetric and always
provides finite values.

The Jensen–Shannon divergence, which evaluates the
distinction between PDFs, is very helpful to analyze the
symbolic configuration between various symbolic messages
[59]. As non-linear measures ought to be considered to
decipher the brain complex network, a straightforward way
to investigate this inter-connectivity is using BP formalism
in combination with JS disparity (or distance). Let us now
consider a time series measured by a given electrode in a
brain area that can be represented by a BP symbolization
alphabet with probability distribution Q and another electrode

sited in another brain area and with different time series
represented by probability distribution, P. If we estimate
JS(P||Q) a smaller JS implies greater interconnectivity between
electrodes, and greater values of JS implies a lower inter-
connectivity across them. Thus, the Jensen–Shannon measure
in combination with the BP approach can provide us a novel
quantification of the network inter-connectivity across EEG
electrodes [44].

4. EEG DATASET

Our point in this section is to portray the interconnectivity
of the EEG frequency bands when the subjects play out a
visuomotor or imagined assignment. We have considered for the
present investigation the EEG visuomotor Movement/Imagery
Dataset recorded utilizing BCI2000 instrumentation accessible
through Physionet [12, 41–43, 45, 60, 61]. Figure 1 shows the
experimental setup that comprises an arrangement of various
utilized electrodes.

The experimental setup of the BCI2000 framework [12, 45]
incorporates a set of 64 electrodes used to register the electrical

FIGURE 1 | Electrode arrangement as per the international 10–20 system (as in [12, 41–43, 45, 61–63]). The numbers below each electrode name indicate the order

in which they appear in the recordings.
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responses of the cerebrum through the EEG signals while the
subjects perform diverse assignments of visuomotor or imaginary
kinds [12, 41–43, 45, 61–63]. Each subject performed one of each
of the four after assignments:

TABLE 1 | Frequency bands analyzed.

Band Frequency interval (Hz)

Delta [1, 4)

Theta [4, 8)

Alpha 1 [8, 10)

Alpha 2 [10, 13)

Beta 1 [13, 18)

Beta 2 [18, 31)

Gamma 1 [31, 41)

Gamma 2 [41, 50)

1. An objective shows up on either the left or the right

half of the screen. The subject opens and shuts the
matching hand until the objective vanishes. At that point the
subject unwinds.

2. An objective shows up on either the left or the right half of
the screen. The subject envisions opening and shutting the
matching hand until the objective vanishes. At that point the
subject unwinds.

3. An objective shows up on either the upper or the lower half of
the screen. The subject opens and closes either the two hands
(if the objective is on the upper half) or the two feet (if the
objective is on the base) until the objective vanishes. At that
point the subject unwinds.

4. An objective shows up on either the upper or the lower
half of the screen. The subject envisions opening and
closing either the two hands (if the objective is on
the upper half) or the two feet (if the objective is on

FIGURE 2 | Network interconnectivity. (A,B) Show the network averaged values of the interconnectivity considering 109 subjects when performing the visuomotor

task for the 64-channel EEG considering the different oscillation bands delta and theta. (C,D) Are the same as (A,B) but considering the imagined task. We consider

D = 6 and τ = 1. Delta oscillation band corresponds to [1, 4)Hz and theta oscillation band to [4, 8)Hz.
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the base) until the objective vanishes. At that point the
subject unwinds.

Eye blink artifacts were produced by quick motions of the
eyelid along the cornea, for example, amid an eye squint. In
any case, muscular artifacts were cautiously checked toward
the start of each recording and confirmed all through the
experiment [12, 45, 61–63]. Significantly, in our present
investigation the muscular and technical artifacts were discarded
following the methodology exhibited in Schalk et al. [12]
and Schalk and Mellinger [45]. That is, a Common Average
Reference (CAR) is carried out before artifact rejection
as demonstrated in Schalk et al. [12] and Schalk and
Mellinger [45].

Various oscillatory rhythms have been connected to various
parts of perception that are very significant to see how actions are
prepared in the human brain [12]. The EEG records the electrical
activity of the brain that by a sensory incitement, or a visuomotor
output, exhibits distinctive rhythms such as delta (∈ [1, 4) Hz),
theta (∈ [4, 8) Hz), alpha (∈ [8, 13) Hz), beta (∈ [13, 31) Hz), and
gamma (≥31 Hz).

For a detailed description of the study, the design of the
experiment, group of subjects, the condition of the experiment
used and the EEG equipment used for the measurements, we
refer the reader to [12, 43, 45, 61–63]. The classic scenario where
the subjects are performing the motor action using an event-
related desynchronization (ERD) analysis is carefully described
for the different oscillation bands by Kim et al. [64].

FIGURE 3 | Network interconnectivity. (A,B) Show the network averaged values of the interconnectivity considering 109 subjects when performing the visuomotor

task for the 64-channel EEG considering the different oscillation bands alpha 1 and alpha 2. (C,D) Are the same as (A,B) but considering the imagined task. We

consider D = 6 and τ = 1. Alpha 1 oscillation band corresponds to [8, 10)Hz and alpha 2 oscillation band to [10, 13)Hz.
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For each subject and for each task we obtain the network,
using the BP symbolization technique for each electrode and
obtaining a weighted graph, with each weight given by the JS
divergence, normalized by taking the maximum value between
realized and imagined tasks. For completeness, we show an ERP
signal of the current data in the Supplemental Material, and
for further details we refer the reader to [43]). Specifically, we
utilize the Kaiser filtering window created in Belitski et al. [65] to
filter the raw signals for the diverse oscillation bands. The EEG

are sampled at 160Hz. But due to the high frequency artifacts
that obscured the EEG, and to expel variances at DC level and
increment the signal to noise ratio, the records where passed first
through a filter between 1 and 50 Hz utilizing a filter created in
Belitski et al. [65].

After this filtering, each EEG signal was decomposed, using
the Kaiser filtering window created in Belitski et al. [65], in the
frequency bands given in Table 1. For further insights regarding
the filtering we allude the reader to [41].

FIGURE 4 | Network interconnectivity. (A,B) Show the network averaged values of the interconnectivity considering 109 subjects when performing the visuomotor

task for the 64-channel EEG considering the different oscillation bands beta 1 and beta 2. (C,D) Are the same as (A,B) but considering the imagined task. We

consider D = 6 and τ = 1. Beta 1 oscillation band corresponds to [13, 18)Hz and beta 2 oscillation band to [18, 31)Hz.
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Networks are usually built considering different thresholds,
and then graphs are constructed. This framework allows
us to analyze the functional connectome of the brain. We
describe the diverse network rhythmic activity of the brain
as indicated by unmistakable visuomotor and imagery tasks
using an information theory approach. The main idea of the
current analysis is to gain a better understanding of situations in
which a given oscillation band recruits specific brain networks
for a given oscillation supporting a distinction between the
forms identified with attention and development of imaginary
movements. We estimate the degree of network interconnectivity
as the normalized Jensen-Shannon distance JS between two
probabilities: one corresponding to the state of the system in one
electrode and the state distribution taken of another electrode
as reference state, that is to say by estimating the normalized
Jensen–Shannon distance between the BP probabilities across
different electrodes sites as in Equation (6). We have normalized
the Jensen–Shannon distance by taking the maximum value
between realized and imagined tasks. Due to the length of time
series we consider D = 6 and τ = 1 for all BP estimations as in

(Bandt and Pompe [38], Rosso and Masoller [39, 40], Baravalle
et al. [41, 42]). So as to perform examinations inside the BP
formalism, we have to meet the condition (M ≫ D!); in this case
we have 20,000 points for each case.

4.1. Centrality
Graph theory is the investigation of systems of interacting
elements, which are structures used to pose pairwise and/or
multiple relations between them [66]. A graph in this setting is
comprised of nodes which are associated by edges. The centrality
of a node in a system C is a measure of the basic importance
of the node. While thinking about a graph, closeness centrality
of a given node is a measure of centrality in a system and is
evaluated as the quantity of nodes less one, N − 1, partitioned
by the summation of the length of the shortest path between the
node of interest and every single other node in the diagram.

That is

C(i) =
N − 1

∑

j d(i, j)
, (7)

FIGURE 5 | Network interconnectivity. (A,B) Show the network averaged values of the interconnectivity considering 109 subjects when performing the visuomotor

task for the 64-channel EEG considering the different oscillation bands alpha 1 and alpha 2. (C,D) Are the same as (A,B) but considering the imagined task. We

consider D = 6 and τ = 1. Gamma 1 oscillation band corresponds to [31, 41)Hz and gamma 2 oscillation band to [41, 50)Hz.
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where d(j, i) is the separation between vertices i and j. Closeness
centrality measures how short the shortest paths are from node
i to all nodes, and we have 62 nodes in total because we
exclude the two reference electrodes T9 and T10. We choose the
closeness centrality because it is a helpful measure to estimate
level of efficiency and convenience that gauges how quick the
transmission of data would be through a given node all the
available nodes [17, 67–72].

4.2. Statistical Analysis
As we mentioned previously, our objective is to focus on a better
understanding of situations in which a given oscillation band
recruits specific brain networks for a given oscillation supporting
a distinction between the forms identified with attention and
development of imaginary movements. In order to compare
the closeness centrality for the different tasks, statistical tests
are performed for each node. In consequence, we establish the

following statistical analysis protocol for the obtained results
of closeness centrality: (a) we first perform a t-test between
imagined and realized tasks for each of the considered bands,
and (b) in order to obtain a more accurate statistical test we also
perform a false discovery rate (FDR) correction. We choose the
Benjamini–Hochberg methodology at a specified FDR of 5% as
in Benjamini and Hochberg [73] and Nielsen et al. [74].

5. RESULTS

In the following we show the analysis performed for the
visuomotor task 1 and its corresponding imagined task 2. Our
outcomes are equivalent for the visuomotor/imagery tasks 3 and
4. Figures 2A,B, 3A,B display the mean of the interconnectivity
for the 109 subjects when playing out the visuomotor assignment
for the 64-channel EEG considering the diverse rhythms

FIGURE 6 | (A,B) Show the node interconnectivity when considering the executed visuomotor task and taking the theta and alpha 1 band for the electrode Oz (or

node) in the visual cortex. (C,D) Show the node interconnectivity when considering the imagined task. We consider D = 6 and τ = 1.
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delta, theta, alpha 1 and alpha 2. Figures 2C,D, 3C,D are
equivalent to Figures 2A,B, 3A,B but performing the imagined
task. Figures 4A,B, 5A,B depict the network averaged values
of the interconnectivity for performing the visuomotor task
when considering the beta 1, beta 2, gamma 1 and gamma
2 bands, respectively. Figures 4C,D, 5C,D are the same as
in Figures 4A,B, 5A,B but performing the imagined task.
Small differences can be appreciated between the network of
the realized and imagined tasks. Furthermore, Figures 6A,B

show the node interconnectivity when considering the executed
visuomotor task in view of the theta and alpha 1 bands for
the electrode Oz (or node) in the visual cortex. Figures 6C,D
show the node interconnectivity when considering the imagined
task taking into account the same node in the visual cortex.
Figures 6A–D depict also the averaged values considering 109
subjects. We can appreciate from the previous figures that there
are differences in the network interconnectivity for the different
conditions, however the current results are not quantifying how
different the networks are. That is to say we can not infer from the
previous figures which are the most relevant network structures.
For completeness in the Supplementary Materialwe also include
the analysis for all the other bands that are not being depicted
in Figure 6.

In order to quantify the structural relevance of each node
for the realized and imagined tasks, we investigate the closeness
centrality of different nodes. Figures 7A,B show the closeness
centrality C, as in Equation (7), taking into account the average
over 109 subjects for the 62-channel EEG considering the
realized task when considering delta and theta, respectively.
Figures 7C,D, are the same as in Figures 7A,B but performing
the imagined task. Let us emphasize that Figures 8A, 9A depict

the closeness centrality C [as in Equation (7)] considering
the alpha 1 and alpha 2 bands, respectively, taking into
account the average over 109 subjects for the 62-channels
EEG considering the realized task. Figures 8B, 9B are the
same as in Figures 8A, 9A but executing the imagined
task. Figures 10A,B, 11A,B depict the closeness centrality
C when realizing the visuomotor task considering the beta
1, beta 2, gamma 1 and gamma 2 bands, respectively.
Figures 10C,D, 11C,D are the same as in Figures 10A,B, 11A,B
but performing the imagined task. The electrodesT9 andT10 have
been excluded from the current analysis of the nodes centrality as
they are reference electrodes [43].

In the case of the delta band, TP7 showed the highest closeness
centrality for imagined and realized tasks. While in the theta
band FP1, FPz , and FP2 depicted the highest centrality, both for
both tasks. When considering the beta 1, the highest centrality
is given by AF8, T8, O2, and Oz for the realized task. In the case
of the imagined task, beta 1 has the highest centrality for AF7,
AF8, F6, T8, and Oz . Beta 2 depicted the highest centrality in
AF8 for the realized task and AF7, AF8 for the imagined task.
Alpha 1 displays higher centrality for FP1, FPz , FP2, F7, F6, FC2,
FC4, C4, and P2 for the realized task. When considering the
imagined task alpha 1 showed the highest centrality for the nodes
FP1, FP2, AF8, AF3, F3, F2, FT7, FC3, FC4, P2, P7, T8, PO4, Oz ,
and O2. In contrast the highest centrality of the alpha 2 band
is given by the nodes FPz , FP2, T8, O1, and Oz for the realized
task. The highest centrality of the imagined task is given by FPz ,
O1, and PO4 for alpha 2. Gamma 1 and gamma 2 presented the
highest centrality in Oz , O2, and Tz for the realized and imagined
tasks. Overall, it is important to point out that delta, theta, beta
and gamma bands show lower closeness centrality and therefore

FIGURE 7 | Closeness centrality. (A,B) Show the nodes’ closeness centrality considering 109 subjects when performing the visuomotor task for the 62-channels EEG

considering the different oscillation bands delta and theta. (C,D) Are the same as (A,B) but considering the imagined task. We consider D = 6 and τ = 1. Delta

oscillation band corresponds to [1, 4)Hz and theta oscillation band to [4, 8)Hz.
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FIGURE 8 | Closeness centrality. (A) Shows the node closeness centrality considering 109 subjects when performing the visuomotor task for the 62-channels EEG

considering the oscillation band alpha 1. (B) Is the same as (A) but considering the imagined task. We consider D = 6 and τ = 1. Alpha 1 oscillation band

corresponds to [8, 10)Hz.

depict a lower efficiency of the information of the data that could
be transmitted through a given node to all the available nodes.

We find no significant differences between the realized and
imagined tasks for most of the different bands, with the exception
of the alpha 1 and alpha 2 bands that depict an unequal closeness
centrality in several nodes of the network when comparing
both tasks (see Figures 8A,B, 9A,B). After performing the FDR
correction we find no significant differences between realized and
imagined tasks when considering the delta, theta, beta 1, beta 2,
gamma 1 and gamma 2 bands. In the case of the alpha 1 band (see
Figures 8A,B), as mentioned we first performed a t-test between
imagined and realized tasks obtaining 26 sites with significant
differences. After performing a FDR correction we find 17
nodes/sites that present significant differences between imagined
and non-imagined tasks. The electrodes that accomplished both
tests were FPz , AF8, F7, F8, F3, F2, F6, FT7, AFz , FC3, C5, C2, T8,
PO7, PO8, C1, and Oz . In the case of alpha 2 (see Figures 9A,B)
there were eight sites that showed significant differences when
performing the t-test, and six electrodes presented significant
differences when applying a FDR correction between tasks. The
electrodes that accomplished both tests were T8, TP7, P7, Oz ,

Iz , and PO4. Finally, for completeness, Figures 12A–C depict
the results of the closeness centrality derived from statistical
comparison between realized and imagined tasks for all the
significant nodes within alpha 1. Figure 12D shows all the
significant nodes within the alpha 2 band. Let us emphasize
that the estimation of the network closeness centrality played
an ultimate role, as when we implemented other network
measures they did not produce any quantifiable difference
between realized and imagined tasks for the different analyzed
bands. Here, a systematic method in which nodes are weighted
by closeness centrality was proposed. We demonstrate how the
combination of the estimation of the Jensen–Shannon divergence
of the BP probabilities across different nodes encompassed with
calculations of the nodes closeness centrality has significance to
distinguish imagined from realized motor tasks. We found a
higher degree of closeness centrality in the case of the imagined
task when compared with the realized ones, looking upon the
alpha band. Thus these results shows that imagined processes are
linked to changes in the alpha levels of centrality of the different
nodes in the brain. Overall we emphasize that the alpha 1 band
shows a higher level of closeness centrality than the other bands,
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FIGURE 9 | Closeness centrality. (A) Shows the node closeness centrality considering 109 subjects when performing the visuomotor task for the 62-channels EEG

considering the oscillation band alpha 2. (B) Is the same as (A) but considering the imagined task. We consider D = 6 and τ = 1. Alpha 2 oscillation band

corresponds to [10,13)Hz.

therefore it depicts a quicker level information flow from a given
node to other nodes.

6. CONCLUSION AND DISCUSSIONS

Attention is a mechanism required for focusing on what
is critical at each moment of time, while suppressing any
unessential information. This mechanism is also required to
perform mental imagery, activating the synchronized network
of multiple areas of the brain [45]. This synchronized activity
of many neurons communicating with one another generates
brain waves [45]. Brain waves are rhythmic oscillation patterns
that can be registered as macroscopic oscillations utilizing EEG
sensors on the scalp. The descriptions are quite broad: delta
rhythmic are related to sleep states; theta might be entrance to
further understanding learning and memory; alpha is usually
related to attention, lucid thinking and integration; beta is
present during the state of alert and problem solving; and
gamma rhythms modulate perception and consciousness [45].
Moreover, brain oscillation rhythms can provide hints about
the network functionality during imagined and realized tasks.
In our current study we have considered the causality of the

EEG signals using the BP approach, and through a statistical
analysis that combined the Jensen–Shannon distance with the
estimation of the closeness centrality we estimate the level
efficiency on data transmission for a given node to all the available
nodes taking into account the different rhythmic oscillation
bands. Our current results emphasize the relevance of the
alpha 1 band when detecting nodes that spread information
with different efficiency through the graph for realized and
imagined tasks.

We propose an effective technique that enables us to
determine quantitatively the amount of the node closeness
centrality inside the diverse rhythms considering the causality
of the EEG signals. So as to do it thus, we exactly evaluate
the distinctive highlights of oscillatory patterns considering keen
estimates representing the causal structure of the signal utilizing
the BP procedure. More specifically, we estimate the network
interconnectivity by estimating the normalized Jensen–Shannon
distance between the BP probabilities across different nodes,
quantifying the non-linear dynamics of the EEG signals. We
choose thereafter to compute the closeness centrality because
it is a helpful measure to estimate the level of efficiency and
convenience that gauges how quick the transmission of data
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FIGURE 10 | Closeness centrality. (A,B) Show the nodes’ closeness centrality considering 109 subjects when performing the visuomotor task for the 62-channels

EEG considering the different oscillation bands beta 1 and beta 2. (C,D) Are the same as (A,B) but considering the imagined task. We consider D = 6 and τ = 1.

Beta 1 oscillation band corresponds to [13, 18)Hz and beta 2 oscillation band to [18, 31)Hz.

FIGURE 11 | Closeness centrality. (A,B) Show the nodes’ centrality considering 109 subjects when performing the visuomotor task for the 62-channels EEG

considering the different oscillation bands gamma 1 and gamma 2. (C,D) Are the same as (A,B) but considering the imagined task. We consider D = 6 and τ = 1.

Gamma 1 oscillation band corresponds to [31, 41)Hz and gamma 2 oscillation band to [41, 50)Hz.

would be through a given node all the available nodes [67–
72]. Our methodology enables us to characterize the “closeness
centrality properties" of various nodes inside the EEG rhythms,
considering the causality of the signal and gathering the rising
dynamical properties of the diverse oscillation patterns of

the brain while performing distinctive visuomotor or imagery
tasks. That is to say in the current paper, we analyze EEG
network organization through the closeness centrality to study
how to discriminate imagined and non-imagined tasks for
the different rhythmic oscillations, showing that the alpha 1
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FIGURE 12 | Statistical comparison and closeness centrality. (A–C) Depict the closeness centrality for the realized and imagined tasks considering the significant

nodes for the alpha 1 band. (D) Is the same as (A–C) but considering the alpha 2 band. In all cases: dark gray bars, realized task; light gray bars, imagined task.

bands allow us to discriminate between both assignments. Thus,
we determine that the current approach combining the BP
estimation with the Jensen-Shannon distance and the closeness
centrality is a viable option for classification of hand realized and
imagined signals.

It has been found that alpha frequency oscillations posses
an important role in inhibitory control actions managing
access of data of a cognition procedure and working memory
[75–77]. Our findings show that several nodes within the
gamma 1 band have an overall higher amount of closeness
centrality during the imagined task in comparison to realized
tasks. These higher amounts of centrality are located within
the pre-motor, motor, and visual cortex areas. Thus, we can
conclude that the imagined cognitive processes coincide with
higher alpha 1 levels of closeness centrality of the different
nodes. Our discoveries underscore the significance of the
alpha band while taking part in cognitive tasks. That is in
concurrence with strong proof that EEG alpha power is
especially susceptible to different imagination-related requests,
and that is happening due to creativity interventions [78].
We suggest that increased levels of centrality of several
nodes for alpha 1 levels during the imaginative tasks
might be important neurocognitive processes related to

the internal attention required to perform mental imagery
tasks.

As far as we can tell, there is still no ideal way to deal
with the construction of a brain computer interphase (BCI)
based on motor imagined tasks (MI-BCI, [79]). Specifically,
features extraction and determination of relevant patterns
and biomarkers for developing a successful MI-BCI are still
under debate. Thus, it is extremely useful to investigate
new methodologies that can offer a better understanding of
how motor imagined patterns and connectivity differs from
the non-imagined/realized activities. Recently, new research
has investigated the possibility of taking measures that were
originally developed in graph theory for data classification as
they could provide important information about the connectivity
[80]. In particular, a recent study has shown that graph metrics
can be used for EEG-BCIs based on hand motor imagery
graphs, as they are a feasible option for classification of hand
motor imagined signals [81]. A recent study showed that the
activity of the globulous pallidus is significantly reduced during
imagined locomotion in patients with Parkinson disease when
compared to healthy subjects [82]. Importantly the authors
showed, using fMRI measures, that Parkinson disease patients
displayed larger beta weights in the visuomotor zone amid
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envisioned turning contrasted with forward or in reverse
while controls did not, and that overground marching speed
is associated with beta weights amid imagined marching in
a few locomotor areas in patients with Parkinson disease
and not in controls [82]. The early detection and diagnosis
based on extracting features of the neuronal networks EEG
topology thought imagined tasks can be of ultimate help for
understanding brain functions and neuronal diseases. When one
performs a network analysis, markers of closeness centrality
allow us to find the most relevant vertices within a graph.
Applications means identifying the most important structure
of the neuronal network, therefore the main relevance of
the nodes’ centrality is identifying the different networks
that might be related with neural diseases. The detection of
those differences between realized and imagined features is
a relevant highlight of the EEG topology that can be of
assistance for inferring the brain functions. Moreover, we
plan future related work to perform estimations of wavelet
phase coherence to obtain the connectivity matrices for the
different oscillations bands and to estimate the betweenness
centrality across them to identify possible nodes that might
mediate communication with the other nodes for the different
imagined/realized tasks as performed in Makarov et al. [83]. We
suggest that the current tool that combines a subtle information
theoretical approach, representing the causality of the signal
together with a quantification of the levels of centrality for

the different nodes, can be very useful for early detection of
neuronal diseases.
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