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Animal territoriality is a widespread phenomena in many vertebrate species. In mammals

it is often associated with territorial marking with which individuals make their presence

conspicuous to others by leaving trace of their passage, often in the form of deposited

scent. A simple interaction mechanism consisting of retreating upon the encounter

of a foreign scent is sufficient to observe the emergence of territorial patterns at the

population level. With the introduction of the so-called territorial random walk model

this local avoidance mechanism coupled with a simple diffusive movement of the

individuals has been shown to generate long-lasting patterns of segregation at much

larger spatial scales. To shed further light on the micro-to-macro connection of this

collective movement model we study how the movement statistics of the individuals

affect the formation of the segregated scented territories. We represent individual animals

as correlated random walkers and we analyse the spatial ordering of the population as

a function of the length of time a scent mark remains active after deposition and as a

function of the degree of correlation of the movement steps. For low and intermediate

correlation strength we find that territories undergo a liquid-hexatic-solid transition as

active scent time is increased. Increased spatial order also appears by increasing

the correlation strength but only if well away from the ballistic limit. We ascribe this

non-monotonic dependence to the coverage efficiency of the individual walkers mainly

controlled by the correlation and the mobility of the territories mainly controlled by the

active scent time.

Keywords: territorial random walk, correlated random walk, KTHNY melting, topological defects, animal

territoriality

1. INTRODUCTION AND BACKGROUND

In biology it is rather common to find a system in which the underlying movement of its
constituent parts is not diffusive, often owed to the out-of-equilibrium nature of the processes
involved. Examples of anomalous transport can be found at all scales: from the active and passive
microrheology of various nanoparticles inside the molecularly crowded environment of cells [1]
and the two stage diffusion of macromolecules on cell membranes [2, 3] to the superdiffusive
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displacement of epithelial cells [4], and all the way to
the anomalous dynamics of whole organism while foraging
randomly [5] or during memory biased search [6, 7].

Among the cited biological examples characterized by
anomalous diffusion we have focused for this special issue on
the movement of whole organisms and on the collective effects
of many such organisms spatially excluding one another. Our
interest here lies in understanding how the local statistical
features of the movement of individual animals affect the
emergence of the collective patterns at the population level.
We choose a movement statistics that becomes random at
long time scales, but retains a degree of persistence at shorter
time scales, the so-called correlated random walker [8], a
paradigmatic movement model in animal ecology [9, 10]. Among
the forms of spatial exclusion or avoidance we are particularly
interested in a very common behavior of vertebrate populations
in 2D: the subdivision of the terrain into spatially segregated
regions [11]. When these regions are of exclusive ownership
of a single individual or a single family unit they are called
territories [12, 13].

The purposes of territoriality change from species to species or
even throughout the year [14]. These include, roosting, mating,
nesting, and harboring resources. Accordingly the interaction
mechanisms that animals rely upon to form and maintain these
territories are quite rich and depend on the type of signals
that animals exchange. Broadly speaking one may distinguish
them between direct and indirect, that is whether the time
scale for the signals to travel from the emitter to the receiver
is short or long relative to the time scale for the emitter
to move. Examples of direct interactions, often employed by
birds [15], is the use of visual displays and audio calls. In
this case the signal of the emitter is detected by the receiver
nearly instantaneously. Examples of indirect interaction, used
by a large number of mammals [16], is the use of olfactory
cues. In this case the scent that an animal deposits is nearly
static. For the period over which the scent remains detectable,
which could be a long time after deposition, the environment
retains the memory of the passage of the emitter. Any individual
that comes in close proximity to the deposited scent becomes a
receiver and acquires information about the (past) presence of
the emitter.

In this study we analyse a specific case of olfactory-based
territorial formation, often called conspecific avoidance, whereby
animals mark the terrain wherever they go, and other individuals
passing by respond to these olfactory cues by retreating from the
region or area where foreign scent was encountered. This indirect
animal interaction, that occurs through the modification of the
environment, is called stigmergy [17]. It is a common form of
interaction in eusocial insects [18], but it has been shown to occur
also in territorial animals [19].

The mathematical study of scent-marked territorial patterns
has a relatively long history dating back to the early ’90s
when the first reaction-diffusion model representing a pair of
animals avoiding each other scent was formulated [20]. This
model coupled the occupation probability of two Brownian
walkers tethered to their respective den or burrow and their
scent profiles. It was later generalized to include the effects of

landscape heterogeneity and animal movement responses and
applied to movement data on wolves and coyotes [21].

In subsequent modeling studies on the formation of scented
territories a different approach was followed [22]. That approach
becomes necessary when one aims to account for the sharp spatial
dependence of the interaction. In these cases the field nature of
the interaction potentials (or forces), which tacitly assumes that
they are defined at every point in space, may not be adequate.
It is more convenient to account for the interaction dynamics
through localized walls or spatial partitions representing the
deposited scent [23]. By doing so one remains faithful to the
biology of scent-marking species for which individuals react to
the encounter of foreign scent only if it is informative, that is only
if the deposition occurred before a certain time in the past [see
e.g., Alberts [24]].

As this approach requires tracking the movement and
interaction of the entire population to determine the time-
dependent position of each animal and the age of the scent
deposited, it was formulated as an individual based model [22].
This increased complexity, however, allows to consider animals
that do not have a den or a burrow as well as to study the
emergence of territorial patterns as a collective phenomena rather
than a two-body problem between neighboring individuals.

The collective movement model of territory formation,
termed the territorial random walk (TRW) model [23], lends
itself naturally to questions on the nature of the emerging
patterns, e.g., if macroscopic order and/or disorder phases appear
and how the microscopy of the movement and interaction rules
influence the emergence of themacroscopic patterns. Along these
lines a very recent investigation on the presence of order-disorder
phase transitions in the TRW model as a function of the scent
decay time and the population density has been conducted [25].
In that study it has been shown that the emerging territorial
patterns display a solid to liquid melting scenario analogous to
the one supported by the Kosterlitz-Thouless-Halperin-Nelson-
Young (KTHNY) theory of melting [26–28], with the appearance
of an intermediate partially ordered phase, called hexatic, due
to the importance of geometrical arrangements of the first
six neighbors.

Here we extend that analysis by considering a more realistic
movement model for the individual animals. We modify the
movement statistics of the animal by representing them as
correlated random walkers and we ask how the “microscopic”
movement of the individuals alters the collective dynamics of the
system and the order-disorder scenario.

The paper is organized as follows. In section 2 we introduce
themodel andwe present details of the stochastic simulations and
the thermalization of the system. The analysis has two parts to it.
At the “microscopic” level, that is at the level of the individuals,
we study the influence of the persistence of the walk on the
variance of the occupation probability, that is the mean square
displacement (MSD). This is presented in section 3 together with
an analysis of the spatial coverage of each walker in its own
territory. As we scale up to the level of the territories, we analyse
the effects of the animal movement statistics on the appearance
of ordered phases in the system. This is dealt with in section 4.
And finally section 5 presents concluding remarks.
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2. THE CORRELATED TERRITORIAL
RANDOM WALKER MODEL

The correlated territorial random walker (cTRW) model, an
extension of the TRW model, is a lattice-based collective
movement model where individuals move with some degree
of persistence, that is the movement direction at each time
step depends on the previous step direction. The model can be
run in any dimension and in discrete or continuous time. For
computational efficiency we have run it in discrete time and
we have only analyzed the 2D case. To study the structure of
the emerging territories it is important not to introduce spatial
frustration effects and we have thus used a triangular lattice with
periodic boundary conditions.

In the absence of interactions a walker’s steps are correlated.
To model the persistent random walk on a triangular lattice
we start from a continuous turning angle variable θ ∈
(−π ,π], and we create six bins of width π

3 for each of
the turns a walker can make. The angle θ is then drawn
randomly from a wrapped Cauchy distribution, C(θ) =
(

1− ρ2
) [

2π
(

1+ ρ2 − 2ρ cos(θ)
)]−1

where −π ≤ θ < π

and ρ is the persistence parameter, or the mean cosine of the
distribution. It indicates the tendency of a walker to continue
to move in the same direction from where it came from at the
previous step. In the limit ρ → 0, the distribution reduces to
C(θ) = 1

2π i.e., the turning angles are uniformly distributed and
the movement of the walker becomes random. The opposite limit
corresponds to the ballistic case C(θ) → δ(θ), where δ(θ) is the
Dirac delta function as ρ → 1.

Avoidance between individuals occurs as follows. As animals
deposit marks wherever they go, at each time step any individual
may encounter one of its own marks or may step on a lattice site
with one or multiple foreign marks. When an animal encounters
its own marks, no interaction occurs. On the other hand upon
encountering a foreign mark within a time period shorter or
equal to the so called active scent time TA from when it was
deposited, an interaction occurs. In order to avoid intruding
further into neighboring territories. An interaction consists of
one of three types of retreat at the following time step. These
are in order of preference, first toward a neighboring site with no
scent marks, second toward a neighboring site with the animal’s
own scent and lastly in the rare case where neither of the previous
options are available the animal moves randomly to one of the
six neighboring sites. At the subsequent step the animal reorients
itself with a new direction chosen at random between the six
potential choices.

As a result of the above interactions, foreign scents serve
as spatial barriers effectively making individuals avoid entering
further into others’ territories. At any given time t a territory
is represented by all the sites that contain an active scent
of a specific animal. Alternatively it represents the sites an
individual has visited within the interval (t − TA, t). Except at
the boundaries, where a given territory may overlap with one or
more neighboring ones, the avoidance of region recently visited
by other individuals create spatially segregated areas of exclusive
ownership for each animal.

The spatio-temporal dynamics of the territories can be fast
and slow depending on the choice of parameters, which are,
respectively, the inverse of the population density or specific
volume ν = L2/N where L2 is the domain size, the active
scent time TA and the persistence parameter ρ. With small
TA and large ν one observes highly mobile and morphing
territories as exclusion interactions are not very frequent. The
opposite happens with large TA and small ν as interactions occur
more frequently.

The dependence on the initial condition of the system
is dealt with by running simulations and waiting for the
system to thermalize before making any spatial and/or temporal
measurement on appropriate quantities of the system. The
thermalization is performed as follows. Two different initial
conditions are used. The first is initialized with the scent profile
tessellating the available space, i.e., the territory of each walker
is a perfect hexagon with all boundary lattice sites overlapping
with the neighboring territories. The second is initialized with
randomly distributed walkers with no scent profile. The two
are left to run until the standard deviation of the territory size
across the entire population converges to the same value in
the two cases. When that happens the system is deemed to
be thermalized.

Rather than exploring the dynamics for different population
density we have selected an intermediate value of ν, namely ν =
48 for multiple reasons. On one hand the rich (slow and fast)
dynamics can be attained within a limited range of TA values
so that disordered and ordered phases of the system could be
observed and studied as a function of ρ. For smaller population
densities, as interactions become more infrequent, it becomes
harder to observe spatial ordering and we have thus not explored
the regime with larger ν. On the other hand smaller values of ν
makes the computation very expensive and makes it harder to
reach thermalization except for very small values of TA.

The specific range and resolution of the parameter space ρ −
TA with ν = 48 has been as follows. The active scent time TA has
been chosen in the range between 89 and 1,424 with a resolution
of 89, except for specific cases detailed in the figure captions.
For the correlation parameter ρ we have used the values 0, 0.15,
0.35, 0.55, 0.75, and 0.95. To ensure that the territories, with
the appropriate choice of TA, can tessellate with equal hexagons
the 2D domain, the linear domain size (with periodic boundary
conditions) is set to L = 1200 with N = 3 × 104, which
corresponds to ν = 48, although we have also used smaller
domains e.g., in section 3.

3. PARTIAL “CAGING” AND SPATIAL
COVERAGE OF THE INDIVIDUAL
WALKERS

The spatial exclusion of the scented territories is a complex
collective phenomenon whereby an animal remains confined in
certain region of space depending on when and where foreign
marks as well as its own marks have been deposited. But this
confinement is only partial since a mark has a lifetime and
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FIGURE 1 | MSD 1(t) of a walker in a system with ν = 48 and L = 120, where each curve is a snapshot average. The active scent times (TA) for panels (A–C) are

712, 1,068, and 1,424, respectively. At short timescale the walkers tend to exhibit superdiffusion indicated by the 1(t) ∝ tα relationship where α > 1. For intermediate

timescales the dynamics of the walkers are governed by the mobility of their territories. High values of TA yield slowly moving territories and increase in caging caused

by neighbors. This caging saturation is highly sensitive to the correlation of the walkers (see Figure A2) while the time spent at the caging saturation before increasing

again is related to the coverage efficiency of the walker.

disappears unless an animal remarks that same location within
TA steps. Animals may thus be trapped for some time before
escaping. It is possible to observe such partial “caging” by plotting
the MSD as a function of time. We do so in Figure 1 where
we draw the normalized MSD for TA = 712, 1,068, and 1,424
for various values of ρ by averaging over all individuals in one
simulation (after the system has thermalized). The MSD plots for
TA = 1 and TA = 89 are additionally shown in Figure A1. We
term these snapshot averages to distinguish them from ensemble
averages when multiple copies of the system are run.

In moving from panel (a) to (b) and (c) in the figure, that is
by increasing TA, one clearly observes a reduced growth of the
curves at intermediate times for each value of ρ. Since a long-
time saturating MSD is expected whenever a walker roams inside
a finite domain [29], the flattening of the MSD at intermediate
times is a manifestation of increased caging from the neighbors.
As marks remain active for longer they make the territories
progressively less mobile and the MSD curves start increasing
again at later times.

A comparison of different values of ρ within the same panel
shows that this caging effect becomes stronger—curves remain
flat for longer time—for larger ρ except when one approaches
the ballistic regime. This is clearly visible in panel (c) when
TA = 1, 424 where this non-monotonicity as a function of
ρ can be seen more clearly. There also appears some non-
monotonic dependence of the intermediate-time saturation value
of the MSD, but this non-monotonicity is only apparent. As
we have verified and shown in Figure A2 in the appendix, the
intermediate saturation of the MSD is highly erratic as it is very
sensitive to the actual shape of the occupation probability for each
animal. We consider the time it takes the MSD curve to start
increasing again the more significant feature, and to understand
the non-monotonicity as a function of ρ we look in detail at the
walker spatial coverage.

Considering initially a fixed finite domain, for a walk to
improve spatial coverage it needs to reduce spatial oversampling,
which clearly happens by increasing ρ. However, in a confined
domain, when the degree of correlation is too large, the walker

would retrace back its steps thus increasing again the sampling of
lattice sites already visited. It is well known in fact that the mean
coverage time of an independent walker in a finite domain can be
minimized for intermediate values of walk persistence [30, 31].

To test whether this understanding suffices to explain the
non-monotonic ρ dependence of the caging effect, we study
the walkers’ spatial coverage in the cTRW model. As territories
are mobile and change shape, we cannot compare values of
coverage time for each walker. However, it is possible to obtain
information about the efficiency of spatial coverage by plotting
the average number of sites an individual covers in a time TA

as a function of ρ. The outcome is shown in Figure 2 where we
have plotted Cp, the fraction of sites covered in a time TA, for
different values of ρ and TA. From the figure it is evident that
the partial coverage of the terrain is maximal for intermediate
values of ρ and for TA sufficiently large. As TA affects the
size of the confining domain, the correlation parameter that
maximizes coverage depends on how long marks remain on
the terrain.

4. SPATIAL ORDERING OF THE EMERGING
TERRITORIES

The interaction dynamics of the individual walkers have a
long lasting effects on the spatial structure that emerges in the
population, as was shown in the case of the simpler TRW model
[25]. The spatial ordering of the emerging territories is dictated
by the “caging” effect whose size corresponds to the size of the
territory. To analyse the spatial ordering as a function of ρ and
TA we look at the system with a coarser temporal and spatial
resolution because no order is present at distances smaller than
the size of the territory. We neglect the dynamics of the walkers
and look at the territory centroids over a TA time resolution.
As territorial centroids are calculated only by considering the
mean position of all lattice sites with active scent every TA

steps, we obtain a coarse-grained (continuous-space) mesoscopic
time-dependent description of the cTRWmodel.
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FIGURE 2 | The fraction of the territory defined at time t covered within TA
time steps by walkers as a function of the correlation parameter ρ, and the

active scent time TA. For each pair of ρ and TA a snapshot average is taken

on a thermalized system with L = 120 and ν = 48. For very low TA the

territories are highly volatile, i.e., within a TA time window the territories are no

longer the ones defined at time t which results in low Cp independent of ρ. For

higher values of TA the territories are less mobile and we see the maximization

of territory coverage for an intermediate values of ρ.

4.1. The Pair Correlation Function
For a coarse measure of spatial ordering, we plot in Figure 3 the
pair correlation function [32], g(r) = ν〈∑i6=0 δ(|Er − Eri|)〉, where
δ(z) is the Dirac delta function, as a function of the centroid
distance r = |Er| for different ρ and TA values. In particle systems
the pair correlation function gives the likelihood of finding a
neighboring particle as a function of distance relative to the ideal
gas case. In an ideal gas, g(r) equals 1 for any r as individual
particles do not interact with each other and are equally likely
to be anywhere in space. A value of zero indicates instead
the impossibility of having another particle at that distance in
space, e.g., for hard-core interaction of particles of radius σ , g(r)
remains zero for all distances up to r = 2σ . Except for extremely
small values of TA, the emerging territories in our model have
an effective hard core interaction as can be observed for any of
the curves in Figure 3. Those curves remain close to zero up to
2σ where σ = a

√
ν/2, with a the lattice spacing, represents the

distance between two evenly spaced centroids when hexagonal
territories tessellate the entire domain (see explicit calculation for
σ in Heiblum Robles and Giuggioli [25]). A rise from zero to
the value one with no evident oscillations would be indicative
of a gas with purely hard-core particles. On the other hand a
rise beyond the value one with subsequent damped oscillations
toward one represents the arrangement of other particles into
“shells” of neighbors with the decay pointing to the radial
distance over which such spatial ordering persists. Two phases
may have qualitatively these characteristics: a liquid but also a
hexatic phase. While it is not possible to distinguish a liquid

from a hexatic phase from a pair correlation plot, it is possible
to determine the appearance of a solid phase because the shells of
neighbors are not arranged anymore radially. As a solid possesses
hexagonally arranged particles, the radial symmetry is not present
anymore and the smoothness of peaks and troughs in the pair
correlation function is lost.

A feature that can be evinced by looking at Figure 3 is that
the solid phase for sufficiently large TA appears for intermediate
values of persistence ρ. This is particularly evident in panel (b)
where the system has radial symmetry at ρ = 0, but then loses it
as it approaches ρ = 0.3, and then regains it beyond ρ = 0.55. In
panel (c) although the system is already in a solid phase at ρ = 0,
the shape of the various g(r) plots also points to a progressive loss,
even though only slightly, of radial symmetry as ρ is increased
to 0.55, whereas radial symmetry is present when ρ = 0.75.
This interesting dependence of the appearance of a solid phase
depending both on the value of ρ and TA matches qualitatively
the region in parameter space where the coverage efficiency of an
individual is maximized, displayed earlier in Figure 2.

The partial coverage analysis in conjunction with the pair
correlation plots indicate that an animal, for a given size of its
own territory, that is for a given value of the active scent time
TA, may select the most appropriate correlation statistics to be
able to remark the majority of the scented terrain in TA steps.
When that occurs, it implies that the neighbors are kept outside
of the terrain that the animal defends. This in turns makes the
territories less mobile, reducing the chance of having territory
shape far from hexagonal and with large variability in sizes, and
the entire population possess a bigger spatial order.

While Figures 2, 3 brings good evidence on how the
microscopy of the movement statistics affect the emerging spatial
order of the territories for small and intermediate ρ values, it does
not seem a viable explanation for large values of ρ. From Figure 2

one would expect in fact a very high order also for ρ = 0.95 and
high TA, but that does not appear to be the case in Figure 3C.
However, the system may still possess a great degree of order if
it were in an hexatic phase. To determine if that is the case, we
first try to use appropriate order parameters that should help us
to map out more precisely when the system is in a solid phase as
well as to distinguish between a liquid and a hexatic phase as a
function of ρ and TA.

4.2. Order Parameters
In Heiblum Robles and Giuggioli [25] some of the present
authors have brought support for a continuous solid-hexatic-
liquid transition akin to the KTHNY theory of melting as a
function of TA in the TRWmodel. Starting from a very high TA in
a perfect crystal configuration, by decreasing TA below a certain
value makes the system loose translational order even though
it retains orientational order and no phase coexistence has
been observed, the transition being continuous. With a further
decrease of TA the system looses also the orientational order to
become liquid. We have extended these results by constructing
the orientational and translational order parameters as a function
both of ρ and TA.

We use the so-called local bond-orientational parameter [32]

ψ6(ℓ) = 1
Nℓ

∑Nℓ
j exp(i 6θℓ,j), where θℓ,j is the angle that particle ℓ,
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FIGURE 3 | The pair correlation function g(r) for a system with L = 1, 200, ν = 48. Moving from panel (A–C), the TA values are 712, 1,068, and 1,424, respectively.

Within each panel, the g(r) function has been shifted upwards from zero for visualization purposes. For the case ρ = 0 we have used the results from a previous study

and as such the TA values are not precisely the same as the one used for the cases when ρ 6= 0; they are 707, 1,070, and 1,409 for panels (A–C), respectively. These

differences do not take away from the qualitative differences presented here.

FIGURE 4 | Change in the local bond orientational parameter ψ6(ℓ) for each territory centroid located at Erℓ as a function of ρ and TA. The color of the centroid is

determined by arg(ψ6(ℓ)), while the size of each centroid is proportional to the size of its territory. The system parameters are L = 1, 200 and ν = 48. Each subplot

represents subdomain with width Ls = 50, a small fraction of the L2 domain, taken at a random location and at some random time after thermalization.

located at Erℓ, makes with the j-th neighbor relative to a reference
axis, and the j-summation is over the Nℓ neighbors, the latter
obtained through the Voronoi construction [33]. In a perfect
crystal, Nℓ = 6 and θℓ,j = π

6 , hence ψ6(ℓ) = 1. In Figure 4

we visualize qualitatively the changes in orientational order of
the system by plotting the argument of the orientational order
parameter, arg(ψ6), for each territory centroid. The orientational
ordering of the system, that is when ψ6 → 1, corresponds

to when arg(ψ6) → 0. From the various subplots one
clearly notices that for a given ρ, if one increases TA, the
hexatic phase does not always appear. It is also evident that
for TA < 800 the system cannot reach the hexatic phase
independently of the correlation parameter. On the other hand
for intermediate values of TA, e.g., for a given TA in the range
800–1,100, the system is in a liquid state but then becomes
eventually hexatic with sufficiently large ρ, and then liquid again
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FIGURE 5 | Change in the local translational order parameter ψt (ℓ) for each territory centroid located at Erℓ as a function of ρ and TA for the system parameters utilized

in Figure 4. The color of the centroid is determined by arg(ψt (ℓ)), while the size of each centroid is proportional to the size of its territory. Each subplot represents

subdomain with width Ls = 50, a small fraction of the L2 domain, taken at a random location and at some random time after thermalization.

with further increase in ρ. These findings support the pair
correlation analysis depicted in Figure 3 and, in addition, they
might also give a better idea of whether the system is in an
hexatic or a liquid phase, which was not possible by looking
only at g(r).

Within the range of where the bond-orientational parameter
appears to indicate a hexatic phase, the system may actually be
in a solid phase. This can be determined by analyzing the local
translational order parameter ψt(ℓ) = exp(i EG ·1Erℓ), where EG is
one of the two reciprocal vectors of the simple hexagonal lattice
and 1Erℓ is the displacement of the ℓ-th territorial centroid from
its ideal lattice site if it were a perfect crystal (ψt(ℓ) = 1). The
result of such an analysis is shown in Figure 5 where we plot the
argument of the local translational order parameter arg(ψt(Erℓ))
for each territory. The subplots point to the appearance of a
solid phase for intermediate values of ρ and sufficiently large
values of TA, which is when the system is also hexatic when one
compares (Figure 4).

Given the limited resolution we have employed for the
parameters of the system, ρ in particular, it is hard to identify
the precise region in parameter space where phase transitions
occur. However, by comparing Figures 4, 5 a small hexatic region
may exist in a narrow region of parameter space, potentially
for 1, 100 . TA . 1, 300 when ρ = 0.15, for 900 .

TA . 1, 200 when ρ = 0.35, and for 900 . TA . 1, 200
when ρ = 0.55. This hexatic region should thus be limited on
the left by the liquid-hexatic transition and on the right by an
hexatic-solid transition.

To try to confirm these qualitative findings we
construct the global bond-orientational order parameter
96 =

∣

∣(1/N)
∑

ℓ ψ6(ℓ)
∣

∣ and the global translational order
parameter 9t =

∣

∣(1/N)
∑

ℓ ψt(ℓ)
∣

∣ and calculate their

susceptibility, χ6 = N〈(96 − 〈96〉)2〉 and χt = N〈(9t − 〈9t〉)2〉
[32, 34], respectively, as a function of TA. In Figure 6 we show
the outcome of that analysis, which does not, however, help us
to identify precisely the transition points. We thus turn to the
analysis of topological defects to help us pinpoint the hexatic
region in phase space.

4.3. Topological Defect Analysis
Two types of topological defects accompany the KTHNY
melting scenario, namely dislocations and disclinations.
Dislocations are translational defects, which destroy long range
translational order when are isolated or free. On the other hand,
disclinations are orientational defects, which destroy the long
range orientational order when they are free. In a perfect 2D
hexagonal crystal all atoms have six neighbors. Disclination cores
have only 7 or more neighbors whereas antidisclination cores
have 5 or less neighbors [35, 36]. For a 2D crystal, an isolated
tightly bound 5–7 fold disclination pair is a dislocation [32].
In an imperfect solid, dislocation defects are always found in
pairs because they do not destroy long range order as shown in
Figure C1 for our cTRWmodel.

According to the KTHNY theory of defect inducedmelting, by
increasing temperature the system first undergoes a continuous
transition from a solid where only pairs of dislocations are
possible, to a hexatic phase where the pairs of dislocations
“unbind” spawning free dislocations (see in Figure C1 an
example of how a free disclination destroys the orientational
order in the cTRW model). These free dislocations result in
the loss of long range translational order found in crystals.
With further increase in temperature the system then undergoes
another continuous transition from hexatic to liquid where the
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FIGURE 6 | The susceptibilities χ6 and χt of the global order parameters 96, 9t, respectively. A system with parameters L = 1, 200 and ν = 48 was subdivided into

square subdomains of widths Lw. For each of these subdomains the global order parameters and the susceptibilities are computed and then a variance of those

measurements is taken.

dislocations themselves unbind resulting in free disclinations and
the loss of long range orientational order [37, 38].

We analyse these topological defects in our cTRW model by
considering their fraction λ in the system shown in Figure 7.
For each type of defect λ is their number relative to the total
number of centroids. Looking sequentially at panels (a) to (d) in
Figure 7 one can see that as free disclinations drop significantly
there is a sharp increase of dislocations signaling the onset of
the liquid-hexatic transition at around, respectively, TA = 870,
890, 712, and 712. The hexatic phase appears once there are
no free disclinations in the system. The faster decay of the
free dislocations vs. the dislocation pairs that is observed by
increasing TA is indicative of the fact that free dislocations
are binding together to form pairs of dislocations. Once free
dislocations disappear the system has entered the solid phase. By
looking at these values of TA when free disclinations disappear
(hexatic) and free dislocations disappear (solid) we are able to
identify the hexatic region in theTA−ρ parameter space as shown
in Table 1.

Once in the solid phase with further increase of TA the system
approaches progressively the perfect crystalline arrangement by
shedding paired dislocations. For the case ρ = 0.75 there is the
possibility that ordered phases exist but one ought to look at
values of TA beyond those considered here. On the other hand,
when ρ = 0.95 the defects show no sign of decaying. This results
from the breaking down of the centroid coarse-graining analysis,
which is further discussed in the following section.

4.4. Territory Fragmentation
While the previous sections have shed light on the links between
the movement statistics of the walkers and the phases of the
territorial system for ρ ≤ 0.55, we have a less clear picture
of what occurs for large ρ. While stronger correlation implies
that an animal would cross its own territory more quickly, it
does not necessarily mean that the terrain is covered more
efficiently. On the contrary the coverage efficiency is expected
to decrease beyond a certain value of ρ as demonstrated in the
ideal scenario of Figure B1. With neighboring individuals not
covering efficiently their own territories, an animal spending
more time at the boundaries has more chance to carve away
part of the terrain recently occupied by its own neighbors. In
so doing the territorial shapes become less and less convex as ρ
is increased.

With further increase in ρ at any given time an animal
may have its own scented territory separated into multiple
islands, which are sets of contiguous lattice sites that contain
the scent of one walker only. Those islands where a walker is
not present are cut off quickly from its owner and get absorbed
by neighboring territories. While islands get created and decay
away continuously, we expect the rate at which they form to
become larger than the rate at which they dissolve beyond a
certain value of ρ. When that happens the centroid of an animal
territory could easily be located in between multiple islands, in
areas that are also covered by the scent of other individuals, or
even outside its own scented region when the territory shape
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FIGURE 7 | The fraction, λ of each of the defect types considered as a function of TA for thermalized systems with parameters L = 1, 200 and ν = 48. The absence

of free disclinations marks the transition from liquid to hexatic phase, while the absence of free dislocations is indicative of the system having transitioned into the solid

phase from the hexatic phase. The panels (A–F) correspond, respectively, to ρ = 0.00, 0.15, 0.35, 0.55, 0.75, and 0.95. Defects with different number of neighbors

are at least two orders of magnitude smaller than the ones drawn and we have omitted plotting them.

TABLE 1 | Approximate phase regions in TA for each value of ρ extracted from

the appearance/disappearance of topological defects (see Figure 7).

ρ Hexatic region (TA) Solid region (TA)

0.00 1273–1409 >1409

0.15 1157–1335 >1335

0.35 1068–1157 >1157

0.55 979–1157 >1157

Within the hexatic region there are free dislocation defects but no free disclination defects,

whereas in the solid region there are pairs of dislocation defects but no free dislocation

defects.

is highly concave. In these cases the centroid analysis, utilized
in previous sections to identify the phases of the system, is not
appropriate any more and there are no biological meaningful
ways to define a territorial centroid.

We can, however, quantify the degree of fragmentation as
a function of the system parameters by considering the ratio
κ = N/I where N is the number animals in the system and
I is the total number of islands. This fragmentation index is
plotted in Figure 8. For low TA values, traces of past presence
of an individual get lost quickly, and thus it is not so frequent
for an animal to encounter foreign scent. While such encounters
increase as TA gets larger, potentially reducing I, they are rare
and are thus relatively independent of how straight the animal
movement trajectories are. Beyond a certain value of TA foreign
scent encounter events become very frequent and the rate of
increase is affected by the shape of the territories. For ρ .

0.75 the encounters occur mainly at boundary sites and thus
further increase in TA does not change the number of islands
in the system, which remains at κ = 1 when the number of

FIGURE 8 | The fragmentation index κ as a function of the active scent time

TA for thermalized systems with parameters L = 1, 200 and ν = 48. With

ρ . 0.75, at low TA values the territories are concave and as a result are more

prone to fragmentation resulting in low κ. As the TA is increased, the territories

become more convex becoming more resistant to fragmentation resulting in

κ = 1 for TA & 800. On the other hand, for ρ & 0.75 fragmentation persists in

the system regardless of TA.

islands corresponds to the number of territories. This is not
the case for ρ > 0.75 where the number of islands becomes
larger than N.

The appearance of fragmented territories for ρ & 0.75 as
shown in Figure 8 helps us interpret Figures 4, 5 when ρ ≥ 0.5,
which indicated the presence of a fluid for any TA. In light of
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Figure 8 it is clear that we cannot conclude that for larger TA

no ordered phase appears because the territory centroids are
not an appropriate coarse grained representation of the animal
scented territories. Although we believe that an analysis that
takes into account the actual shape of the territories might
help us develop other ways to identify order in fragmented
terrain, we have decided not to perform such investigation
here given the heavy computational cost that such a study
would entail.

5. CONCLUSIONS

Territoriality is a common behavior in natural populations as
it allows individual animals or family units to defend resources
being food, shelter, or mates.We have studied here the case where
the mechanisms through which animals defend their resources
is via leaving trace of their passage on the terrain. For our
theoretical analysis we have used a collective movement model
recently employed to study red foxmovement data [39] called the
territorial random walk model. We have extended its prediction
by determining how the individual movement statistics affect
territory formation at the population level. And we have focused
in particular on relaxing the diffusive assumption allowing
the walkers to have a variable degree of correlation in their
movement steps.

By studying the main parameters of the systems, namely the
degree of correlation of the walk ρ and the active scent time
TA, we have brought evidence pointing to the existence of the
KTHNY melting scenario with liquid, hexatic and solid phases.
We have identified the coverage efficiency of an individual
territory, which is controlled by ρ and TA, as the micro level
behavior that explains why different phases of territories are
present at the macro level.

As the movement of the individuals becomes more correlated
i.e., by increasing ρ from 0, they increase territory coverage.
Individuals are able to re-scent more quickly and more readily
defend their territory from neighbors. Territories are less mobile
and the whole system becomes more ordered.

Beyond an intermediate degree of correlation, that is for
high values of ρ, the walkers are not only inefficient at
covering their own territory, but also spend more time at the
borders. Their increased presence at the borders gives them
more opportunities to take over neighboring territories. This
results in large variation in the shape and size of territories
and ultimately their fragmentation. In this scenario, the coarse
grained approximation is no longer suitable to determine the
spatial ordering.

Moreover, we have demonstrated how it may be useful to look
at the presence of different types of topological defects to pinpoint
phase transitions in the correlated territorial randomwalkmodel.
As thermodynamic limits represent a big abstraction from the
realm of biological systems we believe that this latter part of our
analysis will be instrumental to determine empirically the spatial
order of an actual population of territorial animals. With the
recent development in animal tracking [40] it is in fact realistic to
have in the near future simultaneous highly resolved movement
data of neighboring territorial individuals from which defect
densities and movement correlation statistics can be extracted.

Applications of this study extend beyond an ecological
context. For example, in multi-robot online area coverage [31]
tasks such as surveillance, search and harvesting [41–44] involve
coordinating a large number of robots. In such cases the
natural approach is to use a decentralized controller [45]. The
observations and insights of this study may help refine stigmergic
control systems that have been successfully demonstrated in
previous studies [46, 47]. As an avenue for future research,
it might be interesting to study the difference of the cTRW
model on scale-free and small-world networks and compare
it the bioinspired machine learning models used for semi-
supervised learning [48, 49].

DATA AVAILABILITY

The datasets generated for this study are available on request
to the corresponding author. Data used can be found at
https://www.dropbox.com/sh/06ts5rwb922yqwk/AADeY66Q_
7fqn5axMKcCK-Tra?dl=0.

AUTHOR CONTRIBUTIONS

LG designed the study and wrote the paper. SS and AH created
the computational code. SS analyzed the data.

FUNDING

LG and SS acknowledge funding from, respectively, the
Engineering and Physical Research Council Grant nos.
EP/I013717/1 and S108151-111.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fphy.
2019.00129/full#supplementary-material

REFERENCES

1. Goychuk I, Kharchenko VO, Metzler R. How molecular motors work
in the crowded environment of living cells: coexistence and efficiency
of normal and anomalous transport. PLoS ONE. (2014) 9:e91700.
doi: 10.1371/journal.pone.0091700

2. Kusumi A, Nakada C, Ritchie K, Murase K, Suzuki K, Murakoshi
H, et al. Paradigm shift of the plasma membrane concept from the

two-dimensional continuum fluid to the partitioned fluid: high-speed
single-molecule tracking of membrane molecules. Annu Rev Biophys

Biomol Struct. (2005) 34:351–78. doi: 10.1146/annurev.biophys.34.040204.
144637

3. Kenkre VM, Giuggioli L, Kalay Z. Molecular motion in cell
membranes: analytic study of fence-hindered random walks.
Phys Rev E. (2008) 77:051907. doi: 10.1103/PhysRevE.77.
051907

Frontiers in Physics | www.frontiersin.org 10 September 2019 | Volume 7 | Article 129

https://www.dropbox.com/sh/06ts5rwb922yqwk/AADeY66Q_7fqn5axMKcCK-Tra?dl=0
https://www.dropbox.com/sh/06ts5rwb922yqwk/AADeY66Q_7fqn5axMKcCK-Tra?dl=0
https://www.frontiersin.org/articles/10.3389/fphy.2019.00129/full#supplementary-material
https://doi.org/10.1371/journal.pone.0091700
https://doi.org/10.1146/annurev.biophys.34.040204.144637
https://doi.org/10.1103/PhysRevE.77.051907
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Sarvaharman et al. Spatial Ordering and cTRW Model

4. Dieterich P, Klages R, Preuss R, Schwab A. Anomalous dynamics
of cell migration. Proc Natl Acad Sci USA. (2008) 105:459–63.
doi: 10.1073/pnas.0707603105

5. Viswanathan GM, da Luz MGE, Raposo EP, Stanley HE. The Physics of

Foraging: An Introduction to Random Searches and Biological Encounters.
Carmbridge: Cambridge Univ. Press (2011).

6. Boyer D, Crofoot MC, Walsh PD. Non-random walks in monkeys and
humans. J Roy Soc Interface. (2011) 9:842–7. doi: 10.1098/rsif.2011.0582

7. Falcón-Cortés A, Boyer D, Giuggioli L, Majumdar SN. Localization transition
induced by learning in random searches. Phys Rev Lett. (2017) 119:140603.
doi: 10.1103/PhysRevLett.119.140603

8. Goldstein S. On diffusion by discontinuous movements, and on the telegraph
equation. Q J Mech Appl Math. (1951) 4:129–56. doi: 10.1093/qjmam/4.2.129

9. Codling EA, Planck MJ, Benhamou S. Random walk models in biology. J Roy
Soc Interface. (2008) 95:813–34. doi: 10.1098/rsif.2008.0014

10. Benhamou S. Of scales and stationarity in animalmovements. Ecol Lett. (2014)
17:261–72. doi: 10.1111/ele.12225

11. Brown JL, Orians GH. Spacing patterns in mobile animals. Ann Rev Ecol Syst.
(1970) 1:239–62. doi: 10.1146/annurev.es.01.110170.001323

12. Burt WH. Territoriality and home range concepts as applied to mammals. J
Mammal. (1943) 24:346–52.

13. Maher CA, Lott DF. Definitions of territoriality used in the study of variation
in vertebrate spacing systems. Anim Behav. (1995) 49:1581–97.

14. Adams ES. Approaches to the study of territory size and shape. Ann Rev Ecol

Syst. (2001) 32:277–303. doi: 10.1146/annurev.ecolsys.32.081501.114034
15. Davies NB, Houston AI. Territory economics. In: Krebs JR, Davies NB,

editors. Behavioural Ecology: An Evolutionary Approach, 2nd ed. Oxford:
Blackwell Sci. (1984). p. 148–69.

16. Gosling LM, Roberts SC. Scent-marking by male mammals: cheat-proof
signals to competitors and mates. Adv Stud Behav. (2001) 30:169–217.
doi: 10.1016/S0065-3454(01)80007-3

17. Grassé PP. La reconstruction du nid et les coordinations interindividuelles
chez Bellicositermes natalensis et Cubitermes sp. La théorie de la stigmergie:
essai dÕinterprétation du comportement des termites constructeurs. Insec
Soc. (1959) 6:41–83.

18. Theraulaz G, Bonabeau E. A brief history of stigmergy. Artificial Life. (1999)
5:97–116.

19. Giuggioli L, Potts JR, Rubenstein DI, Levin SA. Stigmergy, collective actions,
and animal social spacing. Proc Natl Acad Sci USA. (2013) 110:16904–9.
doi: 10.1073/pnas.1307071110

20. Lewis MA, Murray JD. Modelling territoriality and wolf-deer interactions.
Ecology. (1993) 366:738–40.

21. Moorcroft PR, Lewis MA. Mechanistic Home Range Analysis. Princeton, NJ:
Princeton University Press (2006).

22. Giuggioli L, Potts JR, Harris S. Animal interactions and the
emergence of territoriality. PLoS Comput Biol. (2011) 7:e1002008.
doi: 10.1371/journal.pcbi.1002008

23. Giuggioli L, Kenkre VM. Consequences of animal interactions on their
dynamics: emergence of home ranges and territoriality.Mov Ecol. (2014) 2:20.
doi: 10.1186/s40462-014-0020-7

24. Alberts AC. Constraints on the design of chemical communication systems in
terrestrial vertebrates. Am Nat. (1992) 139:S62–89.

25. Heiblum Robles A, Giuggioli L. Phase transitions in stigmergic territorial
systems. Phys Rev E. (2018) 98:042115. doi: 10.1103/PhysRevE.98.042115

26. Halperin BI, Nelson DR. Theory of two-dimensional melting. Phys Rev Lett.
(1978) 41:121–4.

27. Kosterllitz DJ, Thouless JM. Ordering, metastability and phase transitions in
two-dimensional systems. J Phys C Solid State Phys. (1973) 1181:1181–203.

28. Young AP. Melting and the vector Coulomb gas in two dimensions. Phys Rev
B. (1979) 19:1855–66.

29. Giuggioli L, Abramson G, Kenkre VM, Parmenter RR, Yates TL. Theory
of home range estimation from displacement measurements of animal
populations. J Theor Biol. (2006) 240:126–35. doi: 10.1016/j.jtbi.2005.09.002

30. Chupeau M, Bénichou O, Voituriez R. Cover times of random searches. Nat
Phys. (2015) 11:844. doi: 10.1038/nphys3413

31. Giuggioli L, Arye I, Heiblum Robles A, Kaminka GA. From ants to birds:
a novel bio-inspired approach to online area coverage. In: Groß R, Kolling
A, Berman S, Frazzoli E, Martinoli A, Matsuno F, et al., editors. Distributed
Autonomous Robotic Systems: The 13th International Symposium. Cham:
Springer International Publishing (2018). p. 31–43.

32. Binder K, Kob W. Glassy Materials and Disordered Solids: An Introduction to

Their Statistical Mechanics. Singapore: World scientific (2011).
33. Fraser DP, Zuckermann MJ, Mouritsen OG. Simulation technique for hard-

disk models in two dimensions. Phys Rev A. (1990) 42:3186.
34. Jaster A. Computer simulations of the two-dimensional melting transition

using hard disks. Phys Rev E. (1999) 59:2594.
35. Harris WF. Disclinations. Sci Ame. (1977) 237:130–45.
36. DeWit R. Relation between dislocations and disclinations. J Appl Phys. (1971)

42:3304–8.
37. Qi W, Gantapara AP, Dijkstra M. Two-stage melting induced by dislocations

and grain boundaries in monolayers of hard spheres. Soft Matter. (2014)
10:5449. doi: 10.1039/C4SM00125G

38. Quinn RA, Goree J. Experimental test of two-dimensional melting
through disclination unbinding. Phys Rev E. (2001) 64:051404.
doi: 10.1103/PhysRevE.64.051404

39. Potts JR, Harris S, Giuggioli L. Quantifying behavioral changes in territorial
animals caused by sudden population declines. Am Nat. (2013) 182:E73–82.
doi: 10.1086/671260

40. Nathan RM, Giuggioli L. A milestone for movement ecology research. Move

Ecol. (2013) 1:1. doi: 10.1186/2051-3933-1-1
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