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Editorial on the Research Topic

Lasers in Accelerator Science and Secondary Emission Light Source Technology

Unifying laser and accelerator physics holds great promise for the development of future particle
accelerators, light sources, and other scientific instruments due to increasingly synergistic advances
at the cross section between these two fields. Their combined action has recently ushered
in advanced accelerator facilities around the world that have enabled unique scientific and
technological breakthroughs: from advanced electron and ion sources for high-energy physics to
the ultrabright x-ray pulses to study ultrafast phenomena at elemental spatio-temporal scales [1–4].
The progress of ultra-intense femtosecond lasers, now attaining multi PetaWatt peak power, has
recently enabled the demonstration of GeV electron beams in centimeter scale plasma accelerating
section [5, 6], with the recent world record reaching 8 GeV in 20 cm [7]. As for ultrafast x-ray
science, in their relatively short time since their advent, x-ray free electron lasers [8, 9] (FEL)
have demonstrated the capacity to answer grand fundamental questions in a diverse set of areas in
physics, chemistry, and biology, such as revealing vibration coherence in molecules [10], molecular
bond formation, charge migration, and dissociation dynamics [11, 12], or ultrafast isomerization
in biomolecules [13, 14], among many others. Further advances in facilities—such as augmented
brightness, attosecond duration, or seeded emission—are poised to creating new scientific frontiers
in atomic-scale correlated systems and ultrahigh resolution inner shell spectroscopies.

Future laser-based or laser-enabled accelerator and light source technologies could tap into an
incredibly broad range of methodologies, including but not limited to well-underway approaches
like laser wakefield acceleration [15–18] and seeded [9] and echo-enabled harmonic generation
in FELs [19, 20] as well as more exploratory compact accelerator concepts such as free-space
[21–23], terahertz [24–26], and on-chip [27–29] accelerators, among many others. Rather than
a competition for the best possible future technology, these approaches answer to vastly differing
scientific and technological needs, from large-scale colliders for exploration of fundamental physics
[16, 30] to compact systems for radiation therapy [27], to name a few. In all cases, lasers constitute
essential accelerator components, and much of the progress in both fields strides alongside of one
another. This is because laser fields are ideal agents to generate and tailor the 6-D phase-space
distribution of charged particle beams with extremely high spatio-temporal precision. For example,
lasers can readily generate charged particles via photoemission or photoinization, and be used in
ultrafast manipulation and beam diagnostics [31, 32]. Lasers are also integral to accelerator-based
light sources XFELs and their applications in ultrafast sciences [33, 34].
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Most accelerators share common needs in driving laser
requirements: high peak and average power, and high wall-
plug efficiency. Increasing the peak power enables ultrahigh-field
regimes to understand fundamental matter-light interactions
for particle acceleration, while average power and wall-plug
efficiency are essential for bright light and particle sources for
practical accelerator applications outside of basic sciences, such
as systems for medicine, industrial applications, and defense and
security. However, outside of these general requirements, the
myriads of potential laser-accelerator configurations highlight
the difficulty in encapsulating all the research directions capable
of tackling critical technical challenges for future accelerator and
light source technology.

Through this Research Topic, our intent is to showcase
advances in various parallel topical areas that collectively fill the
breach between laser and accelerator physics. This issue exposes
some present and future opportunities in laser research and
development that serves accelerator technology. Our hope is that
the contributed works will help identify cooperative international
research initiatives to expedite progress in lasers for accelerator
science and secondary emission light source technology.

One of the sub-topical areas of this topic covers compact laser-
based acceleration. The paper by Wilhelm and Durfee follows
current trends of advanced laser manipulation for optimizing
the interaction of a laser pulse with electrons in vacuum. This
work utilizes spatio-temporal couplings in order to facilitate
the acceleration of electrons in vacuum. The authors show that
by introducing a pulse front tilt in the laser pulse, electron
trapping, and acceleration is more efficient compared to the use
of traditional Gaussian pulses. The scheme is studied in the
context of small lab-scale table-top laser systems and aims at
producing quality electron beams at the MeV level. In addition
to pulse front, the temporal chirp of laser pulses also plays an
important role in particle acceleration and developing accurate
and simple models for the propagation of such pulses is of an
utmost importance. Salamin and Carbajo present a simple model

for the fields of a chirped laser pulse and used the model to
investigate electron acceleration with chirped pulses.

As laser wakefield acceleration is reaching technological
maturity, Alejo et al. present a review of the potential applications
in the generation of secondary sources that these new laser
driven electron beams now permit. X-ray beams at the MeV
level have been generated by inverse Compton scattering, leading
to some of the highest brightness for a photon source in this
energy range. The authors also discuss the potential of laser
wakefield accelerators for positron generation via the Bethe-
Heitler mechanism, showing promising prospects in terms of
charge and beam quality.

As for secondary emission sources, Hemsing presents a
theory for echo-enabled harmonic generation (EEHG) that
considers finite laser pulse durations, revealing conditions
under which the bandwidth of the harmonic bunching peak is
minimized in the presence of arbitrary phase distortions. In a
collaboration between scientists at Helmholtz-ZentrumDresden-
Rossendorf and Technical University of Dresden, Steiniger et al.
present a novel concept based on Thomson scattering off a
laser with tilted pulse front. It is theoretically shown that
the new phenomenon, named as Traveling-Wave Thomson
Scattering (TWTS) enables enhancement of the incoherent
radiation compared to a conventional Thomson scattering.
The work presents a conceptual design of optical setups and
the overall requirements based on the state-of-the-art laser
technology. Finally, the work by Tibai et al. shows that isolated
waveform-controlled extreme ultraviolet attosecond pulses can
be produced under realistic experimental conditions, using a
method based on coherent undulator radiation of relativistic
ultrathin electron layers.
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