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Dynamics of the Fluctuating Flying
Chain
Eirik G. Flekkøy, Marcel Moura* and Knut Jørgen Måløy

PoreLab, The Njord Centre, Department of Physics, University of Oslo, Oslo, Norway

A chain which is made to flow from a container, forms a striking arch that rises well above

the container top. This phenomenon is caused by the well known Mould effect and is

explained by a supply of momentum from the container, causing an upwards kick. Here

we introduce a theory that allows for dynamic fluctuations of the chain and compare with

corresponding simulations and experiments. The predictions for the chain velocity and

fountain height agree well with experiments. We also explore the underlying mechanism

for this momentum transfer for different chain models and find that it depends subtly on

the nature of the chain as well as on the container.
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1. INTRODUCTION

The dynamics of ropes and chains have attracted scientific attention for centuries. They are found
in biological systems, many different technologies, as well as in everyday life. Examples include
our tenants, the DNA molecule, the tail of a cat, the line of a fly-caster, a whip, or the chain of a
falling anchor. Hanging chains were studied by Galileo in the 1600’s [1] and later these were shown
to be catenaries by Huygens, Leibniz and John Bernoulli. The equations governing hanging and
moving chains have been around for almost 400 years [1–3]. This fact, however, does not rule out
the possibility that even the simplest systems may still exhibit surprising behavior [4–6].

When the end of a chain is dropped from a pile contained at some height above the floor, gravity
will set it in motion, and eventually the whole chain will have flowed over the edge of the container.
As this happens the chain rises far above the rim of the container. The first to communicate this
striking effect was Mould [7] in a video that has caused more than 3 million views on YouTube. A
chain that forms a rising, self-supporting arch which extends a significant height above its container
is illustrated in the experiment of Figure 1.

An analysis of the process was first carried out by Biggins [4] and Biggins and Warner [5]who
demonstrated that the formation of a fountain depends on the existence of an upwards acting
force that pushes the chain upwards and out of the container. This force has also been taken as
the underlying mechanism for the fountain by other authors [8, 9].

In a recent paper Flekkøy et al. [10] we showed how simulations of a bead chain with realistic
flexibility moving over a smooth and flat container bottom fail to produce a chain fountain. Only
when an upwards acting force from a bumpy underlying packing is included, do the simulations
produce a fountain, and this fountain survives when the rigidity of the links is removed in favor
of a completely flexible bead chain. The difference between these two chains is the existence of a
maximum bending angle between the links that connect the beads.

In this follow-up article, we proceed with a closer quantitative comparison between theory,
simulations and experiments where the parameter space of the simulations is explored in some
detail. Part of this exploration is a study of an experiment that may serve to distinguish between
the different mechanisms that are responsible for the container force. This experiment measures
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FIGURE 1 | The flying chain resulting from a 5 m drop of the chain,

photographed outside the physics building at the University of Oslo.

the fountain height as a function of container width, and
it is shown that different chain structures cause different
dependencies between these quantities.

Even though strong spatial fluctuations are clearly visible
in experiments, theoretical treatments of the chain generally
assume a time-independent trajectory, that is, a steady state. In
the present paper we develop a theory that goes beyond that
simplification by allowing fluctuations, assuming only a statistical
steady state where quantities such as momentum, are assumed
steady only when averaged over sufficiently long times, or when
ensemble averages are taken. We compare the predictions of
the theory with measurements of the chain velocities. This is
an interesting quantity in this context because it is sensitive
to fluctuations around the steady state that is often assumed
when analysing the chain dynamics. We find that the inclusion
of dynamical fluctuations indeed improves the agreement with
such measurements.

2. MOMENTUM CONSERVATION FOR A
DYNAMIC CHAIN

Descriptions of the momentum balance of the chain exists in
several text books, such as that on chain dynamics and shape
[11] and the necessary equations of motion have been worked
out in great detail [12, 13], at least for the steady state situations.
We shall, however, take a general hydrodynamic description
[14] of the momentum balance as the starting point, using the
concept of continuum fields for mass and momentum densities
to arrive at the averaged conservation laws for the chain with its
fluctuating geometry.

FIGURE 2 | (A) The cross-section of a homogeneous chain. (B) The lengths

defining the average chain configuration as well as the integration volumes and

local tensions. The tensions are measured where the chain intersects the

integration volumes. The floor at z = 0 is indicated by the horizontal line in the

bottom of the figure.

Our Eulerian formulation of the chain dynamics uses the lab-
frame of reference, since then it is easy to express the mechanical
steady states.

2.1. Governing Equations From
Conservation Laws
We start with the hydrodynamic style of expressing
mass conservation

∂tρ = −∇ · (ρu) (1)

where the mass density ρ = λ/A vanishes outside the chain of
cross-section A, u is the local velocity of the chain. In Figure 2A

a piece of the chain is illustrated. The key observation is that a
chain in motion may define a statistical steady state in which the
chain might fluctuate but where the mass inside a given volume
does not change when averaged over some time interval. We will
assume ergodicity and replace the time-average by an ensemble
average. As is commonly the case in statistical mechanics, such
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averages are simpler to deal with as they commute with both
time-differentiation and volume averaging. Using that fact we
may average and integrate (Equation 1) to get i.e.,

∫

dV 〈∂tρ〉 =
d

dt

∫

dV 〈ρ〉 = 0. (2)

where the brackets denote an ensemble average. Equation (1)
then gives

0 =

∫

dV∇ · 〈ρu〉 . (3)

Integrating this equation over a suitable volumes containing
piece of the chain we may apply Gauss’ theorem.

Figure 2B illustrates such integration volumes. However, care
must be taken to include only those areas of intersection where
the ρ and u-fields are nonzero. When the surface elements
are at an angle to the chain tangent et , integration gives the
effective replacement dS → A/|n · et|. These are the areas of
intersections with the chain. Carrying out such an integration of
Equation (3) yields

∑

i

λ

〈

ni · u

|ni · eti|

〉

= 0 (4)

where the unit vectors are defined in Figure 2A and i labels the
intersections.

Just like in the case of the mass we may assume that the
momentum inside a given volume remains constant in the sense
that the average ∂t 〈ρu〉 = 0. Now, the hydrodynamic equation
for momentum conservation is

∂tρu = ∇ · (σ − ρuu)+ f+ ρg (5)

where f is an external force, g gravity and the stress tensor for a
flexible chain with tension T, is

σ =
T

A
etet . (6)

The steady state assumption leaves us with the averaged force-
balance condition

∇ · (
〈

σ
〉

− 〈ρuu〉)+ ρg+ 〈f〉 = 0. (7)

Carrying out a volume integration of Equation (7) yields

∑

i

(

λ

〈

ni · uu

|ni · eti|

〉

− sign (ni · eti) 〈Tieti〉

)

= λ 〈L〉 g+ 〈F〉 (8)

where we have used the fact that dS·et/n·et = dS, and introduced
F =

∫

VT
dVf. Equation (8) is our basic expression formomentum

conservation. It expresses the momentum flux as a sum of an
advective term and a tension term, and the sum of these terms
balances the external forces on the right hand side. Note that
Equation (8) may only be used to determine the sum of the
advective- and tension terms and cannot itself be used to separate
these terms. Only when either the tension or the advection term

is known independently may solutions for the other term be
obtained. We take this to happen where the chain hits the floor,
setting TF = 0 there.

When the chain shape is stationary, on the other hand, u =

etu with a constant u, and there is no ambiguity. In this case, if
we define our integrations volumes so that n ‖ et everywhere,
Equation (8) reduces to

∑

i

sign (ni · eti)(λu
2 − Ti)eti = λLg+ F (9)

with u constant. If u = 0 = F this equation could be used to
obtain the well known catenary solutions for hanging chains. This
may be achieved by making L infinitesimal, L → δs, a length
element along the chain, so that the equation takes the form

δ(T(s)et)+ λgδs = 0. (10)

Taking the tangential and normal components of this equation
allows the integration of both T and et along the chain. Once such
a solution is found with a tension T0(s), it also gives the u 6= 0
solution with the tension T0(s)+ λu2. That is, the shape does not
change, only the tension.

2.2. Asymptotic Velocity
In the following we will work out the fountain height h and the
asymptotic mean square velocity

〈

u2z
〉

, which we shall take as the
basis for comparison. For this purpose we apply Equation (8) to
the integration volumes of Figure 2B We will take the volumes
VC and VB to be small enough to neglect gravity and only in VB

will f 6= 0. Here, the chain will pick up an upwards force from the
coiled chain over which it moves. The collisions associated with
this movement, will cause a momentum input that we associate
with f and when integrated over VB gives a force F =

∫

VT
dVf.

Taking the z-component of Equation (8), and assuming that
for symmetry reasons T is the same on either side of VC we get1

〈TCetz〉 = ±λ

〈

u2z
|etz|

〉

C

(11)

where the subscript C signals that the value in the parenthesis is
to be evaluated at the intersection with the boundary of VC, and
the+ sign corresponds to the intersection of the upwardsmoving
chain where etz > 0.We have used that the unit normal n = −ez .

In Equation (11) both the etz-factors will contribute to
increase 〈TC〉 since they are smaller than one. The first factor
exists because the tension acts along a variable direction and
the second because momentum is advected over an intersection
surface that depends on α as is illustrated in Figure 2A.

Now, we may integrate over V1, which gives

λ

〈

u2z
|etz|

〉

C

− λ

〈

u2z
|etz|

〉

F

− 〈TCetz〉 + 〈TFetz〉 = −λ 〈L1〉 g (12)

where 〈L1〉 is the average chain length contained in V1. We will
take the tension TF at the bottom of the volume to vanish.

1This result may also be proven by integrating over only half the VC volume and

assuming 〈uzux〉 = 0 on the vertical surface of this volume.
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It has been observed- at least for some types of chains- that the
interaction between the falling chain and the floor may produce
an added downwards force, causing freely falling chains to
accelerate slightly faster than gravity [13]. However, for the sake
of simplicity, we shall in the following neglect this interesting, but
small effect and assume that TF = 0. Then the TF-term above
vanishes, and the first and third terms cancel due to Equation
(11). This leaves the velocity equation

〈

u2z
|etz|

〉

F

= g 〈L1〉. (13)

This equation shows that the velocity is governed by the weight
of the downwards moving part of the chain, λ 〈L1〉 g. This means
that buckling of the chain, which will increase 〈L1〉, will increase
the velocity with which it falls.

In order to simplify (Equation 13) we note that |etz| = cos2
where 2 is the local chain-angle to the vertical. As the tension
goes to zero toward the floor, it may be reasonable to assume a
de-correlation between 2 and uz . Also, for small angles we may
Taylor expand to get

〈

1

cos2

〉

≈

〈

1

1− (1/2)22

〉

(14)

≈
〈

1+ (1/2)22
〉

= 1+ (1/2)
〈

22
〉

(15)

≈
1

〈cos2〉 F
(16)

with an error that enters only at 4. order in2. We may then write

〈

u2z
〉

F
≈ g 〈L1〉 〈cos2〉. (17)

This is the prediction that will be compared with the simulations
and experiments.

2.3. Fountain Height
In order to get a prediction for h, we must integrate over VT

and VB. For beads at rest in the container gravity is balanced
by the force from below that keep them from falling. We
therefore introduce

1F =

∫

VB

dV(f+ ρg), (18)

the net force on the beads in VB. This force is non-zero only for
moving beads. Furthermore, the momentum advection is non-
zero only at the top of the VB-surface, so the z-component of
Equation (8) then takes the form

λ

〈

u2z
|etz|

〉

T

− 〈TTetz〉 = 〈1Fz〉. (19)

Doing the same for volume VT gives

λ

〈

u2z
|etz|

〉

C

− 〈TCetz〉 − λ

〈

u2z
|etz|

〉

T

+ 〈TTetz〉 = −λ 〈LT〉 g, (20)

where LT is the length of chain contained in VT . Here the first
two terms on the left hand side cancels due to Equation (11) and
the last two terms may be replaced by −〈1Fz〉 due to Equation
(19). This leaves the fountain equation

〈LT〉 =
〈1Fz〉

λg
. (21)

This shows that LT = 0 and thus h = 0 unless there is a
vertical force from the container. However, an additional relation
between LT and h is needed. We will show numerically that this
relation is indeed linear, so that

〈

h
〉

∝
〈1Fz〉

λg
. (22)

In order to get a theoretical relationship between h and h1 we
need a model for the force 1Fz . The simplest possible model
for the container force relies on the notion that it is caused
by collisions between the beads that are accelerated along the
bottom, and the beads that are still stationary. Each impact will
happen at a rate ∝ u and contribute a momentum ∝ u and thus
1Fz ∝

〈

u2
〉

on the average. Then, if we assume that
〈

u2
〉

∼
〈

u2z
〉

,
Equation (17) implies that

h ∝
〈

u2
〉

∝
〈

u2z
〉

∝ 〈L1〉 = h+ h1 ∝ h1. (23)

The last equality follows since, if h ∝ h + h1, then h ∝ h1. By
postulating, or measuring, constants of proportionality between
1F and

〈

u2z
〉

F
, between 〈L1〉 and h1, and between

〈

h
〉

and 〈LT〉, it
is straightforward- though not very enlightening- to produce the
constant of proportionality between h and h1.

2.4. Biggins Equations for the Fountain
Evolution
However, for the purpose quantifying the effect of fluctuations
it is useful to compare the above theory with one that ignores
them. It is therefore instructive to point to an elegant analytical
formulation of the chain evolution, which is given by Biggins in
Equations (11) and (12) in Biggins [4]. This theory disregards
fluctuations but includes the evolution of the fountain. It uses a
model where 1Fz = αλu2 and the fitting parameter α = 0.12.
With this value of α good agreement in terms of the predicted
andmeasured values is observed. The theory implies that the only
relevant time scale for the relaxation of h(t) is th =

√

h1/g.

3. EXPERIMENTS

We have performed experiments using a 50 m long chain of
metallic beads having diameters of 4.5 mm. We believe this to be
the same kind of chain used by Biggins [4] and other authors. We
have noticed that the way the chain is stacked in the container is
crucial in order to avoid entanglement. We start by piling up the
chain at a given location by the wall in the container, and then,
after the pile has grown large enough that its base is reaching
the middle of the container, we move to the opposite side of
the container and repeat the procedure. The third location is
at the wall midway between the two first ones, and the fourth
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FIGURE 3 | Example of bead tracking using a series of high speed images.

The filled green circle corresponds to the current position of one particular

bead being tracked and the red open circles correspond to later positions of

the same bead. The tracking lasts for 50 frames here corresponding to a time

span of 12.5 ms.

and final location opposite to the third one. After that, we move
again to the first location and go on like this until the whole
chain fits inside the container. Earlier a circular spiral packing
was attempted but that turned out to lead to more clumping and
knot-like structures which would always bring disturbances to
the chain.

Images were acquired with three cameras operating on
different modes. A high resolution Nikon D7200 DSLR camera
is used to obtain images of the whole chain and is placed on a
high tripod about 3 m away from the system. A Photron SA5
high speed camera was used to image the descending segment
of the chain. The images were captured close to the ground at a
framerate of 4000 fps. An additional set of high speed images was
captured by a Nikon J4 camera at 1000 fps to capture the details
of how the beads take off inside the container.

The Photron high speed images were used to measure the
vertical speed component uz . This was done by tracking the
motion of individual beads in the chain. Figure 3 shows an
example of the action of the bead tracking algorithm. The bead
marked with a filled green circle is tracked in the following
frames and its position on each future frame is shown by an
open red circle. The tracking happens for 50 frames during 12.5
ms. Notice that the motion of a single bead does not necessarily
follow the path of the chain, i.e., there can be a component
of the bead velocity perpendicular to the chain’s tangent vector
(as noted in the previous section, the vectors u and et are not
necessarily parallel).

In order to determine how the momentum transfer takes
place, we have performed an additional experiment where high
speed footage inside the container was acquired, to image the
chain take-off process. Typical images are shown in Figure 4,
where we have colored a segment of beads to follow its
motion. The chain extends horizontally over a significant part
of the container, thus accumulating momentum over a series

FIGURE 4 | A time sequence of 7.5 ms using a 50 m chain of 4.5 mm beads.

Individual chain beads are traced by different colors. Adapted from Flekkøy

et al. [10] with permission from the authors.

of collisions with the underlying chain as it is dragged along
before taking off. We did not observe a frequent occurrence
of large bending angles, but often a formation of a stationary
spiral hitting the underlying packing at its bottom could be
observed. In the time frames between the first and last images
in the figure, we see that the chain was dragged by about 2 bead
diameters in 7.5 ms. This observation corroborates the idea that
the necessary momentum transfer happens more in the way of
a bumpy take-off than by the kick-off mechanism, as previously
noted in Flekkøy et al. [10].

4. SIMULATIONS

The simulations are based on a particle representation of the
individual beads of the chain and integrate the equations of
motion that derive from Newtons second law in 3 dimensions.
The algorithm resembles that used by Vrbik [15] who studied
the motion of a chain falling off the edge of a table. The chain
is initially at rest and is hanging from the container to the table.

4.1. The Particle Forces
The beads in the chain are taken to interact through
a harmonic potential with an equilibrium separation a0,
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i.e., if the separation between two neighboring particles is
1r = r1 − r2 then

V(r1 − r2) =
k

2
(|1r| − a0)

2. (24)

Also, an interparticle dissipative force −β1v, where 1v is
the relative velocity between neighboring particles. This force
dampens longitudinal fluctuations, which is certainly realistic.
However, no corresponding angular friction is included, which
means that transverse waves will tend to die out more slowly
than in the experiments. The container is implemented both by
conservative and dissipative forces: The side walls and top rim of
the container are implemented by a conservative potential like
that of Equation (24), but with a force that always pushes the
particle away from the walls and top rim. At the bottom, however
a horizontal dissipative force, or sliding friction, −βcv‖, where
v‖ is the horizontal velocity component, is included. This force
dampens the motion inside the container that would remain for
a long while if there were only the inter-particle dissipation.

4.2. Geometric Boundaries
Since the beads have only nearest neighbor interactions, the
interaction between a bead and the underlying chain packing
cannot be done by bead interactions. In stead we introduce a
rough container bottom. Attempting to make this roughness
correspond to the packing we use the bottom height function

h(x, y) = h1 + a sin

(

2πx

a0

)

sin

(

2πy

a0

)

(25)

where x and y are the horizontal coordinates. The resulting
bottom profile is illustrated in Figure 5A. The choice a = 0.25 a0
comes close to mimicking the geometry of the chain itself.

The floor, which is located at z = 0 is implemented by a adding
a strong vertical damping in the form of another frictional force
−βFvz . Newtons second law is then integrated using a Velocity
Verlet scheme of 4’th order accuracy in time.

The distance b between the bead center and the bottom
at which the interaction sets in, is normally equal to half the
interbead distance, i.e., b = a0/2, but may also be taken to be
smaller, thus simulating smaller beads. The interaction between
the particles and the boundaries (side walls and rough bottom)
are derived from a harmonic potential so that the interaction
force is implemented as a repulsive spring force which is linear
in the overlap length.

4.3. The Stiffness Force
The internal stiffness force is introduced to keep the chain from
bending. It acts on the particle that is in the middle of a stiff
3-particle segment and in order to keep it an internal force, an
equal and opposite counterforce is distributed on the two nearest
neighbors. It is implemented by the following force

Fs =
ka0

2
(e2 − e1) (26)

where k is the spring constant and e2, e1 the unit vectors pointing
between the neighbors, as is illustrated in Figure 5B. This force is

FIGURE 5 | (A) Model of the bead packing in terms of a rough bottom. (B)

The stiffness force is distributed so that the total force vanishes. (C) The

transverse displacement vector 1rMT when 2 = 2max . (D) The various

simulated chains with differing internal stiffness interactions. Adapted from

Flekkøy et al. [10] with permission from the authors.

linear in departure from straightness, i.e., the length l <between
the particle and the line joining the nearest neighbors on either
side. Note that when k is sufficiently large that the action of the
potential in Equation (24) has brought the particle separation to
a0, the a0(e2 − e1) ≈ r2 − r1. To obtain a piecewise rigid chain,
Fs is applied to every third bead. By choosing k sufficiently large,
a sequence of rigid rods composed of three beads each, is created.

It is possible to generalize this force in a way so that it only
kicks in when the angle2 between e2 and e1 exceeds a maximum
value 2max.

For this purpose we introduce the transverse displacement
vector 1rT which is the displacement of a particle from the line
that connects its two nearest neighbors. This vector is illustrated
in Figure 5C for the case when 2 = 2max. We require that the
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FIGURE 6 | (A) A simulated time sequence of the fountain evolution shown at

times t = 1.8, 2.0, 2.5, and 3.5 s. The beads are all of equal size and

properties, the larger beads are only drawn in order to track the beads which

are colored blue when they are outside the horizontal extent of the container

and given a brass color when they are not. (B) Simulated and experimental

fountain.

restoring stiffness force be linear in the increase in 1rT above the
2max value, i.e.,

Fs = k(1rT − 1rMT ). (27)

Now, this force acts along with the interaction forces that produce
a particle separation near a0, so we may assume that these other
forces have already caused such a separation, and we approximate
1ri = a0ei. Assuming also that the new displacement vector
1rT ‖ 1rMT = (a0/2)(e

M
2 − eM1 ), we may write

Fs =
ka0

2
(e2 − e1)

(

1−
|eM2 − eM1 |

|e2 − e1|

)

(28)

when 2 ≥ 2max. Using the fact that the ei’s are unit vectors with
internal angles 2 and 2max, the force then takes the form

Fs =
ka0

2
(e2 − e1)

{ (

1−
√

1−cos2max
1−cos2

)

when 2 ≥ 2max

0 when 2 < 2max

.

(29)

FIGURE 7 | The length LT of the upwards moving part of the chain as a

function of fountain height h as measured by simulations.

This force is applied to every bead. If 2max is zero this would
result in a long rigid chain, so we choose it in stead to the
measured value 2max = 63 degrees. When 2max is zero, and the
force is applied to every third particle, the model of Equation (26)
is reproduced.

As experiments with the piecewise rigid chain may be carried
out using pieces of pasta, the corresponding model used in
the simulations will henceforth be termed the pasta model. The
different chain models are illustrated in Figure 5D.

Initially, the chain is packed in the container in straight
segments that extend between points on the container wall. As
the beads are added and meet the wall, a random new direction
pointing into the container, is chosen.

5. RESULTS AND DISCUSSION

In the following we explore the mechanisms producing the force
1F (see Equation 18) by applying the simulations with different
bottom roughnesses, chain models and container widths.

Figure 6A shows the result of a simulation using a =

0.25 a0 and 2max = 63◦. The fountain must acquire its
asymptotic height before

〈

h
〉

is recorded. Figure 6B shows a direct
comparison between simulations and experiments. Figure 7

shows that indeed the relationship between LT and h is linear.
The slope of 1.25 is a measure of the chain buckling and also the
difference between a theory that includes fluctuations and one
that does not.

5.1. Fountain Height and How It Changes
With Different Models
In order to check the effect of variations of the container bottom,
we measured h as a function of the amplitude a that enters in
Equation (25) (see Figure 8). It is seen that when a > 0.4 a0,
there are only weak variations in h with a.

Observing that a bumpy packing, or container bottom, is
crucial to produce a fountain both for the realistic and fully
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FIGURE 8 | Fountain height h as a function of bottom roughness a when h1 =

4 m. The container height is the vertical extent of the container and thus a

minimum value for h.

FIGURE 9 | A simulated time sequence of the fountain evolution using the

separated beads model.

flexible chain, we may still inquire if there are any other chains
that do not rely on the structure of the bottom. Indeed, Biggins
[4] explored two additional chains, one that was composed of
piecewise rigid segments, thus corresponding more closely to

FIGURE 10 | A simulated time sequence of the fountain evolution using the

pasta model. The times are 0.5, 2.0, 2.5, and 3.0 s and h1 = 1.8 m.

his theoretical model, and one with well separated beads, which
could not support the kick-off effect. The results were that the
first chain did produce a fountain, and the latter not.

However, doing the same in our simulations, using (i) a fully
flexible separated bead chain having rigid segments of length
3 cm, and the bottom roughness a = 3mm as before, and (ii) a
piecewise rigid chain with a perfectly smooth container bottom,
we observe a fountain in both cases. Figure 9 shows a time
sequence using the flexible (2max = π) separated bead model
with a rough bottom. Figure 10 shows a time sequence using the
pasta model with a smooth bottom. Note that this is the only
chain model that produces a fountain in the absence of bottom
roughness. This observation is consistent with the experimental
observations of Pantaleone [8] who sees an increase in h when a
chain of balls was replaced by a similar chain of elongated rods.

In Figure 11 we collect the results of all the different chain
models measuring h as a function of h1. They are carried out
by simulating the different chain and container models. We have
also included the original measurements of Biggins and Warner
[5]. Our realistic simulations using a bottom roughness a = a0/4
agree well with these. We have truncated the measurements at h1
= 4 m as the chain lengths which have been applied, do not allow
the system to reach a steady state above that container elevation.
Andrew et al. [16] report a non-linear relationship between h and
h1 using a chain of length 41.5 m and elevation heights up to 18
m. For such elevations one would need a chain more than 200 m
long to reach the asymptotic h-value. So, in this case the non-
linear relationship would appear to exist only between h1 and
some transient value of h.
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FIGURE 11 | The fountain height as a function of elevation h1 for the different

models. Reproduced from Flekkøy et al. [10] with permission from the authors.

5.2. Fountain Height and Container Width
It is seen that the combination of a realistic chain and a
smooth bottom produces no fountain, thus ruling out the kick-
off mechanism as a complete explanation for the phenomenon.
The kick-off mechanism by itself only works to explain the
chain fountain of the pasta model. However, it is seen that while
both the realistic and flexible chains rely on a rough bottom to
produce a fountain, the existence of a realistic rigidity enhances
the fountain.

Is there a crucial experiment that may serve to distinguish
between the different mechanisms? The fountain produced by
the pasta-model on a smooth container bottom (a = 0) can only
be explained by the kick-off mechanism, while the fountain of
the flexible (2max = π) model can only be explained by the
bumpy take-off mechanism. Figure 12 shows how h varies with
the container width for these models. The container is kept at
fixed proportions so that its height is equal to its width. It is
seen that the pasta model and the flexible chain exhibit opposite
trends with increasing w. The most realistic model, the realistic
chain on a rough bottom, however has less of a pronounced
trend, although it tends to behave more like the pasta model. The
realistic chain on a smooth bottom, on the other hand, has no
fountain as h ≈ w (the w = 5 cm point is also likely to be a result
of chain-container rim interactions). Note that the pasta model
too seems to lose its fountain as the container width is increased.

5.3. Velocity Measurements
The predictions for the velocity of the chain given by Equation
(17) involves the mean square velocity

v =
√

〈

u2z
〉

F
. (30)

This is indeed what is measured in the simulations and
experiments. A comparison between measurements and the
prediction of Equation (17) is shown in Figure 13. First, it is
clear that Equation (17) agrees well with the simulations using

FIGURE 12 | Fountain height as a function of container width w h1 = 2.5 m.

FIGURE 13 | Velocities measured 20 cm above the floor. The red line shows

the experimental average
√

〈

u2z
〉

where uz is the vertical component of the

velocity. The blue circles show simulation measurements taken at the same

location but as a function of time. The indigo line shows a semi-analytic

prediction derived from Equations (11) and (12) in Biggins [4], which is based

on a fluctuation-less model. The green horizontal line shows the analytic

prediction of Equation (17) and should be compared with the simulation of the

velocity at the floor. The triangles show simulations with air-drag included.

the realistic model of the chain and container, but not so well with
the experiments.

This is most likely due to a combination of two factors: (1)
lack of hydrodynamic drag from the air, and (2) lack of bending
friction in the simulations. The hydrodynamic drag may be
added to the simulations by including a force per bead FD =

CD(ρair/2)Au
2 where ρair is the mass density of the air, A is the

cross-sectional area of a sphere, and CD is the drag coefficient
of a bead, in the force calculations. For single sphere CD ≈

0.5, but our spheres are equipped with pins connecting to their
neighbors and also move together in a direction that is often
not parallel to the chain itself. These factors may cause CD to
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increase, and we have tentatively set CD = 1. The result, which
is shown in Figure 13, is seen to bring the simulations closer to
the experiments, but not to a full agreement. The other factor, the
lack of bending friction, is likely to cause more chain buckling,
and hence a larger L1-value than in the experiments. This is
consistent with visual observations of the real and simulated
chains, see Figure 6B. From the experiments we estimated that
the increase in length of the downward section of the chain due
to buckling is only of 1.5%, which is much less than the order 25%
buckling that we see in the simulations. Since larger fluctuations
should, according to our theory, lead to a larger chain velocity, it
makes perfect sense that the experimental velocity falls below the
one of theory/simulations.

Mass conservation then implies that
〈

u2z
〉

T
<

〈

u2z
〉

F
. Also,

simulations lack any dissipation associated with beads colliding
with the rim of the container and therefore produces a slightly
larger velocity than the experiments.

The analytic, fluctuation free prediction of Biggins is seen to
lie below the present simulations, at least asymptotically. Biggins
asymptotic v- value does not depend on α, and would in fact
agree with Equation (17) if the replacement 〈L1〉 〈cos2〉 →

h+ h1 was done. This means that the disagreement is most likely
due to the added mass in the downwards moving chain due to
the fluctuations.

It should be noted that the prediction of Equation (17) for the
average velocity 〈uz〉 itself reflects both the geometric effect of
the fluctuating chain and the effect of velocity fluctuations δuz
around the average as 〈uz〉

2 =
〈

u2z
〉

−
〈

δu2z
〉

. Naturally, in the
stationary limit these effects both go away.

There is a fine point linked to the measurement of uz
and the fact that our continuum theory of Equation (8) is
compared to a discrete particle model. Indeed, the velocity
varies discontinuously from particle to particle, and only
when their velocities are averaged into a group does it make

FIGURE 14 | Velocities measured at different heights above the floor. The graph shows how the upwards forces, coming from the interaction with the floor, slow down

the beads. The rectangular frames illustrate how a group of three beads is compressed as it hits the packing. The rightmost vertical line shows where forces from the

floor are observed to slow the chain down. The leftmost line denotes the distance a0, above which there can be no direct interaction with the underlying packing.
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sense to represent them by a differentiable field as we do.
The velocities, and by implication the cos2-values, shown in
Figure 13 are averaged over groups of 10 particles. Reassuringly,
the result changed by less than 1% when the group was enlarged
to 20 particles.

Figure 14 shows measurements that follow a single particle
as it approaches the location where it stops. The vertical
component of velocity is recorded, and the distance to the
floor packing is exactly the distance to the future stopping
location. The rightmost vertical line shows where forces from
the floor are observed to slow the chain down. The leftmost
line is drawn at a distance a0, above which there can be
no direct interaction between the bead and the underlying
packing. The fact that the beads start slowing down above
the distance a0 means that there must be an upwards acting
force that is transmitted through the chain to the particle
when it is located between the two lines. This can be more
clearly seen by visually comparing a group of three consecutive
beads close to the packing (green square in Figure 14) to a
similar group of beads a bit further up (purple square). We
see that the beads close to the packing seem to be compressed
together, indicating the presence of an upwards force from
the floor.

This observation runs contrary to the observation by
Grewal et al. [13] who found that the interaction with
the floor might cause a falling speed slightly faster than
free fall.

6. CONCLUSIONS

In summary, we have developed a theory of the flying chain
motion that includes fluctuations, and we have proceeded to
demonstrate, mainly via simulations, that these fluctuations play
a quantitative role that is necessary for the theory to agree with
measurements. The simplest observation of this is the fact that
chain buckling creates an increased effective mass in the chain by
about 25%.

The existence of a fountain relies entirely on the upwards
acting force from the container on the chain. But the mechanisms

acting to produce this force varies depending on the construction
of the chain. While a chain made of rigid segments may create
a fountain even when it takes off from a smooth container
bottom, this is not the case for a chain with flexible links between
spherical beads. In this case the required momentum must be
picked up from the container via collisions with beads in it or
a rough container bottom. Yet, the introduction of a maximum
bending angle between links in the chain, will enhance the effect
of these collisions.

We have studied an experiment that may serve to distinguish
the mechanisms at play, that is, the measurement of fountain
height vs. container width. While the rigid segment tend to
reduce its fountain height with increasing width, the opposite
is true for the flexible chain without a maximum bending angle
between links in the chain.
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