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Ordinary differential equation (ODE) models are frequently used to mathematically

represent the dynamic behavior of cellular components, e.g., for describing biochemical

reaction networks. Solutions of these ODE models depend non-linearly on parameters,

which can be estimated using experimental data by minimizing the discrepancy between

data and the model trajectories. In realistic applications, only relative, sparse, and noisy

data is available which makes model fitting a challenging optimization problem. In order

to take account for the non-convexity of the objective function and to reveal the existence

of local optima within the parameter search space, optimization is performed with

multiple initial guesses. For statistically valid conclusions it is of general interest, whether

distinct optimization outcomes are correctly identified as local optima originating from the

non-convexity of the objective function as typically presumed, or if they are only a result

of incompletely converged optimization runs and could be merged by a connecting path

to a single optimum by e.g., fine-tuning of the numeric algorithms. To clarify this question

in application settings, we present an approach for finding optimal paths between

parameter estimates in complex objective function landscapes. By analyzing the profiles

of these paths, conclusions about non-trivial connections of parameter estimates can

be made and by this, it can be reliably determined if two different optimization results

belong to the same or to distinct local optima. For optimal path finding, we adapt the

nudged elastic band (NEB) method and apply our approach to a benchmark model with

a suboptimal optimization result, which yields a preferable grouping of fits afterwards.

Keywords: ODEmodels, parameter estimation, optimization, optimal paths, nudged elastic band, systems biology

1. INTRODUCTION

Ordinary differential equation (ODE) models are widely used for modeling in many scientific areas
like physics, engineering econometrics, as well as, in the biomedical life sciences [1]. These types
of models are utilized for understanding neural systems, social systems, the WWW, food webs,
electrical power grids, tumor cell kinetics, or the dynamics of infectious diseases. Here, we focus on
the context of systems biology, where intracellular systems like protein interaction networks, e.g.,
in signal transduction pathways or gene regulatory networks are described, as well as, intercellular
processes of cell populations are investigated [2–6].
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The topology of the model and its parameters comprise the
interaction of the model components and allow for a quantitative
description of the dynamic behavior of the system. Typically,
model parameters, i.e., the reaction rate constants of biochemical
interactions are not known in all biological conditions and
prior knowledge is rarely available, so that the models need to
be calibrated by tuning the parameters in order to adequately
describe the observations. Experimental data is available from
quantitative experimental biology, but typically only a limited
number of data points or time courses can be recorded only from
parts of the system, and observables are often only accessible
through indirect measurement techniques by using antibodies
for signal detection. However, observations can be linked to
their corresponding biological counterpart in the ODE model
and parameters of the model can be estimated and further
used for model predictions of e.g., experimentally unaccessible
components. Furthermore, the measurement noise has to be
quantified and incorporated to the model, in order to assess the
uncertainty of the parameters and predictions [7, 8].

The mathematical problem of parameter estimation, i.e.,
fitting the model to the data, is frequently formulated as finding
an optimal parameter set minimizing an objective function,
which quantifies the deviation of the model trajectories from
the recorded data. To profit from useful statistical properties
like consistency and efficiency, this is typically formulated as a
maximum likelihood estimation (MLE) [9].

Commonly, models in systems biology are sparse, only
partially observed and the ODE systems have solutions which
are non-linear with respect to the parameters. Typical models in
this field have tens to hundreds of estimated parameters, while
the ratio of number of data points to estimated parameters in
applications shows a broad spectrum from values slightly larger
than one up to∼370 data points per estimated parameter [10]. As
the amount of data is often limited and depending on the quality
of data, such models yield complex landscapes of the objective
function in the high-dimensional parameter search space with
a high degree of non-convexity, i.e., inducing the existence of
several local optima [10]. Furthermore, non-identifiabilities in
the model, i.e., redundancies in the parameterization or the lack
of informative data for the determination of some parameters
can cause entirely flat manifolds or long skewed and bended
valleys in the high-dimensional landscapes, further increasing
the complexity of the likelihood landscapes in which optimal
parameter values need to be found [8, 11, 12].

High-performance numerical algorithms are available
to efficiently tackle the computational complexity of the
optimization problem, with prominent examples being e.g.,
local and global derivative-based deterministic methods,
as well as, stochastic particle swarm, simulated annealing
or evolutionary approaches [12–16]. The quality of the
optimization outcome highly depends on the appropriate
choice of the algorithm, as well as, on several user-supplied
and pre-defined configurations. Typically, numerical optimizers
require configuration parameters as e.g., the maximal number
of iterations for termination or tolerances, acting as thresholds
either for the step sizes, the evaluated function value or other
optimality measures to indicate convergence. If for example

the optimizer chooses the size of the next step lower than the
defined step tolerance, the algorithm stops, and convergence of
the fit is assumed.

These configuration parameters have to be chosen carefully
since too strict tolerances do not necessarily yield more accurate
results. Thismay lead to cases where the optimizer continues with
too many futile steps, whereas in the opposite situation of not
strict enough tolerances, an optimizer is stopped too early and
cannot reach the optimum. Adjusting the optimizer tolerances
is usually a trade-off between computational resources and
requested accuracy for the specific application. Unfortunately,
for this task only “rule-of-thumb” methods exist and it is
up to the user how to properly choose these configuration
parameters for a beneficial outcome in applications. Because of
the strong dependence of the proper choices of the algorithms
and configurations on the model size and quality of data,
optimization is still considered as a major bottleneck in the field
of mathematical models for life sciences [10, 14, 17, 18].

In this work, we focus on a so-called multistart optimization
strategy, i.e., we utilize a local deterministic optimizer which
starts from multiple randomly sampled initial guesses. This
combination of a local optimization method with a multistart
extension which covers the global search requirements has been
shown to perform best in similar applications and is commonly
used in the field of ODEmodels in the context of systems biology
[3, 16]. As a local deterministic optimizer cannot escape from a
suboptimal basin of attraction, the rational formore complex, i.e.,
non-convex landscapes is to restart optimization from multiple
regions in the parameter space in order to preferably cover all
basins of attraction.

The results from the multistart optimization procedure
can be used to check the performance of the optimization
approach. For an adequate choice of tolerances, a certain
fraction of fits converge to the same optimum. However, it is
often observed that distinct local optima exist, from which the
deterministic optimizer once entered cannot escape toward the
global optimum [10].

However, when checking the performance of such a multistart
optimization procedure, often non-unique parameter estimates
are observed, indicating either a suboptimal optimization
approach or a large number of local optima. Because typically,
only the objective function’s value and the estimated parameter
values are recorded, further information for assessing the
structure of such a complex and high-dimensional landscape
is missing, while additional evaluations are computationally
expensive. Since the paths between the multistart optimization
end points in the objective function landscape are typically
unknown and no information about the connectivity of
parameter estimates are available, quality control of themultistart
optimization result is difficult. From the fits, it cannot be properly
distinguished if two parameter estimates are representatives of
the same or of distinct and separated optima, as appropriate
methods for finding optimal paths in these complex landscapes
and for checking the connectivity of parameter estimates
are not available.

A reason for such a suboptimal multistart optimization
outcome might be either a too small sample size of the initial
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guesses compared to the actual number of local optima. Or,
on the other hand this could be the result of an inadequate
optimizer setup, where more fits should have been converged to
the same likelihood value, but instead stopped before reaching
the optimum and thus causing a rather continuous distribution
of likelihood values.

To overcome the issue of limited interpretability of the
multistart optimization results due to the lack of methods
to evaluate connectivity of parameter estimates in complex
landscapes, we adapt optimal path finding methods in high
dimensions from the field of theoretical chemistry, where smooth
transition states are computed in a similar setting. For this, we
present the analysis of optimal paths between the parameter
estimates by utilizing the nudged elastic band (NEB) method in
the context of ODE models for systems biology.

Using these methods, a non-trivial path between two
points in the high dimensional parameter space can be found
and evaluated with controllable and adjustable step size.
From inspection of the path’s profile, conclusions about the
connectivity of the parameter estimates can be drawn. If for
example, an optimal path is found which indicates a connection
between the two parameter estimates by a smooth transition
without exceeding a certain statistical threshold in terms of
the objective function value, then all evaluated parameter
vectors along this path are equally well in accordance with
the analyzed data. If further convexity of the path’s profile is
fulfilled, any parameter vector from this set can be chosen as a
representative of the respective optimum. We further illustrate,
how this approach can be used to merge fits from a multistart
optimization result to groups of representatives of distinct and
separated optima.

2. METHODS

2.1. Mechanistic Modeling and Parameter
Estimation
A dynamical model is defined by a set of coupled ordinary
differential equations (ODE):

ẋ = f (x(t), u(t), θk) (1)

describing the temporal evolution of states x(t), which in the
context of biochemical reaction networks are concentrations
of cellular components, e.g., proteins. Their interactions within
the mechanistic model are characterized by rate equations f

comprising external inputs u(t), as well as, dynamical model
parameters θk, e.g., reaction rate constants. Initial values x0 : =

x(t = 0) of the states can also be treated as unknown parameters
θ init of the model. Solutions of the system in the form of Equation
(1) are non-linear with respect to the parameters and need to be
integrated numerically.

Observations of the biological system often depend on e.g.,
the availability of specific antibodies, so that usually only parts of
the system can be experimentally accessed and time courses with
limited number of time points and few repetitions are feasible.
Due to the properties of experimentation techniques inmolecular

and cell biology, the generated data:

ydata = g(x(t), θobs)+ ǫ (2)

has to be linked via observation functions g to the model
states x(t), comprising observation parameters θobs, such as e.g.,
scalings and offsets. Typically Gaussian noise ǫ ∼ N (0, σ 2) with
unknown standard deviation σ is assumed, while the presented
methodology would also allow for other distributions, as well as,
for more complex error models σ (θσ , x(t)) with unknown error
model parameters θσ .

The dynamic model in Equation (1) and the observation
functions in Equation (2) are fully described by the parameter
set θ := {θk, θ init , θobs, θσ } which needs to be calibrated in order
to adequately describe the data. For this, the discrepancy between
experimental data ydatai and model trajectories yi(θ) = g(x(ti), θ)
needs to be minimized by finding the optimal parameter set, i.e.,
the maximum likelihood estimate [9]:

θ
∗
MLE = arg max

θ

ℓ(y|θ) = arg min
θ

(

−2 log ℓ(y|θ)
)

= arg min
θ

χ2(θ) (3)

with likelihood function ℓ. In the case of Gaussian noise ǫ this
coincides with weighted least-squares estimation [19, 20], i.e.,
minimization of:

χ2(θ) =
∑

i

(

ydatai − yi(θ)
)2

σ 2
i

. (4)

As a result from Equation (3), we refer in the following to
minimization of the negative log-likelihood−2 log ℓ(y|θ) =: L(θ)
as to finding a minimum in the likelihood landscape throughout
the manuscript for simplicity and convenience. To ensure
positivity in the parameters, which is reasonable in the context of
biological systems and in order to improve numerical stability, all
parameters are log10 transformed as suggested e.g., in Hass et al.
[10] and Kreutz [21].

Likewise to the solutions of the ODEs, the likelihood
functions are non-linear with respect to the parameters, which
makes parameter estimation, i.e., optimization a non-trivial
task, demanding for efficient numerical algorithms. Moreover,
powerful optimization algorithms require efficient and reliable
gradient information of the likelihood. Therefore, the inner
derivatives ∂x/∂θ are needed and can be calculated using the
sensitivity equations:

d

dt

dx

dθ
=

∂f

∂x

∂x

∂θ
+

∂f

∂θ
. (5)

While the partial derivatives ∂f /∂x and ∂f /∂θ can be derived
analytically, the sensitivities are obtained by solving an additional
ODE system with dimension dim(x)× dim(θ) which is attached
to the original ODE system from Equation (1) and solved
simultaneously [22]. Using the sensitivity equations is superior to
the finite differences approximation approach as it is faster and
numerically more stable [16].
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The Data2Dynamics modeling environment [23, 24] utilizes
the CVODES-package of the SUNDAILS Suite [25] for numerical
ODE integration and the MATLAB function lsqnonlin [26] as
local deterministic optimizer. This approach is combined with
a multistart optimization method, i.e., optimization is repeated
for multiple randomly drawn initial guesses. For each initial
guess, the optimizer is used to fit the model to the data,
i.e., an optimal value of the likelihood is calculated and the
optimization end point is recorded. The performance of such
a multistart optimization procedure is typically assessed by so-
called waterfall plots, as described in section 3.1. However, in the
case of a suboptimal outcome, it is unclear how to proceed as no
conclusion about the connectivity of the parameter estimates can
be drawn from the waterfall plot. As demanded in Kreutz [17],
we present a methodology which enables to discriminate between
the reasons for suboptimal multistart optimization result by
assessing the connectivity of parameter estimates.

2.2. Path Finding in High-Dimensional
Landscapes
In order to be able to further extend the usage of the waterfall
plot by checking the connectivity of parameter estimates, efficient
methods are necessary to identify also non-trivial connections
between points in the parameter space. Identification of minimal
energy paths and free energy barriers in high-dimensional
landscapes is a well-known and actively discussed task, especially
in the field of computational chemistry and physics of molecular
dynamics for finding smooth transitions states of chemical
components [27–30]. There, in analogy to the described ODE
models, evaluation of the objective function is rather expensive in
terms of computational resources, such that sampling the high-
dimensional parameter space is not practical and path finding
remains a non-trivial task.

Several algorithms and methods have been applied and
extended, like the so-called nudged elastic band (NEB) method
which is currently one of the state-of-the-art approaches for
optimal path finding in computational chemistry [31, 32].
Therefore, we adapt the NEBmethod for likelihood landscapes of
non-linear ODE models in the context of systems biology in the
following and utilize it to analyze the connectivity of parameter
estimates from multistart optimization sequences.

2.3. Nudged Elastic Band Method
Spring methods for path finding, are characterized by an elastic
band or a chain-of-states which is applied to a high-dimensional
landscape and converges to an optimal path between its two
fixed end points, as depicted in Figure 1A. The presented
concept uses the analogy of a chain of nodes which are pairwise
connected by springs.

Two forces are assumed to act on each node: A natural force,
which moves the individual node toward lower regions in the
landscape, following a steepest descent based on the negative
gradient of the landscape at the individual node. The second force
represents the attracting force of a hypothetical spring connecting
two nodes. It hinders the nodes from freely moving through the
landscape, but instead seeks to equate the distance between the
adjacent nodes. A relaxed band, i.e., the position of the nodes in

which all forces are in the equilibrium represents the final state
and defines the optimal path.

The nodes θ i are connected by springs to their neighbors θ i−1

and θ i+1 and the so-called spring forces:

Fsi = k (θ i+1 − θ i) − k (θ i − θ i−1) (6)

with spring constant k ensure an adequate distribution of the
nodes along the path. By this, the nodes are prevented from
moving uncontrollable in the force field of the natural force:

Fni = −∇L(θ i), (7)

i.e., the force at the respective nodes caused by the local gradient
of the likelihood function L(θ i). In this basic formulation, the
band is initialized on an initial path 2 = {θ0, ..., θ i, ..., θ end},
which is chosen to be the direct connection between the
fixed end points θ0 an θ end with N evenly distributed free
nodes in-between.

In the so-called relaxation phase, the band converges to the
optimal path by moving the free nodes and thus equilibrating
the forces:

Fi = Fni + Fsi (8)

on all nodes of the band (c.f. bands in Figure 1A). Depending on
the actual geometry of the likelihood landscape, the number of
free nodes N and the spring constant k need to be adjusted in
order to find a suitable optimal path.

It has been shown that this basic formulation has some
disadvantages, i.e., corner-cutting for large k or down-sliding for
weaker spring forces, leading to either a poor resolution in the
vertex of a valley (c.f. band with solid black line in Figure 1A) or
a slightly less optimal path compared to the true optimal path (c.f.
gray dotted band in Figure 1A), respectively [31].

To overcome these issues, the nudged elastic band (NEB)
method has been proposed [31] and is considered as one of
the standard methods [33] of molecular dynamics in theoretical
chemistry. The idea of a nudged band is to disentangle the forces:

FNEBi := Fni⊥ + Fsi ‖ (9)

on the band nodes, by projecting the spring contributions on
the normalized tangent τ̂ i of the path at θi, as illustrated in
Figure 1B. For the natural force:

Fni⊥ = −∇L(θ i)+
(

∇L(θ i) · τ̂ i

)

τ̂ i, (10)

only the force perpendicular to the path tangent is considered,
such that the displacement of the free nodes by the natural
force is constrained on the local perpendicular hyperplanes. This
key feature of the NEB method circumvents that a node moves
constantly in direction of one of its two neighbors θ i−1 and
θ i+1 driven by the components of the local natural force along
the path. Without disentangling the forces, the nodes of the
band would predominantly move toward the fixed end points θ0

and θ end, instead of exploring the space in-between. The spring
force Fsi ‖ = (Fsi · τ̂ i)τ̂ i on the other hand, is restricted to
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FIGURE 1 | Spring methods for path finding. (A) An elastic band with initial nodes (white dots) connected by springs is relaxed in an illustrative likelihood landscape.

The dashed light gray band illustrates an intermediate step during relaxation according to the forces in Equation (8). The dark gray band with the dotted line depicts

the state of equilibrating forces for a large spring constant k, which does not completely converge to the minimal, i.e., optimal path. The black solid line and circles

represent the final state of a band with adequately small spring constant k and coincides with the optimal path. (B) Nudged Elastic Band (NEB) with forces according

to Equations (9) and (10). The blue arrow represents the tangent along the path of the i-th node, characterizing the hyperplane (dashed line) on which the node is

constrained.

the tangential component along the path, seeking only an equal
spacing between the nodes, i.e., the hyperplanes without inferring
the optimization guided by the natural force on the hyperplanes.

The optimal path is characterized by the set of parameters
2

∗ = {θ0, ..., θ i, ..., θ end} equilibrating all forces, i.e., minimizing
the functional:

S
NEB (θ0, ..., θ i, ..., θ end) =

N
∑

i=1

L (θ i)

︸ ︷︷ ︸

natural forces

+

N
∑

i=0

k

2

(

θ
τ i
i − θ i+1

)2

︸ ︷︷ ︸

spring forces

(11)

with restriction on the aforementioned hyperplanes at θ
τ i
i with

orientation defined by the constraint θ i · τ̂ i = 0. The minimized
functional can be interpreted as total energy of the band,
consisting of the potential energy contributions at the nodes
resulting in the natural forces and the spring potential from
the springs between the nodes resulting in the spring forces.
The discussed geometrical constraints i.e., the restriction on the
hyperplanes reflects the nudging feature of the band, i.e., the
disentanglement of natural and spring forces in order to ensure
an equal spacing of the nodes along the optimal path.

For implementation of the NEB concept within our modeling
framework, we realize N copies of the considered ODE model
and constrain optimization of the parameters of each copy of
the model to the respective hyperplane perpendicular to the
path tangent, by manipulating the individual gradients according
to Equation (10). A local deterministic optimizer is used to
minimize the path functional SNEB, which comprisesN×dim(θi)
free parameters and requires parallel evaluation of N-times the
model equations. The implementation and sample scripts are
available within the D2D framework for modeling of ODE
models [24].

3. RESULTS

In the following section, we discuss how interpretability of
the results of a multistart optimization can be increased. It is
presented, under which circumstances two parameter estimates
can be grouped together and assumed to be representatives of
the same optimum. As a proof-of-concept, we apply the NEB
path finding and multistart optimization merging approach to a
well-known signal transduction model from the literature with
experimental data and confirm the capacity of the proposed
methodology to uncover the local optima structure by merging
fits from a suboptimal multistart optimization result.

3.1. Inspection of Waterfall Plots
The results of a multistart optimization sequence are typically
illustrated for visual inspection in the so-called waterfall plot
[16, 34], where the fits are ordered by their optimization outcome,
i.e., by the likelihood value of the individual optimization end
points. The waterfall plot serves to identify groups of fits with
the same likelihood value after optimization, assuming that they
belong to the same local optimum. Thus, from the form of the
waterfall plot, conclusions about the optimization performance,
as well as, about the local optima structure of the likelihood can
be drawn.

We use two illustrative likelihood landscapes depicted in
Figure 2 to discuss the concept of the waterfall plot and its
interpretability. The likelihood landscape with two parameter
dimensions in Figure 2A reveals four separated optima. In
analogy to a multistart optimization procedure in applications,
initial values are drawn randomly from the whole parameter
space. In the high-performance setting of the optimizer, the
algorithm starts from the individual initial guesses and fully
converges to one of the optima. In the suboptimal numerical
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setting, the optimization algorithm is insufficient in most
cases, i.e., it is unable to converge to one of the optima, as
it erroneously stops too early. The performance of the two
optimizer configurations can be objectively assessed in the
waterfall plot (c.f. Figure 2B). A stair-like plot of four distinct
steps, i.e., plateaus with the same likelihood value appears
in the waterfall plot, indicating four groups of fits in the
high-performance setting. However, the likelihood values of
the two intermediate steps are relatively close and not easy
to discriminate by visual inspection, so that one tends to
erroneously bunch the fits #8–#20 (highlighted in red) of the
high-performance setting together in one group.

To circumvent these incorrect interpretations of the waterfall
plot, it is recommended to also check the parameter distribution
of the fits as depicted in Figure 2C. By this, both, likelihood
distances of the fits and the parameter structure can be assessed
[35]. In cases, where the optimizer did not fully converge, a
certain correlation in the deviation in terms of objective function
value and distance in the parameter space between two similar fits
is expected. From the plot, it can be concluded, that the discussed
fits clearly split up into two separated groups with opposing
parameter values, indicating two distinct and distant optima in
the parameter space.

In contrast, for the suboptimal numerical case, only the two
fits with the lowest likelihood value form a step and yield the
same parameters. All other fits plotted in blue form a suboptimal
waterfall plot with a slope of gradually increasing likelihood
values without any distinct stair-like structure. This outcome
is supported by the random-like distribution of the parameter
values (blue dots) in the panel below. Inspection of panel A
reveals that some fits in fact converge to three of the four optima,
however in applications with a similar suboptimal result, the true
number of local optima is not indicated in the waterfall plot
and, more importantly, it cannot be concluded, that the global
optimum is found, as a larger sample size of the initial guesses
might reveal additional optima with lower likelihood value.

A second typical likelihood landscape is illustrated in
Figure 2D. It does not possess a unique optimum, but rather
reveals a bended valley-like structure at the lowest likelihood
level. Furthermore, it contains a flat manifold in the upper right
corner, where the gradient for all initial values is zero and thus all
fits immediately stop without moving toward an optimum. Both
structures are typical cases of either structural or practical non-
identifiabilities in the likelihood [8, 11], which are a consequence
of over-parameterization of the model or appear when the
information provided by the available data is not sufficient to
restrict parameters to finite confidence intervals, respectively.

In the well-performing setting of the optimization setup, all
fits outside the flat region converge to a point at the lowest
level of the likelihood valley. This yields a waterfall plot like
in Figure 2E with two distinct plateaus. Again, one would
erroneously tend to conclude that two distinct and unique optima
are found. However, inspection of the parameter distribution plot
in Figure 2F shows 16 different parameter estimates with the
same minimal likelihood value. While a functional relation, i.e.,
an inverse correlation of the parameter values on the lowest step
can be easily detected and linked to a non-identifiability of e.g.,

two coupled model parameters, the parameter estimates from
the highest step all have the same likelihood value, but exhibit
a random-like distribution in their parameter values. Similar
conclusions can be drawn from the blue fits of the suboptimal
setting in Figures 2D–F but in addition, the waterfall plot
shows a gradual transition between the two levels, comparable
to a “slippery stair.” Likewise to the first example, neither the
structure of the waterfall plot, nor the parameter distribution
plot can give evidence, if fits #10–#19 (highlighted in blue)
are members of the global optimum or if there are local
optima in-between.

It should be noted that for applications, explicitly assessing
the likelihood landscape like in Figures 2A,D is not feasible
and thus, all conclusions need to be drawn from the respective
waterfall and parameter distribution plot alone. We surmise
that a combination of both presented likelihood scenarios might
be the dominant setting in applications, so that there is a
particular need for additional tools analyzing the grouping of
fits by checking the connectivity between two points in the
parameter space.

3.2. Connecting Paths Between Parameter
Estimates
To further extend the interpretability of a multistart optimization
result and to merge fits of the same optimum together into
one group, connections between the fits, i.e., paths between
two estimates in the parameter search space are analyzed.
Although parameter distribution plots enable to qualitatively
assess the distribution of the fits in the parameter space,
different physical units and the diverse classes of parameters (e.g.,
reaction rate constants, initial concentrations, observation, or
error parameters) render Euclidean distances between parameter
estimates difficult to interpret.

To assess the connectivity of two fits, evaluation of the
structure of the likelihood landscape in-between the two
points is necessary. For the path profile, likelihood values
along a path between two points in the parameter space
can be evaluated and its form can be used to analyze their
connectivity. For example, a straight line between the two
points represents the naïve, yet sometimes efficient approach
of the direct path. In a convex landscape, the likelihood
profile of such a path from a not fully converged fit to the
optimum would be monotonically decreasing (c.f. blue fits
in Figure 2A). However, in applications with a slightly more
complex landscape like in the example of Figure 2D, a direct
path would fail to connect e.g., two optimization end points
within the bended valley-like optimum. Thus, we suggest and
employ the NEB method in the following in order to take
account also for more complex paths in high dimensional
likelihood landscapes.

When an optimization run of a parameter estimation
procedure did not fully converge to the respective optimal
point in the parameter space, monotone or convex path profiles
result as a consequence, as depicted in Figures 3A–C for the
optimal path, e.g., from a NEB path search. As illustrated in
scenario B, such a path could also reveal a new optimum, i.e.,
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FIGURE 2 | Illustrative likelihood landscapes in (A,D) and resulting waterfall plots in (B,E) with their respective parameter distributions plots in (C,F).

A high-performance setting is plotted in red, whereas a suboptimal optimization setup is realized by restricting the maximal number of iterations and depicted in blue.

a better representative of the same optimum and might be
utilized as an additional fine-grain optimization strategy [36].
In applications, more complex tasks, e.g., a saddle point region
connected to an optimum, separated optima like in scenarios
C-E or bended valleys like in Figure 2D are the predominant
challenges, where the direct path qualitatively differs from the
optimal paths.

In these cases, the direct path shows an increase of the
likelihood between the two points. Utilizing a more flexible
optimal path finding algorithm, like e.g., the NEB method,
a connecting path can be found which in principle would
also yield acceptable directions for an optimizer, i.e., the path
profile reveals monotonicity along the path as illustrated in
Figure 3C. However, for the case of separated optima where no
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FIGURE 3 | (A–E) Illustrative likelihood landscape scenarios and their respective path profiles revealing connections between two points in the parameter space

(× and ◦). The gray line represents the direct path in the likelihood landscape and the respective path profile. The red paths show the outcome of an optimal path

finding method, e.g., the NEB method. By this, more complex paths can be found, as for instance in scenario (C), where a connection is denied by the direct path,

but an appropriate path finding method reveals the monotonically decreasing connecting path. The table in (F) summarizes conclusions about connectivity of the two

points in the respective scenarios. Only the optimal path method is able to adequately draw conclusions about the connectivity of the two points.

connecting path between the two end points of the path exist,
the NEB method would reveal a non-monotonic, concave profile
(c.f. Figure 3D).

Another scenario is depicted in Figure 3E, where the optimal
path is entirely below the likelihood threshold of the higher end
point but does not have a convex profile. In such a case, where
a small barrier persist in the path profile, it is concluded that
the two points are representatives of separate optima because the
barrier would not be surmountable for a local optimizer.

We conclude, that connectivity between two points in the
parameter space can be assumed, when a connecting, i.e., convex
path between the two points is found. It should be noted at
this point, that for finding a connecting path it is sufficient to
show connectivity of e.g., a NEB path once. However, using
a local optimal path searching method that reveals a non-
connecting, i.e., concave path profile, it is not possible to
conclude that the corresponding optima are in fact separated,
because a convex path might still exist, but the NEB approach
might fail to find such a path, e.g., due to a suboptimal
initialization. Finding a convex path is sufficient for concluding
connectivity but, in contrast, non-convex paths are only

necessary, but not sufficient for concluding non-connectivity
(c.f. Figure 3F).

3.3. Merging of Multistart Fit Results
Being able to identify fits from the waterfall plot as representatives
of the same, i.e., connected local optima by connecting paths
as described above, enables to merge the fits resulting from a
multistart optimization approach reliably into groups. Starting
with the best fit, we generate optimal paths using theNEBmethod
and profiles are checked for connectivity for all subsequent fits.
For increasing the efficiency, i.e., lowering the computational
cost and combinatorial complexity of the pairwise path finding
between two fits, first the initial path, i.e., direct path is evaluated
and checked for connectivity.

Connectivity observed by a direct path profile occurs mostly
for cases where fits are already close to a local optimum,
i.e., are almost fully converged and often also have a small
Euclidean distance from each other. In these cases, often the
numerical integration accuracy influences the fine-grain surface
of the likelihood and more stringent tolerances controlling the
numerical accuracy are required.
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If the initial path does not reveal a connecting profile, the NEB
approach is applied using a large spring constant k. When such
a NEB path finding run was not sufficient, i.e., no connecting
path was found, the procedure is repeated with a smaller spring
constant k in order to allow more flexibility of moving the free
nodes in the likelihood landscape. Thus, spring constants are
decreased subsequently up to a limit of k = kmin or until a
connecting path is found and the fit is identified as representative
of the global optimum likewise to the best fit. Both fits are then
grouped together in the waterfall plot and excluded from the
further pairwise path searches.

Likewise, the procedure is iteratively repeated, starting with
the next best fit from the waterfall plot for which a connecting
path was not yet found in the previous runs. All remaining fits
are subsequently used for pairwise path searches until either
a connecting path is found or a fit is declared as the first
representative of an isolated local optimum.

3.4. Application to JAK/STAT Signaling
Model
In the following we use the JAK/STAT signaling model from
Swameye et al. [37] as a proof-of-concept application for the
NEB path finding andmultistart optimizationmerging approach.
The system consist of four species describing the proteins
concentrations of STAT5 and its phosphorylated forms which
upon Epo activation at the Epo receptor transduct the activation
signal along the intracellular pathway through the cytoplasm into
the nucleus and initiate gene transcription. The input function
of the external stimulus in form of the measured activated Epo
receptor concentration is adapted from Swameye et al. [37] and
will not be fitted in the following. The 46 data points were
collected from quantitative immunoblotting, i.e., were measured
using antibodies and therefore the objective functions include
in total four scaling and offset parameters, which are estimated
comprehensively with the two respective error parameters
and the four rate constants, i.e., dynamic parameters of the
described signaling pathway. In total 10 parameters are estimated
on the log10 scale and with upper and lower boundaries at
θi ∈

[

10−5, 103
]

.
To show the capacity of our approach, we employ the

JAK/STAT signaling model as a small and fast to compute
benchmark model with two optimizer setups. To be able to
investigate the described suboptimal case of waterfall plots in a
controlled manner, we use an intentionally suboptimal optimizer
setup for generating the multistart optimization result, as well
as, for NEB path finding and waterfall plot merging. We mimic
a case where the optimizer settings do not match the demands
characterized from the model size, quality and amount of the
data. For this, we set the step tolerance of the local deterministic
optimizer implemented in the MATLAB function lsqnonlin [26]
to a very loose value of TolX = 10−1, causing a too early
termination of the individual fits. Using a multistart sequence
from 50 randomly sampled initial guesses, the best fit in this
setting is identical with the published parameter values, i.e.,
the model trajectories are identical with the published fits
from Swameye et al. [37]. To be able to compare the results

of the NEB-based waterfall plot merging approach with an
appropriate optimizer setup, we perform the analysis with the
same initial guesses with the standard setup of the step tolerance,
i.e., TolX = 10−6.

Both resulting waterfall plots are shown in Figure 4. The
intentionally suboptimal setting in Figure 4A exhibits a form of
the waterfall plot from which an unambiguously clear conclusion
about underlying local optima structure cannot be drawn.
Likewise, the plot of the distribution of estimated parameters in
the panel below does not allow for grouping the fits. The same
kind of outcome often appears in applications when using the
standard settings of the optimizer with more complex models
in terms of number of estimated parameters, number of non-
identifiable parameters or amount of informative data points.

The waterfall plot of the standard setup in Figure 4B shows
a favorable structure with 13 fits on the lowest level and ∼6
additional steps, indicating convergence of the optimizer in
several local optima. From the parameter plot in panel B it
can be surmised, that the top 13 fits from the lowest level are
close together, as no differences from the best fit parameter
vector are visible by eye. However, when zooming in (c.f. inset
in Figure 4B), it can be seen that a very small rugged slope
is observed, which is in the order of magnitude of numerical
resolution. On the higher steps, a similar observation is made
but on a larger scale (not shown). Similar to the discussed case
in Figure 2, fits #14–#23 cannot be easily distinguished by visual
inspection of the likelihood value in the waterfall plot. However,
the parameter distribution plot below exhibits the two groups in
more detail.

3.5. NEB Method Reveals Optimal Paths in
JAK/STAT Signaling Model
To apply the NEB method to the multistart optimization results
of the JAK/STAT signaling model, we use 25 free nodes per
band between the fixed start and end points, i.e., two parameter
estimates or fits from the waterfall plot. Besides the number
of free nodes, which corresponds to the resolution of the
stepwise linear band, the spring constant k is the most relevant
configuration parameter for the NEB path finding. A high value
of the spring constant results in a strong attractive force within
the band, ensuring equal distances between the nodes, but also
less flexibility of sliding away perpendicular to the path, i.e., less
flexibility in the orientation and positioning on the hyperplanes
for more complex landscapes, as discussed in section 2.3. Thus,
is can be assumed that iteratively decreasing the spring constants
k gradually increases the level of flexibility in terms of allowing
more deviations from the initial path for more complex forms of
the path.

Figure 5A shows a set of path profiles for varying spring
constants k between fits #1 and #13 of the multistart optimization
results from Figure 4A. The initial path, i.e., the direct path
between the end points of the band shows a clearly non-
connecting path with a distinct increase of the likelihood in-
between. The profile coincides with the relaxed NEB path with
spring constants of k = 100 and above. When gradually
decreasing the spring constants to values of k ∈ {35, 25, 10},
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FIGURE 4 | Waterfall plot and distribution of parameters of fits from the same 50 randomly sampled initial guesses in (A) with the suboptimal optimization setup and in

(B) with the standard optimization setup using the JAK/STAT signaling model with ten estimated parameters. For illustration, likelihood values are shifted to the

baseline of one by subtraction of the likelihood value for the global minimum.

FIGURE 5 | Optimal paths from the NEB method for several spring constants k from fit #1 to #13 of the intentionally suboptimal setup for the JAK/STAT signaling

model (c.f. Figure 4A). (A) Shows the path profiles of the NEB approach, as well as, for the initial, i.e., direct path. (B) Depicts the same paths in an illustrative choice

parameter dimensions.

the likelihood amplitude of the path is substantially lowered and
the entire path is below the likelihood value of the highest end
point, i.e. fit #13. However, the path profiles for k = 25 and
k = 10 still exhibit a non-convex and non-monotone path,
from which connectivity of the two parameter estimates cannot
be concluded. From this set, only the path profile of the band
with spring constant k = 35 yields the appropriate equilibrium
of flexibility and cohesion of the band by revealing a monotone

path connecting both end points. Interestingly, the same order
is observed in Figure 5B, where compared to the NEB paths of
k = 25 and k = 10, the blue path of k = 35 is also more
distant from the initial path in the parameter space, although
the spring constant is larger. When further decreasing the spring
constants, even lower paths are found until for very low spring
constants like k = 2 and k = 1, the path profile, as well as,
the path in the parameter space becomes rugged because of the
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FIGURE 6 | Merged waterfall plots. In (A) with the intentional suboptimal optimization setup and in (B) with the standard optimization setup. The top row shows the

waterfall plot before merging the fits based on found connecting paths, indicated by the colored circles on the level of the corresponding first representative of the

connected optimum. The colors indicate the first successful connecting path using a spring constant from the set k = {200, 100, 50, 20, 10, 5, 2, 1}. The bottom row

shows the resulting merged and reordered waterfall plots. For illustration, likelihood values are shifted to the baseline by subtraction of the likelihood value for the

global minimum.

suboptimal performance of the optimization and due to the too
weak attracting spring forces between the nodes for low values of
k of the NEB approach.

3.6. Merging Suboptimal Waterfall Plots
For merging the fits in the following, we apply the optimal path
finding strategy as described before for pairs of fits from the
multistart optimization results. When the direct path between
two parameter estimates shows a non-connecting profile, the
NEB method is performed, starting from the largest spring
constant of the set k = {200, 100, 50, 20, 10, 5, 2, 1} until a
connecting path is found. When such a path is found, it can
be assumed that the two parameter estimates are representatives
of the same optimum and they are grouped together in the
waterfall plot.

First, the waterfall plot from the intentionally suboptimal
optimization setup from Figure 4A is used. For a fair
comparison, the same suboptimal setting of the optimization
algorithm, i.e., a step tolerance of TolX = 10−1 is used for the
NEB path finding, as well as, for the merging approach.

The results are presented in Figure 6A. Connecting paths are
found for 38 pairs of parameter estimates, whereas 12 fits act
as first representatives of the respective optima, implicating that
12 separated optima were found from an originally suboptimal
waterfall plot. Before merging, only the first two fits could be
identified as representatives of the same optimum and only by
visual inspection. All other fits had individual likelihood values,
not allowing for grouping based on likelihood or parameter

values (c.f. Figure 4A). In total, 22 fits are grouped together
on the lowest step, i.e., to the global optimum. These fits are
merged from sometimes large distances in the likelihood value,
with diverse spring constants k, indicated by the different colors
of the circles in the waterfall plot. Interestingly, all nine fits with
the highest likelihood value could be merged to the lowest, i.e.,
the best fit.

The merging approach was also applied to the waterfall plot
from Figure 4B, which is the result of a multistart optimization
with the same initial values as in Figure 4A, but with the standard
choice of the optimizers’ step tolerance, i.e., TolX = 10−6.

Since the first 13 fits of the waterfall plot had very similar
likelihood values with differences only in the order of numerical
accuracy (c.f. inset of Figure 4B), the direct path is in most cases
sufficient for finding a connecting path, as indicated in Figure 6B
by the black circles. Although it is already expected from the
relatively flat lower step in the waterfall plot and from the clear
parameter distribution plot in Figure 4B, it can now be reliably
concluded, that these fits belong to the same optimum. Besides
the majority of the fits which can be merged by direct paths
in the standard setting of the optimizer, proving connectivity
of the fits, i.e., membership of the respective optima, there are
four fits (#45, #47–#49) with higher likelihood for which NEB
path-based merging with diverse spring constants was necessary.
Interestingly, a connecting path from fit #45 to the best fit #1
was found, indicating that even for relatively strict tolerances
of the optimizer, the NEB method may provide additional
connectivity within the likelihood landscape. In conclusion, the

Frontiers in Physics | www.frontiersin.org 11 October 2019 | Volume 7 | Article 149

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Tönsing et al. Optimal Paths in ODE Models

waterfall plot after merging reveals six optima with more than
one representatives.

Themerged waterfall plot of the suboptimal optimizer settings
reveals seven optima with more than one representatives but
with a very large first step, i.e., 22 representatives of the global
optimum. The reason for this might be that these not fully
converged fits stopped in regions of the parameter space where
flat manifolds of the likelihood appear and thus, optimal paths
to different regions, i.e., optima are achievable. Moreover, for an
appropriate optimizer setup it may be possible that the optimizer
makes large efficient steps toward other basins of attraction. As a
consequence, the merged waterfall plot of the reference case, i.e.,
with the appropriate choice of optimizer configurations, yields
less fits in the global optimum but more fits in the higher steps,
i.e., local optima of the waterfall plot.

The computation time for the multistart optimization from 50
initial guesses on a single core of a 3.4GHz CPU was 16 s for the
suboptimal optimizer setting and 59 s for the standard setting.
In comparison, computational demands for the whole merging
procedure are much higher, as calculations for the suboptimal
setting take 1.9 h and 18.1 h for the standard optimizer setting.
This long time results from the sequential pairwise path searching
approach, where a relatively large number of paths with small
spring constants k need to be computed. Partially parallelizing
the approach or re-ordering of the NEB path finding, i.e.,
trying first direct paths on all pairs and then calculate the
NEB path for the remaining fits may increase the speed, and
might be chosen by the user depending on expected outcome in
other applications.

4. DISCUSSION AND CONCLUSION

Parameter estimation in non-linear ODE models with data
from quantitative experimental biology is challenging, so that
appropriate optimization strategies have to be utilized and
properly configured. A powerful instrument is the usage of a
multistart optimization strategy in combination with a local
deterministic optimizer. However, in applications the outcome
of such an approach may still be difficult to be interpreted,
when waterfall plots show non-unique parameter estimates and
parameter distribution plots exhibit strongly varying parameter
values. In such cases, groups of fits cannot be identified
reliably from the likelihood values in the waterfall plot or
the parameter values alone. Furthermore, Euclidean distances
between the parameter estimates cannot be used for merging the
fits, since the connectivity in the likelihood landscape between
the estimates is unknown.

Evaluating whether two results of a parameter estimation
procedure belong to the same local optimum enables to further
improve the interpretability of the multistart optimization result.
Thus, we present an approach which incorporates optimal
path finding concepts from the field of molecular dynamics
in theoretical chemistry and enables to compute and analyze
likelihood profiles between parameter estimates. Herewith, a
reliable grouping of the parameter estimates is ensured and
enables the possibility of merging fits in the waterfall plot. As

a consequence, it can be more precisely assessed how often
the global optimum is found and how many local optima are
comprised in the likelihood. In applications, the insights might
be used to invest the limited computational resources either
into a larger sample size of the initial guesses for the multistart
optimization procedure, or in a fine-tuned optimizer setup with
stricter tolerances and increasing convergence frequency of the
individual fits.

As presented in this work, the basic formulation of the nudged
elastic band (NEB) method for path finding yields satisfactory
results in the proof-of-concept application of the JAK/STAT
signaling model. There, our approach was applied to a small
benchmark model with experimental data in an intentionally
suboptimal setting of the configuration of the optimization
algorithm. By merging the fits with connecting path profiles,
we could process the suboptimal waterfall plot to a preferable
stair-like form of the waterfall plot.

After all, computational costs for such a complete merging
of a multistart optimization result are relatively high. Moreover,
the issue of suboptimal waterfall plots arises predominantly in
larger scale models, where evaluation of the model equations
and thus also parameter estimation is computationally even
more demanding. Because of the relatively high computational
demands for path finding, the presented approach is rather
suitable to examine problematic cases where optimization is
difficult and does not yield satisfying results while the reasons
for this behavior remain unclear. Furthermore, in cases where
local optima cannot be statistically excluded after a multistart
optimization run, as they are below a certain threshold in
terms of the likelihood value and are thus also in accordance
with the data, the presented approach enables to examine
the connectivity of single fits. In such cases it could be
e.g., of interest, if there is a smooth transition between the
respective trajectories of the model for various fits or, if the
fits belong to distinct optima in the parameter space and
e.g., additional data is required to reveal the true underlying
biological mechanism.

However, several extensions have been discussed for the NEB
method, such as the introduction of smoothing terms [31, 38],
alternative path tangents [39], climbing image approaches for
improved saddle point searches [40, 41], as well as, the usage of
Gaussian processes [42] and combinations withmachine learning
approaches [43] in the context of analyzing transition states of
chemical systems. We surmise, that analysis of ODE models
using the NEB method likewise benefits from adaptions of these
approaches, especially for larger models with more parameters to
be estimated. For this, applicability and costs needs to be checked
carefully in the systems biology related ODEmodel setting and is
open to further research.
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