
ORIGINAL RESEARCH
published: 25 October 2019

doi: 10.3389/fphy.2019.00168

Frontiers in Physics | www.frontiersin.org 1 October 2019 | Volume 7 | Article 168

Edited by:

Jesus Martin-Vaquero,

University of Salamanca, Spain

Reviewed by:

Haci Mehmet Baskonus,

Harran University, Turkey

Andreas Gustavsson,

University of Seoul, South Korea

*Correspondence:

Prasantha Bharathi Dhandapani

d.prasanthabharathi@gmail.com

Specialty section:

This article was submitted to

Mathematical Physics,

a section of the journal

Frontiers in Physics

Received: 24 September 2019

Accepted: 11 October 2019

Published: 25 October 2019

Citation:

Dhandapani PB, Baleanu D, Thippan J

and Sivakumar V (2019) Fuzzy Type

RK4 Solutions to Fuzzy Hybrid

Retarded Delay Differential Equations.

Front. Phys. 7:168.

doi: 10.3389/fphy.2019.00168

Fuzzy Type RK4 Solutions to Fuzzy
Hybrid Retarded Delay Differential
Equations
Prasantha Bharathi Dhandapani 1*, Dumitru Baleanu 2,3, Jayakumar Thippan 1 and

Vinoth Sivakumar 1

1Department of Mathematics, Sri Ramakrishna Mission Vidyalaya College of Arts and Science, Coimbatore, India,
2Department of Mathematics, Cankaya University, Ankara, Turkey, 3 Institute of Space Sciences, Măgurele, Romania

This paper constructs the numerical solution of particular type of differential equations

called fuzzy hybrid retarded delay-differential equations using the method of Runge-Kutta

for fourth order. The concept of fuzzy number, hybrid-differential equations, and delay-

differential equations binds together to form our equations. An example following the

algorithm is presented to understand the Concept of fuzzy hybrid retarded delay-

differential equations and its accuracy is discussed in terms of decimal places for easy

understanding of laymen.
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1. INTRODUCTION

In this manuscript a system is modeled with the concept of retarded delay differential equation
and we study it using fuzzy numbers. Nowadays hybrid systems play a vital role in communication
systems and retard delay differential equation was considered to be unavoidable in modeling any
biological models. In this paper these two separate mathematical concepts were combined under
one roof called fuzzy. We call these system of differential equation as fuzzy hybrid retarded delay
differential equations (FHRDDE).

The basic properties of fuzzy sets, fuzzy differential equations, fuzzy mappings were studied
by various authors [1–7]. We recall that Pederson and Sambandham [8], Abbasbandy and
Allahviranloo [9], Al Rawi et al. [10], Bellan and Zennaro [11], and Jayakumar et al. [12]
have treated the hybrid, fuzzy, delay, fuzzy delay differential equation numerically, respectively.
Prasantha Bharathi et al., studied various types of fuzzy delay differential equations in Prasantha
Bharathi et al.[13, 14]. Different methods were used by some authors for solving Hybrid fuzzy
differential equations without delay like [15] and [16]. Besides, L.C. Barros regularly studied fuzzy
differential equations [15, 17–19]. In Pederson and Sambandham [8], the authors defined and
solved the problem of hybrid fuzzy IVP.We extended this hybrid fuzzy IVP to fuzzy hybrid retarded
delay IVP. In addition to that of hybrid term3(zH(t)), the retarded delay term zH(t−δ) is also used.
So, there occurs some changes in the Runge-Kutta method which can be seen by comparing section
3 with Pederson and Sambandham [8].

The organization of the manuscript is given below. The section 2 treats the fuzzy hybrid retarded
delay-differential systems. The section 3 shows the method of Runge-Kutta for fourth order (R-
K-4) for dealing a FHRDDE and the section 4 holds algorithm and numerical example to prove
the theory.
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2. FUZZY HYBRID RETARDED
DELAY-DIFFERENTIAL SYSTEMS

According to Al Rawi et al. [10] the retarded delay differential
equations are defined in the form of a0DzH(t) + b0zH(t) +

b1zH(t − δ) = f (t). When f (t) = 0, it becomes homogeneous
for every first order delay differential equation. Here we take
f (t) as hybrid term and it was termed as hybrid retarded delay
differential equations where the constants are given by a0 = 1,
b0 = −1, b1 = −1, f (t) = 3(zH(t)). Throughout the paper
any function of the form fH(t) represents the hybrid function
satisfying the properties of fuzzy set proposed by Zadeh as
followed by Pederson and Sambandham [8] defined over the
hybrid term 3(zH(t)) and delay term zH(t − δ).

Let us consider the following FHRDDE for α ∈ [0, 1]







DzH(t) = [f (t, zH(t),3(zH(t)), zH(t − δ))]α , t ≥ t0,
zH(t) = φ(t), −δ ≤ t ≤ t0,
zH(t0) = z0 = φ(t0),

(1)

where 3(zH(t)) is the hybrid function and zH(t − δ) is the
delay function involving the delay term δ. More over the Hybrid
function is the function involving two or more sub functions
acting differently in specific interval defined over the main
functions interval. i.e., The sub functions of main function
acts differently in the different sub intervals of main function’s
domain. In the numerical example below, we have taken the
hybrid function3(zH(t)) = m(t).3(z(t)) wherem(t) and3(z(t))
will vary for different values defined over the interval t ∈ [t0, tn].
The delay term δ varies in the interval (t0, tn]. zH(t) = φ(t) is
the initial function and zH(t0) = z0 = φ(t0) is the initial value
defined at t0. It is obvious that

DzH(t) = [f (t,φ(t),3(zH(t)), zH(t − δ))]α ,

− δ ≤ t ≤ t0, 0 ≤ α ≤ 1.

It follows that for [f (t, zH(t),3(zH(t)), z(t − δ))]α . Now we
can define the above fuzzy valued function DzH(t) i.e.,
[f (t, zH(t),3(zH(t)), zH(t − δ))]α as follows

[f (t, zH(t),3(zH(t)), zH(t − δ))]α

=















































min f (t, vH(t),3(vH(t)), vH(t − δ)) :

vH(t) ∈ (zH(t)
α , zH(t)

α),
3(vH(t)) ∈ (3(zH(t)

α),3(zH(t)
α)),

vH(t − δ) ∈ (zH(t − δ)α , zH(t − δ)α),
max f (t, vH(t),3(vH(t)), vH(t − δ)) :

vH(t) ∈ (zH(t)
α , zH(t)

α),
3(vH(t)) ∈ (3(zH(t)

α),3(zH(t)
α)),

vH(t − δ) ∈ (z(t − δ)α , zH(t − δ)α),

(2)

for zH ∈ E with α- level sets [zH]
α = [zαH , z

α
H], 0 ≤ α ≤ 1















































D(zαH)(t) = min(f (t, vH(t),3(vH(t)), v(t − δ)) :

vH(t) ∈ (zH(t)
α , zH(t)

α),3(vH(t))
∈ (3(zH(t)

α),3(zH(t)
α))

vH(t − δ) ∈ (zH(t − δ)α , zH(t − δ)α)),
D(zαH)(t) = max(f (t, vH(t),3(vH(t)), vH(t − δ)) :

vH(t) ∈ (zH(t)
α , zH(t)

α),3(vH(t))
∈ (3(zH(t)

α),3(zH(t)
α)),

vH(t − δ) ∈ (zH(t − δ)α , zH(t − δ)α)).

(3)

for t ∈ I and 0 ≤ α ≤ 1.

3. FOURTH-ORDER FUZZY TYPE
RUNGE-KUTTA METHOD (R-K-4)

We recall that the R-K-4 plays a vital role in solving differential
equations. Also, it holds good for any dynamical system involving
delay differential equations.We use the R-K-4 for a FHRDDE (1).
Here we use a new simplified form of R-K-4. We define

ztn+1;α
− ztn;α =

4
∑

j=1

wiK j(tn; zH(tn;α),

ztn+1;α − ztn;α =

4
∑

j=1

wiK j(tn; zH(tn;α)),

where w1,w2,w3, and w4 are simple constants and

Kj = (minRj, maxRj), j = 1, 2, 3, 4.

Rj = hf

(

t, vH(t),3(vH(t)), vH(t − δ),

)

, j = 1.

Rj = hf

(

t +
h

2
, vH(t),3(vH(t)), vH(t − δ),

)

, j = 2, 3.

Rj = hf

(

t + h, vH(t),3(vH(t)), vH(t − δ),

)

, j = 4.

Such that,

vH(t) ∈ [zH(tk,n;α), zH(tk,n;α)], j = 1.

vH(t) ∈ [Nj−1,N j−1], j = 2, 3, 4.

vH(t − δ) ∈ [zH(tk,n − δ;α), zH(tk,n − δ;α)], j = 1.

vH(t − δ) ∈ [Nj−1,N j−1], j = 2, 3, 4.

vH(tl) ∈ [zH(tk,0;α), zH(tk,0;α)], j = 1, 2, 3, 4.

where,

Nj = z +
Kj

2
, j = 1, 2.

Nj = z + Kj, j = 3.

Nj ∈

(

Nj(tk,n, zH(tk,n;α)),N j(tk,n, z(tk,n;α))

)

,

Kj ∈

(

K j(tk,nzH(tk,n;α)),K j(tk,n, z(tk,n;α))

)

,
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Z ∈

(

zH(tk,n;α), z(tk,n;α)

)

.

Next we define the followings

P = K1(t, zH(t;α))+ 2K2(t, zH(t;α))+ 2K3(t, zH(t;α))

+ K4(t, zH(t;α)),

Q = K1(t, zH(t;α))+ 2K2(t, zH(t;α))+ 2K3(t, zH(t;α))

+ K4(t, zH(t;α)).

The exact solution at tn+1 is given by



















ZH(tn+1;α)=ZH(tn;α)+
P

6
,

ZH(tn+1;α)=ZH(tn;α)+
Q

6
.

(4)

The approximate solution has the following form



















zH(tn+1;α)≈zH(tn;α)+
P

6
,

zH(tn+1;α)≈zH(tn;α)+
Q

6
.

(5)

where P and Q are given by

P = P[(tn,ZH(tn;α),ZHn (t;α))]

and

Q = Q[(tn,ZH(tn;α),ZHn (t;α))],

respectively.

4. ALGORITHM AND THE NUMERICAL
EXAMPLE

This section consists of an algorithm followed by an example to
understand the proposed theory.

Algorithm (R-K-4):

Step:1 Fix N=10,

Step:2 Calculate h by h =
(tn−t0)
tn∗N

Step:3 Set ti = i ∗ h for i = 0, 1, ..., n and compute z(ti).
Step:4 Take t0 as initial point and z0 as the initial value.
Step:5 Compute K1,K2,K3,K4, z(ti) using Runge-Kutta method,
explained in previous section.
Step:6 Calculate the upcoming iterations using z(ti+1) = z(ti) as
described in previous section.
Step:7 Repeat the steps, Step:2, Step:4 and Step:5 for ti ≤ tn.
Step:8 Quit the process at ti > tn.

The Numerical Example
Consider the FHRDDE, extended from Pederson and
Sambandham [8], namely

{

DzH(t) = [zH(t)+ 3(zH(t))+ z(t − 1)]α , 0 ≤ t ≤ 3, 0 ≤ α ≤ 1,

zH(t) = [(
6

8
+

4α

8
)et , (

9

8
−

α

8
)et], −1 ≤ t ≤ 0.

(6)

The hybrid function is defined as 3(zH(t)) = m(t).3(z(t)) as
mentioned in section 2 where,

m(t) =
∣

∣sin(π .t)
∣

∣ , fort ∈ [0, 3].

3(ν(t)) =

{

0, for t = 0,
ν, for t ∈ (0, 3].

Then the above Equation (6)

{

DzH(t) = [zH(t)+m(t)3(z(t))+ z(t − 1)]α , 0 ≤ t ≤ 3, 0 ≤ α ≤ 1,

zH(t) = [(
6

8
+

4α

8
)et , (

9

8
−

α

8
)et], −1 ≤ t ≤ 0.

(7)

The exact solution of (7) is given by

ZH (t;α) =






























































































































[(

6
8 +

4α
8

)

et ,
(

9
8 +

α
8

)

et
]

, t ∈
[

− 1, 0
]

,
[(

6
8 +

4α
8

)

et−1 −
e cos

(

π t
)

π
−

1
e +

e
π
+ 1,

(

9
8 +

α
8

)

et−1 −
e cos

(

π t
)

π
−

1
e +

e
π
+ 1

]

, t ∈
[

0, 1
]

,
[(

6
8 +

4α
8

) (

−
t
e +

et
π
+ t + et−2+

e sin
(

π t
)

π2 −
e cos

(

π t
)

π
−

1
e + 1

)

,
(

9
8 +

α
8

)(

−
t
e +

et
π
+ t + et−2+

e sin
(

π t
)

π2 −
e cos

(

π t
)

π
−

1
e + 1

)]

, t ∈
[

1, 2
]

,
[(

6
8 +

4α
8

)

(

1
2

(

−
t2

e +
et2

π
+ t2 − 2et

π
+ 2et−3 +

2e sin
(

π t
)

π2

−
2e(π2−1) cos

(

π t
)

π3 −
4
e +

4e
π
−

2e
π3 + 4

))

,
(

9
8 +

α
8 )

(

1
2

(

−
t2

e +
et2

π
+ t2 − 2et

π
+ 2et−3 +

2e sin
(

π t
)

π2

−
2e(π2−1) cos

(

π t
)

π3 −
4
e +

4e
π
−

2e
π3 + 4

)]

, t ∈
[

2, 3
]

,

(8)

where ZH (t;α) = [ZH (t;α) ,ZH (t;α)].

Let zH (n;α) = [zH (n;α) , zH (n;α)] and,

A1 = c0

2n
∑

s=0

(e(−1+ sh
2 )), A2 = c0

2n
∑

s=0

(HSin(
shπ

2
)), B1 = c1

20
∑

s=1

(e(−1+ sh
2 )),

B2 = c2

2n
∑

s=20

e(−2+ sh
2 ), B3 = (

(n− 10)H

π
), B4 = c2

2n
∑

s=20

(
(HCos( shπ2 )

π
)),

B5 = c3

2n
∑

s=1

(HSin(
shπ

2
)), D1 = c1

20
∑

s=1

(e(−1+ sh
2 )), D2 = c4

40
∑

s=20

(e(−2+ sh
2 )),

D3 = c5

2n
∑

s=40

(e(−3+ sh
2 )), D4 = (

(30− n)H

π
), D5 = c2

2n
∑

s=20

(
(HCos( shπ2 )

π
)),
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TABLE 1 | Comparing the exact and the approximate solution.

Approximate Exact

α
′s zH (n; α) zH (n; α) ZH (t; α) ZH (t; α)

0 6.62032538253014 9.93048807379521 6.62032351488858 9.93048527233288

0.1 6.84100289528115 9.82014931741971 6.84100096538487 9.82014654708473

0.2 7.06168040803215 9.70981056104421 7.06167841588116 9.70980782183659

0.3 7.28235792078316 9.59947180466870 7.28235586637744 9.59946909658845

0.4 7.50303543353416 9.48913304829320 7.50303331687373 9.48913037134030

0.5 7.72371294628516 9.37879429191770 7.72371076737002 9.37879164609216

0.6 7.94439045903617 9.26845553554220 7.94438821786630 9.26845292084402

0.7 8.16506797178717 9.15811677916670 8.16506566836259 9.15811419559588

0.8 8.38574548453818 9.04777802279119 8.38574311885887 9.04777547034773

0.9 8.60642299728918 8.93743926641569 8.60642056935516 8.93743674509959

1 8.82710051004019 8.82710051004019 8.82709801985145 8.82709801985145

D6 = c3

2n
∑

s=1

(HSin(
shπ

2
)), D7 = c6

2n
∑

s=40

(
(HSin( shπ2 )

π2
)),

The approximate solution is given by

zH (n;α) =


























































































































[(

6
8 +

4α
8

)

,
(

9
8 +

α
8

) ]

,
(

− 10 ≤ n ≤ 0
)

,
[(

6
8 +

4α
8

) (

z0 + h
(

A1 + A2

))

,
(

9
8 +

α
8

)(

z0 + h
(

A1 + A2

))]

,
(

1 ≤ n ≤ 10
)

,
[(

6
8 +

4α
8

)

(

z0 + h
(

n− 10
)

−
h
6e

(

6n− 1
)

+ h
(

5
∑

i=1
Bi

))

,
(

9
8 +

α
8

)

(

z0 + h
(

n− 10
)

−
h
6e

(

6n− 1
)

+ h
(

5
∑

i=1
Bi

))]

,
(

11 ≤ n ≤ 20
)

,

[(

6
8 +

4α
8

)

(z0 +
(

(h2
( n2−

(

400
)

2

))(

1− 1
e +

H
π

))

+h(10− 59
6e )+ h

7
∑

i=1

(

Di

))

,

(

9
8 +

α
8

)

(z0 +
((

h2
( n2−

(

400
)

2

))(

1− 1
e +

H
π

))

+h
(

10− 59
6e

)

+ h
7

∑

i=1

(

Di

))]

,
(

21 ≤ n ≤ 30
)

,

(9)

where the coefficients are written as

c0 =











1/6, s = 0, 2n.

2/3, s = 1, 3, ..., 2n− 1.

1/3, s = 2, 4, ..., 2n− 2.

c1 =











1/6, s = 20.

2/3, s = 1, 3, ..., 19.

1/3, s = 2, 4, ..., 18.

c2 =











1/6, s = 20, 2n.

2/3, s = 21, 23, ..., 2n− 1.

1/3, s = 22, 24, ..., 2n− 2.

c3 =











1/6, s = 2n

2/3, s = 1, 3, ..., 2n− 1.

1/3, s = 2, 4, ..., 2n− 2.

c4 =











1/6, s = 20, 40.

2/3, s = 21, 23, ..., 39.

1/3, s = 22, 24, ..., 38.

c5 =











1/6, s = 40, 2n

2/3, s = 41, 43, ..., 2n− 1.

1/3, s = 42, 44, ..., 2n− 2.

c6 =











−1/6, s = 40, 2n.

−2/3, s = 41, 43, ..., 2n− 1.

−1/3, s = 42, 44, ..., 2n− 2.

FIGURE 1 | Comparing approximate solution with the exact solution (for

h = 0.1, α = 1 at t ∈ [0, 3]).

Consider another H = (1 + h +
h2

2 +
h3

6 ,
h4

24 )
10, t ∈

[t0, tn], i.e., t ∈ [0, 3], h = 0.1 Set n = 10t and
zH(10t) = zH(n).

5. CONCLUSION

We have used the R-K-4 method to find the numerical solution of
FHRDDE. We presented the Table 1 only for t = 3, h = 0.1 for
α ∈ [0, 1]. The values of zH for t ∈ [0, 3] are plotted in Figure 1

for α = 1 and in Figure 3 for α ∈ [0, 3]. The comparison
of the solutions represented in Figure 1 for non-fuzzy IVP and
the Figure 2 for fuzzy IVP prove the accuracy of R-K-4 with
that of the exact solution. From the Table 1 we can conclude
that the accuracy of the method proposed is about four decimal
places. Also if we increase the order of the Runge-Kutta method
the accuracy of our numerical solutions will increase. The
analytical and numerical results obtained by this paper ensures
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FIGURE 2 | Comparing the approximate solution with the exact solution (for

h = 0.1, α ∈ [0, 1] at t = 3).

FIGURE 3 | Approximate solution by R-K-4 (for h = 0.1, α ∈ [0, 1] for

t ∈ [0, 3]).

the hybrid system with time lag (delay) can be solved. Thus, we
can solve properly any FHRDDE using the R-K-4 method. We
followed [10] to write the retarded delay differential equation
in regular homogeneous form and we added a hybrid term
to make it as non-homogenous equation which in turn makes

our governing Equation 1 as the hybrid fuzzy retarded delay
differential equation. Thus, our results differ from results on the
delay papers like [11, 12] or as in hybrid papers like [8, 20]. There
are differences between the traditional Runge-Kutta methods

presented in Pederson and Sambandham [8] and the reported
method because in our case the Runge-Kutta method involves
both hybrid and retarded delay term. The previously published
papers varies only the hybrid term in regular intervals. However,
we constructed a system in which both hybrid term 3(zH(t))
and delay term zH(t − δ) are subject to vary in some regular
intervals. We also generalized the numerical solution which will
provide very closer solution for any values in the given intervals.
In the above example, we have taken ( 68 +

4α
8 ) and ( 98 −

α
8 ) as

our fuzzy numbers. But one can choose different fuzzy numbers
with in the interval α ∈ [0, 1]. In all the cases the non-member,
partial member and the full member of both approximate and
analytical solution will coincide as they are defined in [0 ≤ α ≤

1]. According to our knowledge the researchers working with
the numerical solutions of hybrid systems like [8, 20] did not
considered the system with time lag. In this paper we solved
the hybrid system with time lag and we open a gate for the
related future research in areas like communication systems and
signal processing.
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