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In nature as well as in the context of infection and medical applications, bacteria often

have to move in highly complex environments such as soil or tissues. Previous studies

have shown that bacteria strongly interact with their surroundings and are often guided

by confinements. Here, we investigate theoretically how the dispersal of swimming

bacteria can be augmented by microfluidic environments and validate our theoretical

predictions experimentally. We consider a system of bacteria performing the prototypical

run-and-tumble motion inside a labyrinth with square lattice geometry. Narrow channels

between the square obstacles limit the possibility of bacteria to reorient during tumbling

events to an area where channels cross. Thus, by varying the geometry of the lattice

it might be possible to control the dispersal of cells. We present a theoretical model

quantifying diffusive spreading of a run-and-tumble random walker in a square lattice.

Numerical simulations validate our theoretical predictions for the dependence of the

diffusion coefficient on the lattice geometry. We show that bacteria moving in square

labyrinths exhibit enhanced dispersal as compared to unconfined cells. Importantly,

confinement significantly extends the duration of the phase with strongly non-Gaussian

diffusion, when the geometry of channels is imprinted in the density profiles of spreading

cells. Finally, in good agreement with our theoretical findings, we observe the predicted

behaviors in experiments with E. coli bacteria swimming in a square lattice labyrinth

created in amicrofluidic device. Altogether, our comprehensive understanding of bacterial

dispersal in a simple two-dimensional labyrinth makes the first step toward the analysis

of more complex geometries relevant for real world applications.

Keywords: diffusion, rectification, random walk, bacteria, confinement

1. INTRODUCTION

Bacteria are ubiquitous on our planet. They inhabit diverse environments such as soil, oceans,
hot springs and the human body, where they may cause infections or serve to establish a natural
flora [1]. Being adapted to such a broad spectrum of habitats, bacteria show different forms of
locomotion, depending on their specific needs [2, 3]. The motility apparatus and patterns of many
different bacterial species have been described and extensively analyzed [4–6]. This experimental
work has also been accompanied by theoretical efforts abstracting the motion of cells to random
walks or modeling it as diffusion of active particles [7–9]. A significant number of studies exists on
how bacteria move, by which mechanic and hydrodynamic forces the motility is driven and what
the underlying molecular mechanisms are [10–12]. However, the motion of bacteria is strongly
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influenced by their surroundings, which often spatially restrict
their spreading in natural habitats. Therefore, the behavior
of bacteria in confinement has also been investigated [13],
for example bacteria moving through narrow channels [14–
18] or porous media [19, 20]. For active particles moving in
channel confinements [21] or obstacle lattices [22, 23] theoretical
models also exist. In specific confinements, these studies reported
more persistent motion of bacteria and thus an enhanced
diffusion [23].

Studying bacterial behaviors in narrow channels or complex
labyrinths is of great medicinal relevance. It can help to better
understand the spreading of bacteria during infection, where cells
have to move inside of the body through natural constrictions
with narrow spacing like blood vessels or the extracellular matrix
[24]. On the other hand, it can also help in the design and
evaluation of new therapeutic methods like targeted treatment
of cancer by genetically modified bacteria, which are used
to transport the drugs to the tumor or synthesize the drug
on-site [25, 26].

In general, dispersal of bacteria in a complex environment is
a result of an intricate interplay of confinement geometry and
cell motility pattern. Here, we study the diffusive spreading of
swimming bacteria with the well-known run-and-tumble pattern
in a square labyrinth. This is probably the simplest possible
geometry, which allows for analytical treatment and at the
same time provides interesting and nontrivial results. Results
obtained from this simplifiedmodel will complement the existing
literature by offering possible reasoning for previously reported
properties of bacterial motion in confinement. Constituting
the first step in understanding the spreading of bacteria in
complex environments, these results can be applied to problems
in various areas dealing with directed transport of bacteria.
Microbial enhanced oil recovery, for example, relies on the
ability of bacteria to penetrate porous media. To optimize
the recovery process, the spreading of the bacteria through
the corresponding environment has to be optimal [27, 28].
Also, in ecological sciences, more precisely in the process
of bioremediation by bioaugmentation, bacteria have to pass
through complex environments to remove organic contaminants
from soil and ground water [29]. In medicine, furthermore,
quantifying the spreading of bacteria inside the human body—
a complex network of tissue as well as lymphatic and blood
vessels—helps to better understand the spreading of infections
[24] and also to develop new therapies [30], as for example the
targeted treatment of cancer [26].

Bacteria performing run-and-tumble motion alternate phases
of almost straight swimming with tumbling events, when the
cell turns and reorients its swimming direction [31]. On a
macroscopic scale, that leads to a random walk like behavior
and diffusive spreading of cells. By putting cells in a labyrinth,
we anticipate that the reorientation process may be hindered
when bacteria are in the channels between the obstacles [32].
However, in the crossings, there is more room available to tumble
and cells may choose a new random direction. This provides
a mechanism of how the labyrinth can rectify the diffusion
of bacteria, which we aim to investigate in this paper. Using
theoretical estimates, simulations and experimental data, we are

able to show that bacteria disperse faster inside the labyrinth than
in a spatially unrestricted environment. For the spreading inside
the labyrinth, the diffusion coefficient depends in a nontrivial
way on the parameters of the underlying lattice structure. For
small times, the bacteria show a pronounced ballistic-like, non-
Gaussian dispersal. In this regime, which lasts longer than for
unrestricted motion, the bacterial density keeps memory of
the underlying lattice geometry. At larger times, the memory
of the geometry is lost and the density of bacteria attains an
isotropic Gaussian profile. Thus, the underlying geometry of the
labyrinth can greatly influence the dispersal of the bacteria on
experimentally relevant time scales.

The paper is organized as follows. We start by describing
our model system of E. coli bacteria swimming in a labyrinth.
We then introduce a theoretical model and derive the
estimates for the diffusion coefficient in a labyrinth with
square lattice geometry (for a detailed derivation please
refer to the Supplementary Material). After validating the
theoretical predictions by numerical simulations we compare
our results with experimental data on E. coli swimming in
microfluidic labyrinths.

2. MODEL SETUP

2.1. Swimming Bacteria in a Labyrinth
In this work, we consider E. coli bacteria as a well studied model
organism but also as a widely used model in synthetic biology
and thus in applications, for example, for the on-site synthesis
of anti-cancer drugs. E. coli swim in a fluid environment by
means of flagella and perform the well known run-and-tumble
motion. This motion consists of periods of almost straight runs,
interrupted by tumbles. The times between consecutive tumbling
events follow an exponential distribution [7]. During the runs,
multiple flagella, rotating in the same direction, are arranged
as a bundle and push the cell forward. If at least one flagellum
starts to rotate in the opposite direction and dissociates from
the bundle, the run is shortly interrupted and the tumbling
bacterium chooses a new random direction for the next run
[31, 33]. Since the flagella have the length of several cell-bodies
[33], the bacterium needs enough space to enable the dissociation
and rearrangement of the flagellar bundle as well as the cell
reorientation. Thus, in a lattice structure with sufficiently narrow
channels, the bacteria may not be able to change their direction
during the tumble, but continue to swim forward [32, 34]. This
behavior is illustrated in Figure 1. The lattice is defined by the
parameters b, w and h, being the side length of the square
obstacles, the width of the channels between two obstacles and
the height of the channels, respectively. By using a sufficiently
small channel width w and height h, we can potentially forbid
tumble events with a change of the swimming direction inside
of the channels between the obstacles and reduce the effective
spreading of the bacteria to two dimensions of the x/y-plane.
Thus, in theoretical considerations and simulations, we disregard
the z-direction. In the model, bacteria move inside of a square
lattice defined by b and w, in which they are only able to change
their moving direction in the crossings of two channels. If a
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FIGURE 1 | Model system: An illustration of the bacterial motility pattern within

a lattice with channel width w, height h and side length of obstacles b (upper

row) and a trajectory, marked in green, of a tracked bacterium inside a

labyrinth with b = 20 µm and w = 8 µm (lower row). The scale bar in the lower

row corresponds to 10 µm. In experiments, w and h are equal, restricting the

effective spreading of bacteria to two dimensions. Times between consecutive

tumble events follow an exponential distribution with mean τ0. In the model,

tumbling events may lead to directional change only within crossings of two

channels separating the squares.

tumbling event happens in a crossing, the bacteria can turn right,
left, backward or continue their path forward.

2.2. Run-and-Tumble Pattern
Generally, when modeling the run-and-tumble motion, the
bacteria are assumed to move in straight lines with constant
velocity v0 during runs. Here, we will neglect rotational diffusion
as the channel confinement naturally limits its effect (see,
however, section 5). During tumbling events, the bacterium
changes its direction by turning at a random angle with respect
to its prior running direction. Usually, the bacteria turn left
or right with equal probability and thus, the turning angle
distribution considers only angles between 0◦ and 180◦ [7]. In
the simplest case, the turning angle distribution is considered to
be uniform. The free-swimming E. coli bacteria, however, have
a tendency toward smaller turning angles φ, with an average
φ0 ≈ 70◦ [35], resulting in a more persistent motion. The
time between consecutive tumbling events is random and well
approximated by an exponential distribution with the mean τ0 ≈
1 s [36]. The duration of tumbles is one order of magnitude
shorter than that of runs [35] and is usually neglected in the
modeling. The run-and-tumble motion for large times, due to the

exponential distribution of run times, is a memoryless random
walk. Therefore, on time scales much larger than the mean run
time, the mean squared displacement (MSD) of an ensemble of
swimming bacteria is linearly proportional to time and can be
quantified by the diffusion coefficient D. In the diffusive regime
of the dispersal, the MSD 〈r(t)2〉 in two dimensions can be
written as [7]

〈r(t)2〉 = 4D0t, with D0 =
〈r2〉

4〈τ 〉
. (1)

Here, 〈r2〉 is the mean squared run length and 〈τ 〉 is the mean
run time. As runs happen with constant velocity v0 (for freely
swimming E. coli v0 ≈ 20 µm s−1), we have 〈r2〉 = v20〈τ

2〉.
Thus, the diffusion coefficient depends on the first and the second
moment of the run time distribution. For the unconstrained but
two-dimensional run-and-tumble motion, bacteria are assumed
to move freely without spatial restrictions. If they also show no
bias in the choice of the turning angle during a reorientation
event, we have 〈τ 〉 = τ0 and 〈τ 2〉 = 2τ 20 , due to the exponential
distribution of run times with mean τ0. Thus, the diffusion
coefficient D0 for this case becomes

D0 =
v20τ0

2
. (2)

When generalizing this result to the run-and-tumble motion of
E. coli, the directional persistence exhibited by the bacterium has
to be taken into account. This persistence can be incorporated by
rescaling the average run time with the factor (1− cosφ0)

−1 (see
[37] and Supplementary Material for details) resulting in

〈τ 〉 = τ̃ =
τ0

1− cosφ0
.

Thus, the diffusion coefficientDe for the dispersal of E. coli in two
dimensions is

De =
v20τ0

2 (1− cosφ0)
, (3)

which for the above mentioned parameters results in De ≈
300 µm2 s−1. Moreover, an analytical description of the MSD,
valid also for small times, can be calculated in this general case
by using the Green-Kubo relation [37, 38] yielding

〈r(t)2〉 = 2v20τ̃
2
(
t

τ̃
− 1+ e−

t
τ̃

)
. (4)

This result describes ballistic-like dispersal of cells for times
comparable to τ̃ and diffusive motion at larger times.

3. THEORETICAL ESTIMATES OF
DIFFUSION PROPERTIES

3.1. Run-and-Tumble in a Lattice With
Uniform Turning Angle Distribution
We now consider the movement of run-and-tumbling bacteria
in a labyrinth with square lattice geometry– the two-dimensional
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equivalent of the system illustrated in Figure 1. Here, we assume
the width of the channel between two obstacles w to be
small enough to inhibit reorientation events in the channels.
Therefore, the bacteria can only change their swimming direction
inside of the crossings. Since bacteria swimming without
spatial confinement exhibit run times following an exponential
distribution with mean τ0, we can calculate the probability to
tumble inside of a crossing of width w, Pw, as:

Pw =
1

τ0

∫ w
v0

0
e−

τ
τ0 dτ = 1− e−

w
v0τ0 .

Correspondingly, the probability of not tumbling in the crossing
is 1 − Pw. Thus, the probability of the first tumble to occur in
the k-th crossing is given by the product of the probability not to
tumble in the first k − 1 crossings and the probability to tumble
in the k-th:

Pk = e−
(k−1)w
v0τ0

(
1− e−

w
v0τ0

)
.

In the model, we assume that in each crossing only one tumbling
event can occur (see below). As for the unrestricted case, we still
expect the dispersal to become a diffusive process after multiple
reorientation events. However, this now takes much longer time,
as reorientations are only possible in the crossings.

We first consider the tumbling process with uniform turning
angle distribution, where all four possible directions (forward,
right, backward and left) are equally probable after a tumbling
event in a crossing. To determine the diffusion coefficient D, as
defined in Equation (1), the first two moments of the run time
distribution have to be calculated. Since the bacteria are only able
to perform reorientation events inside of the crossings and not
in the channels connecting them, the relation 〈τ 〉 = τ0 of the
unrestricted case does not hold anymore. Assuming the bacteria
to start in the middle of one crossing at t = 0 and tumbling
events to occur on average also in the middle of crossings, the run
times now have to be multiples of the time needed to travel from
the center of one crossing to the next, τbw = b+w

v0
, with lattice

parameters b and w. Thus, the moments of the run time can be
calculated as

〈τ 〉 =

∞∑

k=1

kτbwPk =

∞∑

k=1

kτbwe
− (k−1)w

v0τ0

(
1− e−

w
v0τ0

)

=
τbw

1− e−
w

v0τ0

,

〈
τ 2

〉
=

∞∑

k=1

k2τ 2bwPk =

∞∑

k=1

k2τ 2bwe
− (k−1)w

v0τ0

(
1− e−

w
v0τ0

)

=
τ 2
bw
e

w
v0τ0

(
1+ e

w
v0τ0

)

(
e

w
v0τ0 − 1

)2 .

Plugging the above expressions into Equation (1) the diffusion
coefficient Dl in the labyrinth becomes

Dl =
1

4
τbwv

2
0 coth

[
w

2v0τ0

]
. (5)

Comparing the diffusion coefficient of the spatially unrestricted
walk, given in Equation (2), to our estimate of the walk inside the
labyrinth in Equation (5), we see that the ratio

Dl

D0
=

τbw

2τ0
coth

[
w

2v0τ0

]

depends on the lattice and motility parameters. The ratio
becomes larger for smaller channel width w and bigger side
length of the obstacles b. This behavior is also emphasized in the
approximation of the ratio for small channel widths w with w≪
v0τ0, where

Dl
D0

≈ 1 + b
w . Thus, in the model, for relevant lattice

and motility parameters, we get a higher diffusion coefficient in
the labyrinth and consequently faster spreading.

3.2. Run-and-Tumble in a Lattice With
Nonuniform Turning Angle Distribution
To consider bacteria exhibiting a nonuniform distribution of
turning angles after a tumbling event, the diffusion coefficient
has to be modified to include a term accounting for the
nonuniformity, similarly to what was done in Equation (3) for the
spatially unrestricted walk. For the motion inside the labyrinth,
this can be performed as follows. By considering the walk as steps
from one crossing to the next, the mean run time 〈τ 〉 becomes

〈τ 〉 = τbw =
b+ w

v0

and 〈τ 2〉 = τ 2
bw
. To account for the nonuniform turning

angle distribution, we introduce an additional factor B to the
formula of the diffusion coefficient. In the square labyrinth, the
bacterium can only go in four different directions (forward, right,
backward and left), therefore this factor will depend on the four
corresponding probabilities pf , pr , pb and pl, determined by the
turning angle distribution. The probability to go forward after
a tumbling event pf , for example, will be the probability that
a bacterium swimming outside the labyrinth turns in an angle
between 0◦ and 45◦ after a tumble. However, as we defined the
run time in a crossing-oriented way, to calculate the factor B,
we need to consider the bacterial behavior in each crossing, not
only in the crossings in which a tumbling event happens. Given
the probabilities pf , pr , pb and pl after a tumbling event and the
exponentially distributed run time, the corresponding turning
probabilities defined for every passed crossing are

p̃f = e−
w

v0τ0 +
(
1− e−

w
v0τ0

)
pf , (6)

p̃r =
(
1− e−

w
v0τ0

)
pr , (7)

p̃b =
(
1− e−

w
v0τ0

)
pb, (8)

p̃l =
(
1− e−

w
v0τ0

)
pl. (9)

Assuming the probability to go right and left to be the same, as
done by considering only angles between 0◦ and 180◦, we find B
to depend only on p̃f and p̃b as

B(̃pf , p̃b) =
1+ p̃f − p̃b

1− p̃f + p̃b
.
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With this, the diffusion coefficient Dlb can be written down:

Dlb =
1

4
τbwv

2
0

1+ p̃f − p̃b

1− p̃f + p̃b
.

Here too, by comparing this result to the diffusion coefficient
for the unrestricted walk, Equation (3), we see that the bacteria
swimming inside the lattice structure are spreading faster. We
can also evaluate the effect of the nonuniformity of the turning
angle distribution on the diffusion inside the labyrinth, by
looking at the ratio

Dlb

Dl
=

1+ p̃f − p̃b
(
1− p̃f + p̃b

)
coth

[
w

2v0τ0

] =
1+

(
pf − pb

)
tanh

[
w

2v0τ0

]

1− pf + pb
.

Here, v0, τ0 and w are the same for both systems. Thus, the ratio
depends on the two probabilities pf and pb. As expected, for the
case with uniform turning angle distribution, i.e., pf = pb, the
ratio becomes one. For a higher probability to go forward, pf >

pb, it will, in contrast, become greater than one, corresponding to
facilitated diffusion through directional persistence. If pf < pb
instead, the dispersal with uniform turning angle distribution
is faster.

It is important to note here, that our theoretical predictions
are made for the long-time asymptotics of the diffusive regime. In
principle, Equation (4) could have been used with themean of the
run time calculated for the labyrinth as an approximation of the
ballistic regime of the dispersal. However, it is derived under
the assumption of exponentially distributed run times, which, in
the case of the random walk in the labyrinth, is not fulfilled. It
might give a much better agreement to the actual MSDmeasured
in computer simulations or in the experiment for small times, but
it would still not be exact. That is why, for the remaining of the
paper, we will primarily focus on the asymptotic diffusive regime.

Now that we quantitatively understand the properties of the
long-time diffusion, we turn to numerical simulations to test our
predictions. In particular, it is interesting to see how the dispersal
process occurs at shorter times and what the effect of several
simplifying assumptions of the analytical approach is.

4. SIMULATIONS OF 2D BACTERIAL
DISPERSAL IN LATTICE

In the simulations, all bacteria generally start their walk at
the origin (0, 0), which is located in the middle of the same
crossing. However, in section 5 we will also consider random
starting points. To facilitate computations we use an event-driven
algorithm. At each step, a random variable representing the run
time is drawn from an exponential distribution with mean τ0,
which is used to determine the position of the next tumble.
However, the directional change of the tumbling event happens
only if the bacterium is inside of a crossing, as depicted in
Figure 1. In the case of a uniform turning angle distribution, all
four directions are chosen with equal probability. In contrast to
the theoretical derivation, multiple tumbles in one crossing are
allowed in simulations. For a quantitative evaluation of the effect
of multiple tumbles on the diffusion coefficient (see Figure S2).

4.1. Diffusive Properties
The results of the simulations are summarized in Figure 2. As can
be seen in Figures 2A,B, the trajectories and bacterial densities
have a pronounced square outline at small times (upper row),
while acquiring a circular shape at larger times (lower row). This
indicates that at the beginning, the bacterial motion is greatly
influenced by the geometry of the labyrinth. The clearly seen
boundary of the density profile is the ballistic front determined
by the constant and finite velocity of the bacteria v0 as |x| + |y| =
v0T, where T is the measurement time. At a given moment in
time, the total distance traveled along the x- and y-directions of
the labyrinth cannot exceed the value of v0T. Trajectories which
end up at the front are those where no two steps were done in
opposite directions. The effect of ballistic fronts is not frequently
mentioned in the context of normal diffusion. However, as this
example shows (see also experimental results below), the density
of diffusing particles may carry on the information about the
underlying lattice for an extended period of time. This effect
can be even more dramatic in the case of anomalous diffusion
[39]. This behavior is also illustrated in the x-projection of the
2D density of the bacteria shown in Figure 2C. The density of
the bacteria keeps memory of the underlying geometry at small
times but then loses it at larger times and becomes isotropic
after many reorientation events. In this diffusive regime, at large
times, the bacterial density also quantitatively agrees with the
analytical prediction of a Gaussian distribution, shown as red
dashed line, validating the theoretical description for the long-
time diffusion in the labyrinth. In Figure 2D, presenting the
mean squared displacement of the bacteria as a function of time,
it can be seen that the bacteria indeed exhibit nearly ballistic
motion with 〈r(t)2〉 ∝ t2 at the beginning and then switch to a
diffusive regime with 〈r(t)2〉 ∝ t, where the derived estimates for
the diffusion coefficient are confirmed. At large times, numerical
and theoretical curves for theMSD are linear with the same slope,
which directly corresponds to the diffusion coefficient. We also
clearly see that the slope of the MSD of the walk within the
labyrinth is higher than for a walk without spatial restrictions,
thus further confirming the hypothesis of facilitated diffusion in
the lattice.

4.2. Dependence of Diffusion Coefficient
on Lattice Parameters
To further test the level of agreement between our theoretical
estimates for the diffusion coefficient and the simulation
results, we compared these for a range of different parameters
determining the geometry of the lattice and evaluated the
dependence of the diffusion coefficient on b—the side length of
the obstacles—and on w—the width of the channels between
two obstacles. In Figure 3A, it can be seen that for three
different channel widthsw the diffusion coefficient shows a linear
dependence on the side length b and can be rescaled onto a single
master curve (see inset) with D̃ being

D̃l(b) =
Dl(b)

coth
[

w
2v0τ0

] −
wv0

4
=

bv0

4
. (10)
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FIGURE 2 | Results of the simulations with uniform turning angle distribution in a lattice with b = 20 µm and w = 5 µm: (A) depicts the trajectories of 500 bacteria for

small times, t = 50 s (upper row), and large times, t = 500 s (lower row). In (B) the two-dimensional histograms of the particle density for the same time scales used in

(A) for 105 bacteria are shown. The particle density projected on the x-axis, also for 105 bacteria, is plotted in (C) with the red dashed line representing the analytical

solution P(x) =
(
4πDlbt

)−1/2
exp

(
−x2/4Dlbt

)
. For small times the underlying geometry has strong influence on the bacterial spreading, while for large times the

distribution becomes isotropic. In (D) the mean squared displacement of 105 bacteria is shown in linear scale, while the inset shows the double logarithmic plot. The

red dashed line represents the theoretical estimate introduced in section 3.1 and the green line the empirical MSD of the simulated bacteria. The blue dashed line

corresponds to the same random walk without spatial restrictions, which can be described by Equation (4), where φ0 = 90◦ due to the uniform turning angle

distribution. The theoretical estimates match the simulated MSD for large times. Guiding the bacteria through a lattice of channels significantly enhances the dispersal

as compared to an unrestricted motion.
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FIGURE 3 | Dependence of the diffusion coefficient on lattice parameters: (A)

depicts the dependence of the diffusion coefficient in the labyrinth Dl on the

side length b of the obstacles for three different channel widths w, (B) the

dependence on w for three different values of b. Both insets show the rescaled

diffusion coefficients as given by Equation (10) for (A), and by Equation (11) for

(B). The red dashed line shows the corresponding analytical expression. For

each measurement 5,000 bacteria were each simulated to perform 2,000

tumbling events.

As shown in the inset, the rescaled curves of the simulated
diffusion coefficients all coincide with the analytical expression.
Similarly, for the dependence on the channel width w,
the predicted diffusion coefficient matches—as presented in
Figure 3B—the simulation results for three different side lengths
b and can also be rescaled to one master curve, shown as inset.
Here, the scaled diffusion coefficient D̃ is defined as:

D̃l(w) =
Dl(w)

b
=

1

4
v0 coth

[
w

2v0τ0

]
+

w

4b
v0 coth

[
w

2v0τ0

]

≃
1

4
v0 coth

[
w

2v0τ0

]
.

In the expression for D̃l(w) a factor of w
b

is still included,
which makes it not completely independent of the parameter

b. However, for w/b ≪ 1 this term becomes small and can
be neglected. Thus, with increasing b, the rescaled curves for
the simulations shown in the inset of Figure 3B converge to
the analytical expression, so that the curve for b = 100 µm
already agrees with the theoretical prediction. This very good
agreement between simulation results and analytical expressions
also suggests that multiple tumbles in the crossing included
in simulations but neglected in theory are not making a
significant contribution for the range of tested parameters (see
also Figure S2).

5. INTRODUCING A NONUNIFORM
TURNING ANGLE DISTRIBUTION:
COMPARISON OF SIMULATIONS AND
EXPERIMENTS

After verifying the analytical solutions for the case with a uniform
turning angle distribution during tumbles, we now switch to the
system with a nonuniform turning angle distribution. To test
our theory and its practical applicability we implemented the
nonuniformity of the turning angle distribution after a tumbling
event in a crossing in simulations and compared these results to
experimental data [40].

The experiments were performed by using microfluidic
devices with a lattice geometry of obstacles with a side length
b = 20 µm and with two channel widths w and heights h of
5 µm and 8 µm. For these dimensions, some tumbling events
of the bacteria inside the channels between two obstacles were
observed. Fluorescently labeled E. coli were imaged with an
inverted fluorescence microscope. Thereby, trajectories in the
range of 2.5–20 s could be recorded and analyzed. An example
trajectory of one E. coli bacterium swimming in a labyrinth
with w = 5 µm can be seen in the Supplementary Movie.
The simulation parameters were adjusted to the experimentally
observed values. More precisely, the turning angle distribution
after a reorientation event and the mean run time were taken
from measurements of bacteria moving without geometric
restrictions in the x/y-plane but with a vertical constraint at
a height of h = 5 µm or h = 8 µm, respectively. This
confinement to effectively two dimensions changes the motility
parameters, e.g., the velocity v0 and turning angle distribution,
compared to bacteria freely swimming in three dimensions. In
the 5 µm channels the bacteria swim with a mean run time
τ0 = 1.8 s, while in the 8 µm channels with τ0 = 1.7 s.
For both channel widths a velocity v0 ≈ 10 µm s−1 was
measured. By splitting the histogram of turning angles (see
Supplementary Material) into the domains 0◦-45◦, 45◦-135◦

and 135◦-180◦, we determine the turning probabilities in the
labyrinth pf ≈ 0.1, pr ≈ 0.3, pl ≈ 0.3, pb ≈ 0.3. Further
information on how the experiments and simulations were
performed can be found in the section 7. In Figure 4, side-
by-side comparisons between simulations and experiments for
w = 8 µm are shown (for w = 5 µm see Figure S3). As basis
for the comparisons, we chose the trajectories themselves, the
MSD and the decision making behavior at the crossings. Since
the longest trajectory length measured in the experiments was
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FIGURE 4 | Comparison between simulation results (upper row) and experiments (lower row) for a lattice with b = 20 µm and w = 8 µm: (A) compares the trajectories,

starting at a random position in the lattice, which are centered to the zero point. (B) Shows the mean squared displacements in double logarithmic plots, where the

green line displays the simulated and measured MSD while the red dashed line corresponds to the analytical prediction. (C) Displays the probabilities for turning

decisions at each crossing. Parameters of simulations are chosen to match experimental data as discussed in the section 7.

around 20 s, the time scale of the comparisons lies, according to
our estimates, in the regime of ballistic motion with 〈r(t)2〉 ∝
t2. Contrasting both sets of trajectories, shown in Figure 4A, it
can be observed that both simulations and experiments show
evidence of the underlying geometry resembling a ballistic front
with the typical |x|+ |y| = v0T shape. In experiments, hence also
in simulations, the trajectories are of different lengths and start
at an arbitrary point in the labyrinth. Because of this, both the
outlines of obstacles and the ballistic fronts are smeared out in
comparison to Figure 2A. The distance traveled by the bacteria
is quantified by the MSD and shown in double logarithmic
display in Figure 4B. Here, it can be seen that the simulated
curve reproduces the overall trend of the experimental curve
and also quantitatively agrees with the experimental data. This
becomes even more evident in the direct comparison between
the simulated and experimental MSD shown in Figures S4, S5.
Interestingly, in the experiments, we can track bacterial decisions
at every crossing, plot the histogram of the chosen directions
and compare it to simulation results, as shown in Figure 4C.
Here, we see that the simulations reproduce the overall tendency
of the decision distributions measured in the experiments.
The smaller probability to go forward paired with the higher

probability to go right or left in experiments compared to the
simulations, can be attributed to smooth directional changes
in the crossings due to rotational diffusion, without tumbling
events happening. Thus, it would be predicted that in narrower
channels the effect of rotational diffusion deflecting the cell
from straight motion should be weaker. Indeed, we see that
in 5 µm channels (see Figure S3), the probability to continue
forward approaches the theoretical value. The otherwise good
agreement between experiments and simulations suggests that
by taking the angle distribution of x/y-unrestricted motion we
can reproduce the behavior inside the labyrinth. Here, we should
note that the numerical simulations achieve good agreement with
experimental data without any fitting parameters. All values and
distributions were obtained directly from experiments. Finally,
we provide the results of a control experiment, comparing the
dispersal of bacteria in the labyrinth and outside the labyrinth.
We see a clear effect of enhanced diffusion in agreement with
the predictions of the model, see Figure S5. Thus, our theoretical
model of the diffusion through a square lattice of channels proves
to be a reasonable simplification covering the most significant
features of experimentally observed bacterial behavior inside of
a microfluidic labyrinth.
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6. DISCUSSION

We analyzed the process of bacterial dispersal in a labyrinth of
channels with square geometry. Narrow channels between the
obstacles guide the motion of bacteria and prevent them from
changing the swimming direction. The reorientation events can,
however, happen in the channel crossings. By modeling this
system as a two-dimensional random walk with exponentially
distributed run times we provided analytical expressions for
the diffusion constants quantifying large time asymptotics
of bacterial dispersal in the labyrinth. The main theoretical
predictions are an enhanced diffusion constant for smaller
channel widths and larger obstacle sizes and a prolonged regime
of non-Gaussian diffusion where the geometry of the channels is
imprinted in the density of bacteria spreading in the labyrinth.
Here, we focused on the two-dimensional geometry to be able to
compare our results to experiments. However, a generalization
of the developed theoretical and numerical approaches to higher
dimensions is rather straightforward.

To assess the practical applicability of themodel we specialized
it to describe the run-and-tumble motion of E. coli with a
nonuniform turning angle distribution. We then compared
both simulations and theory to experimental data, collected
by tracking E. coli bacteria in microfluidic labyrinths with
lattice geometry. Thereby, we were able to quantitatively verify
our theoretical results and demonstrate that our approach can
serve as an adequate model of bacterial dispersal in simple
labyrinth geometries.

Our results suggest that the developed model can be used to
theoretically analyze the behavior of bacteria in an environment
with lattice structure. Understanding the dispersal of bacteria
in these rather simple geometries can help to evaluate the
usability of E. coli as a transport bacterium for on-site treatments
in more complex environments as well as in other fields like
ecology and industrial processes. Our future work will include
the analysis of other geometries, for example a hexagonal
lattice, and the evaluation of different bacteria species and
motility patterns, for example the run-and-reverse pattern of
Pseudomonas putida or run-reverse-flick of Vibrio alginolyticus
bacteria. Another interesting task will be the analysis of the
effects of different chemical landscapes, e.g., a concentration
gradient of a chemoattractant, on the diffusive properties of the
bacteria. Additionally, in the future, the diffusion mechanism
of bacteria in lattice structures can be further extended to
interpret the evolution of game strategies in square lattices
[41, 42].

7. MATERIALS AND METHODS

7.1. Microfluidic Experiments
7.1.1. Cell Culturing
The GFP-expressing E.coli AW405 strain was cultured overnight
in rich liquid LB medium (10 g L−1 Tryptone, 5 g L−1 NaCl,
5 g L−1 Yeast Extract, pH 7.0) including 100 µgml−1 ampicillin at
37 ◦C on a rotary shaker at 200 rpm. The cell suspension from the
overnight culture was diluted 1:100 with fresh LB, and grown to
an OD600 of 0.6. The cells were washed by centrifugation (1500 g

at 20 ◦C for 2min) and resuspended in motility buffer (11.2 g L−1

K2HPO4, 4.8 g L−1 KH2PO4, 3.93 g L−1 NaCl, 0.029 g L−1 EDTA
and 0.5 g L−1 glucose; pH 7.0).

7.1.2. Cell Imaging and Tracking
The cells were infused into microfluidic chips (for details about
the fabrication see Supplementary Material). The chips had
two wide chambers connected by a maze-like mid-section (see
Figure S1). This region was made of periodically arranged square
structures with a side-length of 20 µm. In this study, two different
chips were fabricated with different widths of the channels in
the maze (5 µm and 8 µm). The cells freely swam in the wide
chambers and occasionally entered the maze and explored this
region as well. The GFP-expressing cells were visualized in the
chips using an IX71 inverted microscope equipped with a 20X
UPLFLN-PH objective (both Olympus, Japan) and an Orca Flash
4.0 CMOS camera (Hamamatsu Photonics, Japan). Two image
stacks were acquired at 10 fps over 3min for each chip. The
5 µm data set contains 45 trajectories with a total length of 409 s.
The 8 µm data set consists of 346 trajectories with a total length
of 2,231 s.

A custom Matlab program based on the Image Processing
Toolbox (version R2015a, The MathWorks, USA) together with
the open source image analysis platform Fiji were used to process
the image sequences. For each image stack, the images projected
into a single image by taking the median value for each pixel
over stack. The median image was subtracted from each frame to
eliminate non-moving objects including dead cells. A despeckle
filter was then applied to correct the noise at the CMOS-sensor
of the camera. Afterward, the high frequency noise in the images
was filtered out by a Gaussian blur filter. The filtered images were
binarized by using maximum entropy thresholding following
Kapur et al. [43]. The binary images were further processed to
find connected regions in the images using the built-in function
bwconncomp. The regionprops function was used to determine
the size and centroid of the objects. Finally, the centroid
position was tracked utilizing the algorithms by Crocker and
Grier [44].

7.2. Simulation
All simulations have been implemented as event-driven
algorithms in Python 3.7 using the freely available packages
NumPy and matplotlib. Simulations used in section 4 were
performed on an unbounded domain with channels being
located on the intervals [k(b+w)−sign(k)w2 , k(b+w)+sign(k)w2 ]
with k ∈ Z in x- as well as in y-direction. Therein all bacteria
start their walk at zero at time t = 0 positioned in the middle
of the same crossing in a random direction Ed taken from a
uniform distribution. For each bacterium, N tumbling events
are simulated. At each step a random variable τ is drawn from
an exponential distribution with mean τ0 representing the run
time until the next tumbling event. Using the constant speed
v0 the new position Exi of the bacterium is determined from its
prior position Exi−1 as Exi = Exi−1 + Edτv0. Only if this lies inside
a crossing, a new walking direction Ed (forward, right, backward,
left) is randomly drawn from a uniform distribution and used as
the direction of the next step. The variable parameters are set to
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be equal to the experimentally determined values. These are in
the two-dimensional confinement a mean run time τ0 = 1.8 s,
a constant speed v0 = 10 µm s−1 and a side length b = 20 µm
of the obstacles for a width w = 5 µm of the channels, and
τ0 = 1.7 s, v0 = 10 µm s−1, b = 20 µm for a channel width
w = 8 µm. In Section 5, instead of a uniform distribution,
the experimentally determined turning angle distribution (see
Figure S6) for bacterial movement with spatial restrictions
only in the z-plane has been used. By taking the probability to
turn in an angle between 0◦ and 45◦ in the two-dimensional
unrestricted case, the probability to go forward pf is set to be
pf = 0.1. For the probability to go right pr and to go left pl
the relation pr = pl = 0.3 holds, being each approximately
half of the probability to take an angle between 45◦ and 135◦

in the unrestricted experiments. Finally, the probability to turn
backwards pb is pb = 0.3, corresponding to the probability to
turn in an angle between 135◦ and 180◦. Also, here the simulated
bacteria do not start in the middle of one crossing at t = 0, but
at a random place inside the lattice. To plot the trajectories—as
done in Figure 4A—the trajectories were centered to the zero
position. For both comparisons, i.e., forw = 5 µm andw = 8 µm,
the same number of trajectories and same trajectory lengths were
simulated as were tracked in experiments.
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