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An approximation method is introduced for simulating the motion of interacting

free-bodies. Concepts from bounded confidence theory (in network science) and

asymptotic analysis (in physics) are combined to create the method. This method can

reduce the computational load required to simulate the dynamics of free-bodies. A

case study is presented and a range of parameter values are explored to analyze the

method’s performance.
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1. INTRODUCTION

Network-science has long been used as a theoretical framework to model many physical
phenomena [1]. See for example: Fatt [2] who proposed a network of tubes as a model for porous
media in 1956; Cusatis et al. [3] who used a network structure to model fracture propagation in
concrete in 2016.

In Dassios et al. [4, 5] use networks to model plastic and elastic deformation. In general lattice
models for deformation and fracture of solid materials were developed firstly for quasi-brittle
materials, such as concretes and rocks [3, 6], and extended recently for elastic-plastic materials,
such as structural steels [5]. The benefit of modeling materials, treated as continua in classical
mechanics, with discrete lattices is that the nucleation, growth and coalescence of discontinuities
(cracks) become natural processes. As these are non-topological changes in the system, the classical
solid mechanics, being a thermodynamic bulk theory, does not work. Additional benefit of the
discrete approach is the possibility for introducing heterogeneities and local anisotropies in the
modeled structure by appropriate spatial and directional variation of lattice properties, as well
as natural and/or essential boundary conditions in what would be considered an interior in the
continuum approach (since each lattice vertex is a boundary).

A lattice, in the language of algebraic topology, is a 1 complex embedded in R
2, or R3, i.e., a

graph with nodes (sites) equipped with Cartesian coordinates and edges (bonds) between some
nodes. The first challenge is to ensure the elastic response of a graph is equivalent to the continuum
response measured experimentally, ie, to derive a link between properties of lattice elements,
e.g., bond stiffness coefficients, and macroscopic properties. Isotropic materials, described by
macroscopic constants, can be represented exactly by 2D graphs based on hexagonal structure,
see Dassios et al. [4], Esqueda et al. [7], Karihaloo et al. [8], and by 3D graphs based on truncated
octahedral structure, see Jivkov and Yates [9] and Zhang et al. [10].

A mathematically rigourous analysis of graphs is based on discrete exterior calculus, see Grady
and Polimeni [11]. However, the analysis on graphs developed in this reference is applicable to
physical problems, where the nodal unknown (a 0 cochain) is a scalar, ie, temperature, pressure,
and concentration, and its gradient is also a scalar over the edges (1 cochain). In mechanical
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problems, the nodal unknown is a vector, e.g., nodal
displacements in linearized kinematics or nodal coordinates in
exact kinematics, which makes the problem critically different.

Mathematics of networks have been also used in the modeling
of gas networks, see Ekhtiari et al. [12] and in the modeling of
electrical power systems, see Dassios et al. [13, 14], Dassios [15],
and Cuffe et al. [16], were a key motivation is to begin to link
power flow analysis with the mature literature, see Chung and
Graham [17], on spectral graph theory.

Finally, the study of the geometric evolution problem of
networks of curves in planar domains is another example and has
always been very important in modeling of many phenomena in
various fields of science, physics and engineering, see Bellettini
and Chermisi [18], Fried and Morton [19], Gurtin and Anand
[20], Xiaofeng and Wei [21], Boutarfa and Dassios [22], and
Dassios [23, 24].

Suppose a system of free-bodies exists in space wherein
each free-body imparts a force on all of the other free-bodies.
This type of system is regularly simulated in many real-
world scenarios including: tracking the motion of extraterrestrial
objects, video-game development, and modeling the motion
of electrically charged particles. In this study, we combine
ideas from bounded confidence theory (BCT)—a concept which
is usually used to model social dynamics—with asymptotic
analysis, to demonstrate a framework for modeling the motion
of interacting free-bodies.

BCT was first introduced by Deffuant et al. [25] in 2000,
and it posits that if two people’s current opinions (where an
opinion exists as a point in some n-dimensional belief-space) are
too far apart when they interact (i.e., if the euclidean distance
between their two opinions differs by more than some pre-
defined threshold), then their opinions—and thus the belief-state
of the overall system—will remain unaffected by this interaction.
In Physics, asymptotic analysis has some parallels to BCT; using
asymptotic analysis, if two particles exert negligible forces on each
other, these forces can be ignored to approximate a system [26].
Asymptotic analysis can be used to vastly reduce the complexity
(and thus computational intensity) required to model physical
phenomena. The asymptotic analysis presented in this study
demonstrates how ideas from a BCT network-science framework
can be applied to model the physical motion of free-bodies.

In section 2 we introduce a continuous-time model for a
system free-bodies interacting with each other under the action
of gravity. We then asymptotically approximate this system
before converting it into a discrete-time model. In section 3 we
present a case-study with arbitrary parameter values which are
used to present, analyze, and discuss the approximated model’s
performance under various conditions. In section 4 we discuss
the model presented in this paper, potential future applications,
and future research opportunities.

2. MODEL

2.1. Introduction
We consider the dynamics of a system of N free-bodies wherein
each free-body imparts some physical force on every other
free-body in accordance to some physical law. As an example,

FIGURE 1 | System with eight free bodies.

we suppose that the forces of interaction are determined by
Newton’s law of universal gravitation, however, we note that
the general modeling framework presented here can be applied
more broadly. This system can be represented by a dynamical
network of n = N free-bodies (which are the network’s nodes)
in some three-dimensional (R3) space, wherein each node is
used to represent a free body, and each free body, i, has a mass,
mi ∈ R

+, position, pi = [pi,1, pi,2, pi,3] ∈ R
3, and velocity,

vi = [vi,1, vi,2, vi,3] ∈ R
3.

In order to model this system, we let

P =











p1
p2
...
pN











∈ R
N×3, M =




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

m1
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


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∈ R
N×1, and

V =


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
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

v1
v2
...
vN











∈ R
N×3,

be sets containing all positions, masses, and velocities of the
free bodies, respectively. Each free-body, i imparts a force of Fi,j
on each other free-body, j, in accordance to Newton’s law of
universal gravitation, and so

Fi,j =

{

G
mimj(pi−pj)

‖pi−pj‖3
, if i 6= j,

0, if i = j

where i, j = [1, 2, . . . ,N], G is the universal gravitational
constant, and ‖·‖ is the L2-norm. Figure 1 provides an illustrative
example of this type of network (without the edges shown) where
N = 8. This figure also depicts two of the forces, F1,5, the force
imparted by the first free-body on the fifth-free body, and F5,1,
the force imparted by the fifth free-body on the first-free body.

In this study, the network of free-bodies is defined such that a
free-body is connected (by an edge) to any other free-body which
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imparts a force on it. More specifically, we introduce the matrix

Â = [âij]
j=1,2,...,n
i=1,2,...,n ∈ R

n×n, where

âij =

{

0, if free-body i does not impart a force on free-body j,
1, if free-body i imparts a force on free-body j,

which is a standard un-directed incidence matrix and describes
the connectivity of the network. Since the network of free-
bodies is fully connected, Â is a dense matrix. Specifically, Â =

JN − IN where JN is an N × N matrix of ones, and IN is an
N × N identity matrix; later, in section 2.3, we will introduce an
approximation method (informed by asymptotic analysis) which
will approximate Â with a much sparser matrix.

The motion of the free-bodies is governed by the coupled
ordinary differential equations:

mi
dvi

dt
= −

N
∑

j=1

Fi,j, (1)

dpi

dt
= vi. (2)

2.2. An Approximate Closed Formula of
Solutions for the Non-linear System
This non-linear system has an approximate closed formula of
solutions which we demonstrate as follows: By combining (1) and
(2) the overall system can be written as

d2pi

dt2
= −

1

mi

N
∑

j=1

Fi,j. (3)

Next we let

Gi,j : = Gi,j(pi, pj) =

{

G
‖pi−pj‖3

, if i 6= j,

0, if i = j

then (3) can be written in the form:

d2pi

dt2
= −

N
∑

j=1

Gi,jmj(pi − pj),

P =
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...
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. . .
...
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.

or, equivalently,

d2pi

dt2
= −pi

N
∑

j=1
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N
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Gi,jmjpj,

or, equivalently,
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Now, by taking i = 1, 2, ...,N we have:
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and the above equations can be written in matrix form:

d2

dt2
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





,

or, equivalently,

P′′ = AP.

Where

2.3. Approximation of System
We defineK to be some predefined lower bound on “meaningful”
acceleration; below this threshold, any acceleration effects are
considered negligible to the overall system’s dynamics. This
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acceleration threshold, K, is analogous to the belief-space
threshold from BCT which determines which people can interact
with each other in order to change the belief-state of the overall
system. First we let

Gi,j : = Gi,j(pi, pj,mj) =

{

Gi,j, if |Gi,jmj(pi − pj)| ≥ K,
0, if |Gi,jmj(pi − pj)| < K,

and this matrix, Gi,j, is sparser than Gi,j. Using sparse matrices
rather than dense matrices can save a significant amount of

P =











p1
p2
...
pN











, Ã =











∑N
j=1 G̃1,jmj −m1G̃1,1 m2G̃1,2 . . . mN G̃1,N

m1G̃2,1
∑N

j=1 G̃2,jmj −m2G̃2,2 . . . mN G̃2,N

.

.

.
.
.
.

. . .
.
.
.

m1G̃N,1 m2G̃N,2 . . .
∑N

j=1 G̃N,jmj −mN G̃N,N











.

memory and speed up the processing times for simulatingmodels
computationally. As discussed earlier, since each of the free-
bodies imparts a force on each of the other free-bodies, thematrix
describing the connectivity of the network, Â, is dense; however,
similarly toGi,j, Âmay be approximated by the sparser matrix Â∗,

where Â∗ = [â∗ij]
j=1,2,...,n
i=1,2,...,n ∈ R

n×n, is defined such that

â∗ij =

{

0, if Gi,j = 0,

1, if Gi,j 6= 0

thus, (3) can be approximated by:

d2pi

dt2
≈ −

N
∑

j=1

Gi,jmj(pi − pj), (4)

and the closed form of solutions can be approximated by:

P′′ = AP.

Where

A =













−
∑N

j=1 G1,jmj +m1G1,1 m2G1,2 . . . mNG1,N

m1G2,1 −
∑N

j=1 G2,jmj +m2G2,2 . . . mNG2,N

...
...

. . .
...

m1GN,1 m2GN,2 . . . −
∑N

j=1 GN,jmj +mNGN,N













.

2.4. Discretizing the System
We discretize the governing system, (4), via the Störmer-Verlet
scheme (sometimes denoted leapfrog Euler method), and thus,
the coupled time-dependent difference equations describing the
discrete motion of the free-bodies are

vn+1
i = vni − 1t

N
∑

j=1

G̃i,jmj(p
n
i − pnj ), (5)

pn+1
i = pni + 1t vn+1

i , (6)

where t is discretized into Ñ time-steps, the super-script n ∈
[

1, 2, ..Ñ
]

, and for each time-step ∗ there exist p∗,i, p∗,j which

satisfy the solution of (4), such that: G̃i,j : = Gi,j.

Thus, we have proved the following Theorem:
Theorem 4.1. Consider the non-linear system of differential

Equations (1) and (2). If t is discretized into Ñ time-steps, and
the super-script n ∈

[

1, 2, ..Ñ
]

, then in the area of a time-step ∗

an effective approximate linearization of system (1) and (2) is:

P′′ = ÃP.

Where

2.5. Error Analysis
Since A is an asymptotic approximation of the much denser
matrix A, some error, E, is introduced to the system’s dynamics
by only considering accelerations above a certain threshold. We
define this error such that it is the average distance a free-body is
from where it would have been if K = 0. More specifically,

En =
1

N

N
∑

i=1

‖Pni − P̃ni ‖, (7)

where P is the position as calculated by the discretized fully
connected network model (i.e., when K = 0), and P̃ is the
position as calculated by the approximation of the system (i.e.,
when K > 0).

One potential down-side to this definition of error is that
it does not distinguish between global drift and local drift. We
define global drift to be drift/error wherein all of the free-bodies
conserve their relative positions to each other in the system (i.e.,

global rotation, global translation, global reflection), meanwhile,
we define local drift to be when free-bodies drift independently
(i.e., in such a way that distorts their relative positions to
each other). Depending on the application, global drift may be
acceptable, however factoring this into the error measurement is
beyond the scope of this research and so we leave it for future
work. Figure 2 illustrates the difference between these two forms
of drift. In this figure, a global translation is used as an example
for global drift; in this example, each free-body drifts by the
same magnitude and the same direction. Meanwhile, in the local
drift example each free-body drifts by the same magnitude but in
different directions. Since drift direction is not considered in the
error measurement defined in (7) (only drift magnitude), both of
these scenarios would have the same error score.
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FIGURE 2 | Global and local drift. Here the white bodies are the exact locations of the free-bodies, and the gray bodies are the approximated locations (which have

drifted from their exact locations).

TABLE 1 | Parameter values used for the case study in this study.

i = p1i,1 (m) p1i,2 (m) p1i,3 (m) mi (kg) v1i,1 (m/s) v1i,2 (m/s) v1i,3 (m/s)

1 0 0 0 1× 107 0 0 0

2 −71.27 85.62 38.38 6.1× 103 −0.6× 10−3 −1.4× 10−3 −2.9× 10−3

3 −134.39 −34.30 17.16 5.5× 104 1.8× 10−3 −0.7× 10−3 2.5× 10−3

4 30.28 −101.93 28.62 7.6× 104 −2.5× 10−3 0.4× 10−3 −0.7× 10−3

5 −20.78 −10.50 −22.03 3.4× 104 2.8× 10−3 1.7× 10−3 1.6× 10−3

6 −51.73 −94.24 59.24 9.9× 104 −0.3× 10−3 −2.2× 10−3 −0.9× 10−3

7 86.45 31.85 −20.62 1× 104 0.4× 10−3 −2.3× 10−3 2.6× 10−3

8 154.50 −98.28 −0.47 7.2× 104 −0.7× 10−3 3.3× 10−3 −0.6× 10−3

9 40.68 15.20 40.93 6.7× 104 1.4× 10−3 2.5× 10−3 1.9× 10−3

10 31.80 −17.51 0.16 1.7× 104 −1.8× 10−3 −0.5× 10−3 −0.7× 10−3

3. CASE-STUDY

In this section we consider a specific case-study for studying the
model’s dynamics. Parameter values were selected on an arbitrary
basis with K = 1 × 10−8m/s2, 1t = 60 s and (unless otherwise
stated) the initial conditions and masses of the free-bodies are
given by Table 1.

Since G̃, and thus Ã, Â, and Â∗, are time-dependent (i.e.,
the network topology is constantly evolving as the free-bodies
are displaced), these matrices must be recalculated in each time
step. We refer to this calculation as the “network connectivity
calculation” (NCC) hereafter. The computational load required
to simulate the motion of free-bodies can be reduced by reducing
the frequency of the NCC; however, this approach can introduce
further errors. Therefore, in this case-study, we also examine
the effect of reducing the frequency of the NCC by exploring
cases where it is performed every 10 timesteps and every 100
timesteps, respectively.

3.1. Results
Figure 3 shows the error when the NCC is performed: every
timestep (solid lines), every 10 timesteps (dashed lines), and

every 100 timesteps (dashed-dotted lines) vs. (i) 1,000 timesteps,
and (ii) 10,000 timesteps for: (a) K = 1 × 10−9m/s2, (b)
K = 1 × 10−8m/s2, and (c) K = 1 × 10−7m/s2. We
note from these examples that in general, the error increases
with time. We note from Figures 3Aii,Bii,Cii how the error
seems to be growing at an approximately linear rate over
time, in these examples this linear rate of growth is caused
by scenarios where the overall error term is dominated by
one of the approximated free-bodies (P̃i for some i) which
is drifting away from its exactly calculated paired particle (Pi
for the same i) at a much faster (linear) rate than any of
the other free-bodies. We also note that the error is generally
larger when the NCC is performed less frequently or when
the threshold, K, is larger. Both of these behaviors are to
be expected. When the NCC is performed in each timestep,
acceleration effects can be erroneously ignored from free-bodies
which were below the connectivity threshold at the time of
the previous NCC but may have increased above the threshold
since. Furthermore, when any acceleration affects are neglected
in any timestep, more error is introduced into the system—larger
values of K result in more acceleration effects being neglected in
each timestep.
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FIGURE 3 | Error when the NCC is performed: every timestep (solid lines), every 10 timesteps (dashed lines), and every 100 timesteps (dashed-dotted lines) vs. (i)

1000 timesteps, and (ii) 10,000 timesteps for: (A) K = 1× 10−9 m/s2, (B) K = 1× 10−8 m/s2, and (C) K = 1× 10−7 m/s2.

FIGURE 4 | Error (magnitude of black line) across three different timesteps when particle drift is out of phase. Particle trajectory is denoted by the dashed arc, the

approximated free-body is denoted by the gray circle, and the exact free body is denoted by white circle.

However, sometimes the error can decrease (or remain static)
with time. See for example Figures 3Ai,ii where the error trends
upwards while oscillating. One of the potential causes for this
oscillation is when an approximated particle takes the same
trajectory as its exact paired-particle, however, it does so with
some lag. Figure 4 illustrates how the error can oscillate across

three different timesteps when particle drift is out of phase, i.e.,
Pni = P̃n+τ

i for some constant τ and free-body i. In this figure,
the particle trajectory is denoted by dashed arc, the approximated
free-body is denoted by the gray circle, and the exact free-body
is denoted by the white circle. Even though the particles are
taking the same trajectory, in timesteps 1 and 3 the error is much
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FIGURE 5 | Inter-quartile range of error vs. time when the NCC is performed: every timestep (red), every 10 timesteps (black), and every 100 timesteps (blue). Data for

this figure was obtained via two Monte-Carlo simulations which both had 500 realizations wherein the initial conditions: P1, M1, and V1 were multiplied (element-wise)

by a vector of random elements drawn from uniform distributions between (A) [0.9,1.1], and (B) [0.5,1.5].

smaller than in timestep 2, due to the fact that the approximated
free-body’s motion lags behind the exact free-body’s motion.

In this system, a free-body’s dynamics are highly sensitive
to changes in the initial conditions. Figure 5 demonstrates
the inter-quartile range of the error when the NCC is
performed: every timestep (red), every 10 timesteps (black), and
every 100 timesteps (blue). Data for this figure was obtained
via Monte-Carlo simulations (with 500 realizations) wherein
each free-body’s mass, initial position, and initial velocity,
was multiplied by a random factor drawn from a uniform
distribution in the range (a) [0.9, 1.1], and (b) [0.5, 1.5].
In both Figures 5A,B the inter-quartile range of the error
grows at an approximately linear rate over time. Further to
this, the inter-quartile range grows faster in Figure 5B than
it does in Figure 5A, this further highlights the dependence
of this system’s dynamics on the boundary conditions—the
system’s dynamics variance increase as the variance of the
boundary conditions increase. As one might expect, this figure
demonstrates that when the NCC is performed more frequently,
the error is generally lower. However, due to the underlying
chaotic nature of systems of N interacting free-bodies, this is
not always the case—see for example Figure 3Bii, where the
model wherein the NCC is performed every 100 timesteps
outperforms the model where this calculation is performed
every timestep.

4. DISCUSSION

Ideas from bounded confidence theory can be applied to
approximate the motion of free-bodies in a system of interacting
free-bodies. While this modeling approach can reduce the
computational load required to simulate the system of free-
bodies, it also introduces error, and furthermore, this error
generally increases with time. This study uses Newton’s theory of
universal gravitation as an example for demonstration purposes,
however, the general framework presented here easily extends to

other physical laws (such as Coulomb’s law); one may replace the
Fi,j term with an appropriate alternative force law to study the
dynamics in such instances.

There is much scope for future research in this area of
science. As mentioned in section 2.5, the error measurement
in this study does not distinguish between global and local
drift effects. Depending on the application, global drift may
be an acceptable form of drift, in the future, we plan to
explore alternative definitions of error and explore their effects.
Further to this, there is much scope for additional mathematical
analysis. In this study we provided arbitrary parameter values
to demonstrate the model, further analysis may be used to
explore better understand why and under which circumstances
some parameter-value combinations lead to lower error values
than other parameter-value combinations. Finally, we strongly
believe that is it possible to develop the same approach to
multibody systems where some particles form aggregates (up
to a limited number of elementary particle) while the other
do not aggregate. For all these there is already some research
on development.
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