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Recent theoretical modeling offers a unified picture for the description of stochastic

processes characterized by a crossover from anomalous to normal behavior. This is

particularly welcome, as a growing number of experiments suggest the crossover to

be a common feature shared by many systems: in some cases the anomalous part of

the dynamics amounts to a Brownian yet non-Gaussian diffusion; more generally, both

the diffusion exponent and the distribution may deviate from normal behavior in the initial

part of the process. Since proposed theories work at a mesoscopic scale invoking the

subordination of diffusivities, it is of primary importance to bridge these representations

with a more fundamental, “microscopic” description. We argue that the dynamical

behavior of macromolecules during simple polymerization processes provide suitable

setups in which analytic, numerical, and particle-tracking experiments can be contrasted

at such a scope. Specifically, we demonstrate that Brownian yet non-Gaussian diffusion

of the center of mass of a polymer is a direct consequence of the polymerization process.

Through the kurtosis, we characterize the early-stage non-Gaussian behavior within a

phase diagram, and we also put forward an estimation for the crossover time to ordinary

Brownian motion.

Keywords: polymer dynamics, polymerization process, anomalous diffusion, non-Gaussian, crossover toGaussian

1. INTRODUCTION

Diffusion in crowded and complex systems such as biological cells is usually very heterogeneous,
and anomalous behavior—where the mean square displacement of tracers varies non linearly with
time—is envisaged [1–3]. Over the last few years a new class of diffusive processes has been
reported, where the mean square displacement is found to grow linearly in time like in standard,
Brownian diffusion, but with a corresponding probability density function (PDF) which is strongly
non-Gaussian [4–16]. This behavior, termed Brownian yet non-Gaussian diffusion [6, 8], occurs
quite robustly in a wide range of systems, including beads diffusing on lipid tubes [6] or in
networks [6, 7], the motion of tracers in colloidal, polymeric or active suspensions [4, 17–19] and
in biological cells [12, 20, 21], as well as the motion of individuals in heterogeneous populations
such as nematodes [5]. Similar effects on the PDF are also observed in the anomalous diffusion [22]
of labeled messenger RNAmolecules in living E.coli and S.cervisiae cells. In the majority of cases, at
larger time the form of the PDF crosses over to the normal, Gaussian one. Therefore, such change
cannot be simply due to the heterogeneity of the tracers, unless some of their properties vary
with time. More plausibly, the anomalous-to-Gaussian transition might be induced by temporal
fluctuations of the diffusion coefficient, due to rearrangements of properties of tracers or of the
surrounding medium. To mimic such behaviors, models in which the diffusion varies with time by
obeying a stochastic equation have been introduced and solved both analytically and numerically.
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Thesemodels are referred in the literature as “diffusing diffusivity
models” [23–32], and it has been shown that for short times
they are intimately related to the idea of superstatistics [33].
In the latter approach, an ensemble of particles is assumed
to be characterized by different diffusion coefficients and it
is then described as a mixture of Gaussian PDFs, weighted
by the distribution of the diffusivities. As a result, the
ensemble dynamics is still Brownian, yet the PDF of particle
displacements corresponds to a Gaussian mixture and it is thus
not Gaussian anymore.

Although diffusing diffusivity models qualitatively reproduce
the experimental observations, they work at a mesoscopic scale
and without a visible connection to the underlying molecular
processes. It is therefore becoming increasingly relevant to
find strategies that bridge the gap between the paradigm of
diffusing diffusivity and the microscopic realm, in order to
fully understand this form of anomalous diffusion. In this
paper we show how the diffusion of polymers during a
polymerization process offers one possible mechanism to realize
this connection1. It is well known from polymer theory [36] that
themotion of the center of mass of a linear chain is Brownian, but
with a diffusivity constant which is inversely proportional to Nα ,
where N is the number of monomers and α an exponent ranging
from 1/2 (Rouse model) to 2 (reptation model). During an
equilibrated polymerization processes the number N fluctuates
in time and its statistics can be obtained through the exact
solution of its stationary master equation. By using a continuous
approximation for this temporally homogeneous birth-death
Markov process [37], it emerges that in the limit of large
systems such process converges to anOrnstein-Uhlenbeck, as it is
assumed inmost of the diffusing diffusivity models [24]. The time
scale of the Ornstein-Uhlenbeck process is linearly proportional
to the volume of the system and this guarantees that the non-
Gaussian behavior can be accessible experimentally by tuning
such parameter.

2. POLYMERIZATION PROCESS

Polymers are made of relatively simple subunits (monomers)
assembled with one another through different mechanisms and
geometries. The result is a macromolecule which may contain
from a few tens (in the case oligomers), to several thousand
monomer units [38], or even millions as in the case of DNA
and RNA molecules. From a biological point of view, the
polymerization process occurs regularly either within or outside
the cell [39]. In particular, cells might trigger polymerization
by several mechanisms such as the de novo nucleation of new
filaments, the uncapping of existing barbed ends (actin) and
rescuing a depolymerizing filament (commonly observed for
microtubules).

In order to guarantee the existence of equilibrium conditions,
here we consider a polymerization process occurring in a closed
volume with a fixed total number of monomers Nt. For sake of

1Along different lines, connections between polymerization processes and

anomalous diffusion have been pointed out in Oshanin and Moreau [34] and

Sposini et al. [35].

simplicity, in what follows we suppose that one filament only can
nucleate and that subunits may bind reversibly onto both ends of
the chain. At each end, the addition and deletion of monomers
can be represented as [40]

AN + A1

k+−⇀↽−
k−

AN+1 , (1)

where AN is the filament withN subunits, and k+, k− are the rate
constants for association and dissociation, respectively. Hence,

Nt = N(t)+M(t) , (2)

where M(t) = c(t)V is the number of monomeric subunits, c
its concentration and V the system volume. The probability of
a filament with n monomers at time t given n0 units at time
t0, PN(n, t|n0, t0) satisfies the (forward) master equation of a
temporally homogeneous birth-death Markov process [37]:

∂tPN(n, t|n0, t0) =
[
W−(n+ 1) PN(n+ 1, t|n0, t0)
−W+(n) PN(n, t|n0, t0)

]

+
[
W+(n− 1) PN(n− 1, t|n0, t0)

−W−(n) PN(n, t|n0, t0)
]

, (3)

with stepping functions

W+(n) = 2k+ c(n) (1 ≤ n ≤ Nt) ,
W−(1) = 0 , W−(2) = k− , W−(n) = 2k− (3 ≤ n ≤ Nt) ,

(4)
and c(n) = (Nt − n)/V . Through these choices, we are assuming
with certainty the existence in solution of a filament with at least
one monomer. The factor 2 in W+ models a linear polymer
which grows at both ends without developing branching; W−
is instead concerned with the possible bonds which may break
down. Equilibrium is reached under detailed balance W−(n) =
W+(n) (3 ≤ n ≤ Nt), corresponding to a polymer composed by

Neq = Nt −
k−
k+

V ≡ λNt (5)

monomers, and to a number

Meq =
k−
k+

V ≡ (1− λ)Nt (6)

of single monomers in solution. We remark that the rate
constants k+, k− are specific to the polymerization chemical
reactions. Given a certain kind of polymer, the average polymer
size and the average number of single monomers in solution are
thus controlled by the total number of subunits Nt and by the
volume of the system V , which are quantities easily controlled
in experiments. In the following analysis, we find it convenient
to replace the volume with the fraction 0 < λ < 1 of Nt

that compose the polymer at equilibrium; clearly, V = (1 −
λ)Nt k+/k−.

As we prove in the Appendix, for any given Nt and
independently from n0, the stationary solution PN(n) ≡
limt→∞ PN(n, t|n0, t0) reads
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PN (1) =
1

N (Nt, λ)

(1− λ)Nt

2 (Nt − 1)

PN (2) =
1

N (Nt, λ)

PN (n) =
2

N (Nt, λ)

(Nt − 2)!
[
(1− λ)Nt

]Nt−2

[
(1− λ)Nt

]Nt−n

(Nt − n)!
(3 ≤ n ≤ Nt),

(7)

with a normalization factor

N (Nt, λ) =
Nt [(11− 4λ) λ − 9]+ 2

2(Nt − 1)

+
2 (Nt − 2)!

[
(1− λ)Nt

]Nt−2

Ŵ(Nt + 1, (1− λ)Nt)

Ŵ(Nt + 1)
e(1−λ)Nt , (8)

Ŵ(·, ·) being the upper incomplete gamma function [41],

Ŵ(Nt + 1, (1− λ)Nt) ≡
∫ ∞

(1−λ)Nt

dt tNt e−t , (9)

and Ŵ(·) the Euler gamma function. We may observe that with
(1 − λ)Nt → 0 the two Gamma functions in the normalization
factor become equal and simplify to 1; in this limit, probabilities
for small n are suppressed. Indeed, in section 4 we show that
PN(n) becomes close to a Gaussian for large λ and Nt. In view
of the inverse power-law relation with the diffusion coefficient of
the center of mass, it is however the behavior for small n which
affects the probability of large diffusivities, triggering in turn
strong deviations from ordinary diffusion which are described in
the following Section.

3. BROWNIAN YET NON-GAUSSIAN
DIFFUSION OF THE CENTER OF MASS

From polymer physics we know that the center of mass RG of
a macromolecules with N subunits diffuses with a coefficient
D(N) = D0/N

α , D0 being a diffusion coefficient specific of the
considered subunit. This means

dRG(t) =
√
6D(N(t)) dB(t) , (10)

with B(t) a (three-dimensional) Wiener process (Brownian
motion). Reference values for the exponent α are:

• α = 1/2 in the Rouse model [36, 42], where the polymer
is composed of N equivalent beads with neither excluded-
volume nor hydrodynamic interaction;

• α = 1 for the Zimm model [36, 43], where hydrodynamic is
taken into account;

• α = 2 for the reptation model which describes tagged polymer
motion in entangled polymer solutions [36, 44].

In view of the previous analysis, we understand that
polymerization confers a random character to RG, providing a
clear microscopic origin to the “diffusing diffusivity” process we
are going to detail next.

From Equation (7) we readily obtain the stationary
distribution for the diffusion coefficient of the polymer’s
center of mass,

PD(Dn) =
Nt∑

n′=1

PN(n
′) δ

Dn ,
D0
n′α

(11)

= PN

(
Dα
0

Dα
n

)
(1 ≤ n ≤ Nt, Dn = D0/n

α) ,

and its first moment

Dav ≡ E[Dn] =
Nt∑

n=1

PD(Dn) Dn . (12)

Imagine now to perform a particle-tracking experiment at
constantNt andV and tomonitor the position ofRG in stationary
conditions. At a given initial instant the polymer possesses a
size n, and thus a diffusion coefficient Dn = D0/n

α with
probability given by Equation (12). For time smaller than the
characteristic decay τ of the autocorrelation of the process N(t),
the experimental PDF amounts then to a Gaussian mixture (also
called “superstatistics”) [6, 23, 33] weighted by Equation (12). In
addition, its second moment grows linearly with time as in the
ordinary Brownian motion. Such a phenomenon of “Brownian
yet non Gaussian diffusion” [6, 8] has been recently modeled at
a mesoscopic scale in terms of diffusing diffusivity models [23–
32]. It is only at time larger than τ that ordinary (Gaussian)
Brownian motion is recovered, with a diffusion coefficient Dav.
Before giving an estimate of τ for our model (see next section),
we study the early time non-Gaussianity in the full phase diagram
[Nt, λ], together with its dependence on α.

The non-Gaussian behavior distinctive of RG(t) at time 0 ≤
t ≪ τ can be properly characterized by referring to one of its
Cartesian coordinates, say x. The PDF of the x-displacements
takes the form

pX(x, t) =
Nt∑

n=1

PN

(
Dα
0

Dα
n

) exp
(
− x2

4π Dnt

)

√
4πDnt

. (13)

In Figure 1 we plot Equation (13) for α = 1 and different
values of λ and Nt. At first sight, non-Gaussianity increases with
decreasing Nt and λ; below we however show that the behavior
is not monotonic. To measure deviations from Gaussianity we
consider the kurtosis of pX(x, t),

κ ≡
E
[
(X − E[X])4

]
(
E
[
(X − E[X])2

])2 (14)

(κ = 3 for anyGaussian variable). In our case it is straightforward
to see that

κ = 3
E
[
D2
]

(E [D])2
= 3

E
[
N−2α

]
(
E
[
N−α

])2 , (15)

independently of D0. Notice instead the strong dependence of κ

from α; moreover, κ > 3 (positive excess kurtosis or leptokurtic
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FIGURE 1 | PDF of the x-coordinate of RG for 0 ≤ t≪ τ , at fixed Nt (A), and fixed λ (B). The PDF is rescaled such that the variance is unity; recall that in a log-linear

plot Gaussian PDFs have parabolic shape. In both cases, α = 1.

PDF). In order to illustrate regions of more pronounced non-
Gaussianity and to discuss their dependence on α in Figure 2

we draw the kurtosis level curves within a (λ,Nt)-phase diagram.
Note that, for a given pair (Nt, λ), higher values of the exponent
α give rise to larger kurtosis (compare Figures 2A,B).

As quoted, by looking at the plots in Figure 1 one may expect
the kurtosis to steadily increase by decreasing λ and Nt. The
structure of the phase diagram implies instead the existence of
a maximum kurtosis, both at given λ and Nt. Indeed, for any
horizontal or vertical line traced through the phase diagram
(Figure 2) it is possible to find a family of kurtosis level curves
each intersecting the line in two distinct points. Between each
couple of intersection points the kurtosis first raises and then
decreases, thus reaching a maximum value. This is highlighted
in Figure 3. Albeit within a small portion of the phase space,
the maximum kurtosis can be extremely high, as reported in
Figure 4; for instance, kmax ≃ 40 corresponds to an average
polymer size of order Neq ≃ 350 with Nt ≃ 104.

4. CROSSOVER TO BROWNIAN,
GAUSSIAN DIFFUSION

The stationary distribution in Equation (7) is exact, but it does
not provide information about the decay time-scale τ of initial
conditions for the process N(t). To get such an insight, we
next workout a continuous approximation for the polymerization
process. In the gedankenexperiment reported above, τ is the
persistence time scale of the randomly chosen initial diffusion
coefficient for RG, corresponding in turn to the typical duration
of the leptokurtic PDF for the diffusion of the center of mass.

We start by noticing that around equilibrium, for Nt ≫ 1 and
Neq ≫ Meq (large λ), N(t) can be approximated as a continuous
Markov process with Langevin equation [37]

dN(t) = 2
k+
V

[
Neq − N(t)

]
dt +

√
2
k+
V

[
2Nt − Neq − N(t)

]
dB(t) ,

(16)

where B(t) is a Wiener process (Brownian motion). Taking
further advantage of the largeNeq assumption, we then introduce

the rescaled quantity Ñ ≡ N/Neq, obeying

dÑ(t) = 2
k+
V

[
1− Ñ(t)

]
dt (17)

+
(

1

Neq

)1/2
√
2
k+
V

[
2
Nt

Neq
− 1− Ñ(t)

]
dB(t) ,

to which wemay apply theweak noise approximation. Indeed, one
may straightforwardly prove [37] that for largeNeq Equation (18)
is satisfied by the approximate solution

Ñ(t) ≃ ñ(t)+
(

1

Neq

)1/2

Y(t) , (18)

with ñ(t) a deterministic process satisfying

d̃n(t)

dt
= 2

k+
V

[
1− ñ(t)

]
, (19)

and Y(t) the stochastic process defined by the Langevin equation

dY(t) = −2
k+
V

Y(t) dt+

√
2
k+
V

[
2
Nt

Neq
− 1− ñ(t)

]
dB(t) . (20)

The solution of the deterministic process,

ñ(t) = 1+ [̃n(0)− 1] e−
t
τ , (21)

asymptotically tends to 1 with a characteristic decay time

τ ≡
V

2k+
=

(1− λ)Nt

2k−
. (22)

Correspondingly, the long-time behavior of Y(t) is that of an
Ornstein-Uhlenbeck process:

Y(t → ∞) = N

(
0,

Nt

Neq
− 1

)
, (23)
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FIGURE 2 | Phase diagram of the early-stage non-Gaussianity for (A) α = 1 and (B) α = 1/2. The thick, violet, line at the right end of both plots corresponds to

τ k− = 1 (please refer to text for details).

FIGURE 3 | Kurtosis as a function of: (A) λ; (B) Nt. In both cases, α = 1.

FIGURE 4 | Maximum kurtosis as a function of: (A) λ; (B) Nt. In both cases, α = 1.

where N(µ, σ 2) is a Gaussian variable with mean µ and variance
σ 2. Hence, the stationary solution of Ñ is

Ñ(t → ∞) = N

(
1,

Meq

N2
eq

)
. (24)

For the polymer size N = Ñ Neq, this implies

N(t → ∞) = N
(
Neq,Meq

)
. (25)

We thus appreciate that, to be self consistent, the
continuous approximation requires large values of Nt

to blur out discreteness, and Neq ≫ Meq so that the
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FIGURE 5 | Stationary PDF of the polymerization process. Comparison between the exact PDF in Equation (7) (symbols) and the continuous, weak noise

approximation associated to Equation (25) (curves). Values for the parameters Nt and λ have been chosen to facilitate comparison with Figure 1. Specifically,

continuous red curves correspond to choices in Figure 1. By decreasing either λ at fixed Nt (A) or Nt at fixed λ (B) the weak noise approximation breaks down.

negative support of the Gaussian PDF corresponds to a
negligible probability. Figure 5 shows that when Nt and
λ are both large the weak noise approximation of the
stationary distribution PN(n) is almost indistinguishable
from the exact solution. On the other hand, decreasing
either Nt or λ the approximation fails concomitantly with
the fact that the Gaussian probability of negative n-values
becomes significant. Depending on the specific cut in phase-
space, the approximation may or may not work well in
correspondence to the maximum kurtosis (compare red full lines
in Figures 5A,B).

When applicable, the important result conveyed by the
continuous, weak noise approximation is that through
Equation (22) it establishes the time scale of the decay of
the autocorrelation of N(t). It would be nice to give an explicit
representation of τ in terms of the control parameters (λ,Nt);
however, Equation (22) shows that it further depends on the
dissociation rate constant k−, which is specific to the chosen
polymer. To get a qualitative insight, in Figure 2 we have added
the line

τ k− =
(1− λ)Nt

2
= 1 , (26)

representing the locus of points for which τ is equal to the inverse
of k−. Notice that the largest kurtosis level curve lay at the left
of the line, a region which is also characterized by τ > 1/k−.
Hence, the farther left of the line the longer lasts the Brownian
yet non-Gaussian diffusion stage.

5. CONCLUSIONS

We have been able to analytically characterize the stochastic
motion of the center of mass of a fluctuating filament undergoing
a simple polymerization process. Depending on experimentally
accessible parameters such as the the total monomers in the
solution Nt and the system volume V (equivalently, the fraction
λ of total monomers composing the filament in equilibrium),
the center of mass displays at early times a Brownian, yet
non-Gaussian, diffusion. To our knowledge, this is one of the

first example in which this anomalous behavior is directly
linked to a microscopic prototype: the effect originates from the
fluctuations of N (due to polymerization) and from the relation
D(N) = D0/N

α which distinguishes many microscopic models
of polymeric diffusion. By studying the kurtosis of the early-
time displacement PDF along the x-coordinate we quantified
deviations from Gaussian behavior in the phase diagram (λ,Nt),
highlighting the dependence on the exponent α. Remarkably, the
kurtosis is not monotonic and displays a maximum at either λ

or Nt fixed. Finally, on the basis of a continuum (weak noise)
approximation for the stochastic process N(t), we put forward
an estimation for the time τ (λ,Nt) at which the anomalous
behavior crosses over to ordinary Brownian motion. Since the
weak noise approximation is not applicable in the whole (λ,Nt)
phase diagram, and also in view of the non-monotonic behavior
of the kurtosis, further studies approaching the determination of
τ are welcome.

In parallel with the analytical results, we proposed a
gedankenexperiment in which the anomalous behavior could be
detected. As a further perspective, we may notice that if we shift
the focus on the diffusion of a tagged monomer (in place of the
center of mass of the polymer), in the early stage of the process
a subdiffusive behavior coupled to non-Gaussianity is expected
to be observed, with a crossover to a Brownian regime at the
Rouse time [36]. This analysis is intended to be the subject of
future work.

In conclusion, we believe that this work provides a valuable
analytical backdrop to Brownian yet non-Gaussian diffusion, a
fascinating phenomenon reported to occur in many physical
systems. To fully understand this anomalous behavior, it is
essential to ground it on a microscopic spring. This is the case
for the presented model, but we are confident than others more
will come along these lines.
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