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An erbium-doped hybrid passively mode-locked fiber laser based on few-layer

graphdiyne (GDY) saturable absorber (SA) has been investigated for the first time. Hybrid

mode-locked fiber laser is composed of non-linear polarization rotation (NPR) technology

and GDY-SA. The central wavelength, pulse width and repetition rate of the output

pulse are 1530.7 nm, 690.2 fs and 14.7 MHz, respectively. Compared with the passively

mode-locked pulse laser with GDY-SA or NPR technology alone, the output pulse width

of hybrid passively mode-locked fiber laser is reducedmore than 50 fs. It is demonstrated

that the performance of GDY can be potentially applied in ultrafast laser.
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INTRODUCTION

Ultra-short pulse mode-locked fiber laser has been extensively investigated due to its applications in
laser physics, material science, nanotechnology and biomedicine, etc. This type of laser is simple,
compact, and easy to integrate, allowing for high quality pulse [1–8]. In recent years, passively
mode-locked fiber lasers have gained more development than active mode-locked fiber lasers. The
use of SA to obtain ultrashort pulses is becoming the mainstream of passively mode-locked fiber
lasers [9–13]. More and more two-dimensional (2D) materials with outstanding optical properties
have been applied in the field of lasers [14–18]. These materials are significantly characterized
by adjustable non-linear absorption coefficient, short relaxation time and recovery time, and
low optical loss [19–21]. Therefore, these materials have been widely used in ultrafast photonics
to obtain high power and broadband spectrum mode-locked pulse sources [22–38], such as
semiconductor saturable absorption mirror (SESAM), single-walled carbon nanotube (SWCNT),
graphene, graphene oxide, topological insulators (TI), black phosphorus (BP), bismuthine, WS2,
etc. In 2010, Popa et al. reported a new passively mode-locked fiber laser, which uses graphene as SA
and generates ultrashort pulses with a pulse width of >200 fs [34]. In 2013, an all-fiber all-normal
dispersion passively mode-locked Yb-doped ring laser based on graphene oxide was reported [35].
In 2018, Yang et al. obtained high energy rectangular pulse on the basis of WS2 cladding microfiber
SA [36]. Very recently, GDY has been investigated, whose property is similar to other as carbon
based materials, such as CNT, graphene and fullerene [39–45]. Furthermore, the bandgap of GDY
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FIGURE 1 | The SEM image of GDY powder in chlorobenzene solution with different magnification. (a) The magnification of 3µm. (b) The magnification of 500 nm.

FIGURE 2 | Experimental setup of the NPR mode-locked erbium-doped fiber laser.

is around 0.52 eV, which should have excellent performance
in near infrared regime. In order to prepare this material,
several groups have demonstrated a methodology to generate
networks of combinations of sp and sp2, or sp and sp3

hybridized carbons. In addition, the carbon elements
inside GDY are found to be highly conjugated carbon
rich organic molecules in the process of synthesis. Due
to its special electrical and optical properties, Zhao et al.
have applied GDY to a 1.5µm passively mode-locked
fiber laser [46]. It is well known that GDY has broad
application prospects in the fields of non-linear photonics
and ultrafast photonics.

Based on the previous work, a hybrid mode-locked erbium-
doped fiber laser is fabricated by using NPR technology and
GDY-SA prepared by spin-coating method. The hybrid mode-
locked erbium-doped fiber laser can obtain a stable mode-locked
pulse with a central wavelength of 1530.7 nm and a pulse width
of 690.2 fs. Compared with the mode-locked pulse obtained
by GDY-SA or NPR technology alone, its performance can be
improved significantly and the pulse width can be reduced by
nearly tens of fs. It is proved that GDY has potential application

prospects in the field of ultrafast lasers and other non-linear
optical elements.

CHARACTERIZATION OF GDY AND
PREPARATION OF GDY-SA THIN FILMS

Figure 1a shows a scanning electron microscope (SEM) image of
GDY powder in a chlorobenzene solution at a magnification of
3µm, from which it can be seen that GDY has a very good planar
structure. Figure 1b is the SEM image of the GDY
powder in the chlorobenzene solution at the red frame
in Figure 1a enlarged at 500 nm. As can be seen from
the graph, the edges of GDY have stratification and
obvious continuity.

GDY-SA thin films were prepared by spin-coating at different
rotational speeds. Firstly, 1mg GDY and 1mL chlorobenzene
solution were mixed with ultrasound for 10 h. Then, the obtained
mixed solution and polymethyl methacrylate (PMMA) colloid
were ultrasonicated at a ratio of 1:2 for 10 h, and then placed
in a spinning machine to obtain a GDY-SA film. The coating
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FIGURE 3 | Pulse output characteristics of NPR mode-locked laser when the pump power is 135 mW. (A) Output spectrum, (B) pulse trace on oscilloscope, (C) RF

spectrum, (D) autocorrelation trace.

FIGURE 4 | Experimental setup of the hybrid erbium-doped mode-locked fiber laser.

was rotated using three revolutions of 1,000, 1,200, and 1,500

rad/min,respectively. Finally, the obtained film was dried in a
dry box for 1 h. After many experiments, it was found that
a high quality GDY-SA film was prepared at a spin speed of
1,000 rad/min. Combined with the high stability characteristics
of GDY itself, it can be proved that GDY-SA in this experiment
has good stability and can withstand long-time illumination
without change.

EXPERIMENTAL SETUP AND RESULTS

NPR Mode-Locked Erbium-Doped Fiber
Laser
Passively mode-locked erbium-doped fiber laser based on NPR,
as shown in Figure 2, is mainly composed of the lasing diode
(LD) with the output wavelength of 976 nm, wavelength division
multiplexing (WDM), single-mode fiber (SMF), erbium-doped
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FIGURE 5 | Pulse output characteristics of hybrid mode-locked laser when the pump power is 135 mW. (A) output spectrum, (B) pulse trace on oscilloscope, (C) RF

spectrum, (D) autocorrelation trace.

fiber (EDF), polarization controller (PC), polarization dependent
isolator (PD-ISO), and optical coupler (OC). The output ratio
of OC is 40:60. The length of EDF is 0.75m and the total cavity
length of laser is 14.3 m.

After increasing the pump power to 135 mW, the stable
mode-locked pulse output can be obtained by adjusting the PC.
The output spectrum is shown in Figure 3A, with a central
wavelength of 1532.1 nm and a 3-dB spectral width of 7.7 nm.
The output pulse trace is shown in Figure 3Bwith a pulse interval
of 66.7 ns. The corresponding radio frequency (RF) spectrum is
shown in Figure 3C, with a signal-to-noise ratio (SNR) of 45.4
dB and a repetition rate of 14.9 MHz. As shown in Figure 3D, the
pulse width measured by the autocorrelator is 749.8 fs.

Hybrid Mode-Locked Erbium-Doped Fiber
Laser
As shown in Figure 4, a hybrid erbium-doped mode-locked fiber
laser is formed by adding GDY-SA to the previous NPR erbium-
doped mode-locked fiber laser. The total cavity length increased
slightly from the previous one to 14.6m. Under the combined
action of NPR technology and GDY-SA, the pulses are further
compressed and finally output via OC.

When the pump power is 135mW, a stable mode-locked pulse
output can be obtained. The highest threshold for this experiment

was 210 mW. However, this is due to the threshold of the
maximum power of the LD, and does not rule out the possibility
that the actual threshold is higher. The output spectrum is shown
in Figure 5A, with a central wavelength of 1530.7 nm and a 3-
dB spectral width of 7.4 nm. It can be found that the spectrum
has a large change with the spectrum in Figure 3A, which is
due to the action of GDY-SA. The output pulse trace is shown
in Figure 5B with a pulse interval of 68 ns. The corresponding
RF spectrum is shown in Figure 5C, with a signal-to-noise ratio
(SNR) of 40 dB and a repetition rate of 14.7 MHz, and it
can be seen from the illustration that the pulse is relatively
stable. As shown in Figure 5D, the pulse width measured by
the autocorrelator is 690.2 fs. And the maximum pulse energy
is 0.4 nJ. The pulse sequence and spectral output for 2 days
were basically stable and could work in a stable state for a
long time.

CONCLUSION

In conclusion, a hybrid erbium-doped fiber mode-locked laser
based on GDY-SA and NPR technology has been successfully
realized. The band gap of GDY is about 0.52 eV. This direct band
gap enables GDY to be used as a SA in ultrafast photonics. After
adding GDY-SA, the output pulse width of hybrid erbium-doped
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fiber mode-locked laser is reduced to 690.2 fs, which proves that
GDY-SA plays an important role in hybrid erbium-doped fiber
mode-locked laser. The results show that GDY-SA can be used as
an excellent optical modulation material in ultrafast photonics in
the infrared wavelength range.
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