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We report accurate calculations of tonsorial elements of α-Diisopropylammonium
bromide (α-DIPAB) molecular ferroelectric crystal. In particular, elastic, piezoelectric
and dielectric tensors were computed using density functional theory (DFT)-based
Vienna ab initio simulation package (VASP). The determination of above parameters
allows an accurate description of the energy landscape for modeling of realistic devices
at finite temperatures. We determine the major physical tensors in energy expansion
of total energy per volume of un-deformed crystal to provide experimentalists with
valuable information for designing and fabrication of pyroelectric detectors, capacitors,
piezoelectric devices based on α-DIPAB. The spontaneous polarization Ps was
calculated using Berry phase approach and found to be 22.64 µC/cm2 in agreement
with reported theoretical value. Furthermore, we calculate dynamical Born effective
charge tensor to get a deeper insight into the bonding network and lattice dynamic of
α-DIPAB crystal. The neighboring layers of DIPA molecules were found to be strongly
crenelated due to the strong short-ranged electrostatic repulsion between Br sites in
the DIPAB crystal structure. The organization of species in DIPA molecular layer as well
as in the bromine “stitching” layer is essential for accurate calculation of DIPAB elastic
properties. Having understood the actual network bonding in α-DIPAB, we calculated
the components of the elastic moduli tensor. Our results indicate that a Young’s modulus
of 50–150 GPa and a shear modulus of 4–26 GPa were found. Thus, α-DIPAB phase has
a great potential to be a terrific candidate for flexible electronic device applications. The
value of the principle component of electronic contribution to the static dielectric tensor
of α-DIPAB is found to be ≈2.5, i.e., 50% smaller than that in typical perovskite-based
ferroelectrics. Therefore, α-DIPAB is anticipated to exhibit creative materials’
innovations. It could be potential candidate as insulating layer of polymer thick films.

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2019.00203
http://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2019.00203&domain=pdf&date_stamp=2019-11-29
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:alsaad11@just.edu.jo
https://doi.org/10.3389/fphy.2019.00203
https://www.frontiersin.org/articles/10.3389/fphy.2019.00203/full
http://loop.frontiersin.org/people/785534/overview
http://loop.frontiersin.org/people/785654/overview
http://loop.frontiersin.org/people/826036/overview
http://loop.frontiersin.org/people/818272/overview
http://loop.frontiersin.org/people/829837/overview


Alsaad et al. Physical Tensors of α-DIPAB

Its mechanical, insulating and elastic properties make it eligible for switch keys and
flex-circuit applications. Furthermore, clamped-ion piezoelectric tensor is calculated. Our
results indicate a reasonable piezoelectric response of this polar crystal making it a low
cost attractive candidate for piezoelectric applications.

Keywords: α-diisopropylammonium bromide, Vienna ab initio simulation package (VASP), piezoelectric and

dielectric tensors, elastic and dielectric properties, molecular ferroelectrics

INTRODUCTION

Ferroelectric materials and in particular perovskites [1, 2]
are widely investigated experimentally and theoretically due
to their prospective opto-electronic and piezoelectric device
applications [3]. The outstanding physical and piezoelectric
properties of the Lead Lanthanum Zirconate Titanate
[Pb1−xLax(ZryTi1−y)O3 (PLZT)] discovered in 1971 [4, 5]
have attracted much interest for synthesis of ferroelectric
films. In the past 20 years, more studies were published on
the structural and electrical properties of ferroelectric films
[6]. Molecular ferroelectrics are highly desirable due to their
lightweight, mechanical flexibility and for being friendly to
environment. It was reported that diisopropylammonium
chloride (DIPAC) molecule exhibits a room-temperature polar
phase with spontaneous polarization of 8.2 µC/cm2 [7]. It has
been reported that diisopropylammonium bromide (DIPAB)
crystallizes into a room-temperature ferroelectric phase branded
as P21 (α-DIPAB) and a high temperature paraelectric phase
categorized as P21/m (β) [7]. X-ray diffraction (XRD) structural
characterization indicates that P21 (α-DIPAB) belongs to polar
point group C2 [8] illustrated schematically in Figure 1A. In
contrast, at high temperature P21/m (β) has a crystal structure
with a non-polar point group D2 shown schematically in
Figure 1B. It has been found that polar α-DIPAB exhibits a large
enhanced spontaneous polarization of 23 µC/cm2 [9]. It has also
been shown that α-DIPAB exhibits good piezoelectric response.
In the past few years, α-DIPAB and DIPAC have become key
candidate materials for several technological applications such as,
information storing, energy reaping [3], frequency-modulation
devices [10, 11], polymers [12], sensors [13], and flex-circuits.
Attributed to their extraordinary properties, α-DIPAB and
DIPAC and other molecular ferroelectrics have overcame some
weaknesses of traditional molecular ferroelectrics. Lately the
effect of bromine deficiency on the lattice dynamics and dielectric
properties of α-DIPAB crystals. It was found that bromine (Br)
deficiency intensely affects the dielectric properties of α-DIPAB
[14]. Our FT-IR and Raman vibrational spectra measurements
proposed the presence of disorder in the α-DIPAB crystal.
We have successfully determined major vibrational modes of
α-DIPAB crystal using vdW + DF2 functional and were found
to match with the experimentally determined modes [14]. We
report our results on the structural and optical properties, as well
as, vibrational modes of α-DIPAB [15].

Figure 1 shows the structures of the two polymorphs
of DIPAB crystal. It was observed that the transformation
from P21/m (β) phase to α-DIPAB phase occurs above room

temperature [16]. It was observed that such transition is
accompanied by a drastic change in structural, dielectric, elastic,
thermal, and other properties [17, 18]. Several external factors
can influence this transition such as pressure and electric field
[19, 20]. It is much desired to elucidate the electronic, dielectric
and optical properties of these materials in details. We perform
density functional based studies of electronic properties of α-
DIPAB. We obtained the basic physical quantities describing
the dielectric behavior of α-DIPAB including spontaneous
polarization, dynamical Born effective charges, static dielectric,
clamped-ion piezoelectric, and elastic stiffness tensors. This
information can be used for modeling of potential DIPAB-based
devices both ordered and disordered [21, 22].

Toward achieving the goal of understanding the electronic
and optical properties of the α-DIPAB, we report the detailed
study of the physical properties using ab initio DFT based
simulations. The main motivation of the present work is to
report accurate parameterization of the vector components of the
“gradient” vector A and tonsorial elements of “Hessian matrix” B
of polar α-DIPAB crystal. Such parameterization is backbone of
the correct depiction of the energy background for fabrication
of convincing optoelectronic and piezoelectric devices at finite
temperatures for large scale and massive production.

Our manuscript is structured as follows: following the above
introduction, a comprehensive discussion of the computational
methods is introduced in section Computational Methods.
In section Results and Discussion, a detailed analysis of
the calculated physical properties of α-DIPAB is presented.
Particularly, we report an ab initio calculation of the spontaneous
polarization, dynamical Born effective charges, static dielectric,
and clamped-ion piezoelectric, and elastic stiffness tensors of
polar α-DIPAB. We, finally, conclude the findings and results of
this work in section Summary And Conclusions.

COMPUTATIONAL METHODS

Ab initio simulations based on DFT [23, 24] were implemented
in this work to carry out all calculations. The electronic structure
was calculated using the Projector Augmented Wave (PAW)
method [25] as implemented in the Vienna ab initio simulation
package VASP [26]. The generalized gradient approximation
(GGA) [27] was used for the exchange-correlation potential.
We used cut off energy of 400 eV and a 4 x 4 x 4 Monkhorst-
Pack grid for integration over Brillion zone. Elastic tensors were
calculated with the energy cut-off of 700 eV. The relaxed atomic
locations were monitored by minimizing the total energy (i.e.,
as small as 10−6 eV), and the Hellmann-Feynman forces as
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FIGURE 1 | Structures of (A) α-DIPAB phase and (B) and P21/m (β) phase.

small as 0.003 eV/Å at convergence. Electronic polarization was
computed using the Berry phase approach [28]. The spontaneous
polarization (Ps) of α-DIPAB crystal is defined as the difference
between the polarization of the polar ferroelectric phase and the
paraelectric centrosymmetric phase (P = 0). We have done the
Convergence test for our investigated system. The plot of Total
Energy vs. Cut-off energy shows that beyond a Cut-off energy of
400 eV, the value of Etot does not change significantly for a E Cut-
off >400–500 eV (This depends on the accuracy required by the
calculation). Therefore, we do not need to take a greater value
of E Cut-off for our calculation since the result will be always
the same. This justified the use of 400 eV as a Cut-off energy in
our calculations.

While current ab initio density-functional calculations cannot
adequately determine material properties at high temperature,
it is possible to compute the static-lattice equation of state
and elastic moduli of α-DIPAB crystal. If correlations between
equilibrium properties and high-temperature properties are
precisely determined, they can then be used to design
the experiments to perform practical measurements. When
appropriate, we mention the computation of related properties,
like dielectric tensor and Born effective charges that are needed
to get infrared spectra. Our results are valid for the temperatures
ranging between T= 0 and T= 300K (Room temperature).

Structural Properties
We considered two different DIPAB polymorphs formed
experimentally during recrystallization from aqueous solution,
one is the ferroelectric phase labeled P21 (α) 1-F (α-DIPAB)
and the other is the paraelectric structure mimicking P21/m (β).
Figure 1A shows the orientation of N atoms relative to Br
atoms leads to a lack of inversion symmetry. In This atomic
arrangement, the local electric dipoles created due to the
covalent bonding between nitrogen and carbon atoms are

TABLE 1 | The optimized lattice parameters of P21/m (β) and α − DIPAB phases
of DIPAB crystal.

Parameter P21/m (β) phase P21 (α) (α-DIPAB)

phase

Empirical formula C6 H16 Br N C6 H16 Br N

Space group P21 P21
Lattice parameter a (Å) 7.946 (7.994)a 7.799 (7.792)b

Lattice parameter b (Å) 8.1567 (8.166)a 8.067 (8.045)b

Lattice parameter c (Å) 7.974 (8.039)a 7.584 (7.855)b

α /◦ 90 90

β/◦ 116.511 (116.511)c 116.231 (116.330)d

γ /◦ 90 90

Equilibrium volume V (Å3) 463.05 (469.6)a 443.30 (441.35)b

Spontaneous polarization
Ps (µC/cm2)

0 22.64

References: a [3], b [12], c [30], d [17].

aligned to enforce the existence of finite electric polarization.
Figure 1B shows that upon heating above 426K (warm symmetry
restoration), the nitrogen atoms apparently enter a disordered
state resulting in a centrosymmetric (P21/m (β)) phase in which
the dipole moments cancel out and leads to exactly zero
spontaneous polarization. Upon cooling to room temperature
(cooling symmetry breaking), the crystal goes back to polar
P21 (α). Thus, spontaneous polarization appears as a result of
the breaking of the mirror symmetry. We used lattice constants
obtained from XRD measurements as for the input structure
in our ab-initio calculations [29] and then performed gradient-
descent procedure to obtain the equilibrium lattice parameters of
the two phases. The optimized lattice constants are presented in
Table 1 found to agree fairly well with the experimental findings.

In order to calculate spontaneous polarization we perform
macroscopic polarization calculations for the centrosymmetric
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FIGURE 2 | EDFT−disp Calculated in VASP as function of lattice parameter ratio
avdW/aDFT.

P21/m (β) prototype phase and the experimental polar P21 (α)

state. The difference in total polarization between the two
states is the spontaneous polarization Ps. Inclusion of Van
der Waals (vdW) correction to energy performed in VASP
[31, 32] using DFT-D3 method with Becke-Jonson damping
yields minor changes the equilibrium lattice parameters. Figure 2
shows the computed corrected energy (EDFT−disp) as function
of lattice parameter ratio (avdW/aDFT). A realistic approach to
tackle this issue is to add a correction to the conventional
Kohn-Sham DFT energy (EKS−DFT), EDFT−disp = EKS−DFT +

Edisp, where Edisp is the correction term evaluated using
DFT-D3 method [33, 34]. The lattice parameters do not
differ significantly (<1% from GGA calculation) because the
electrostatic attractions between molecules mediated by Br atom
are strong.

Energy Per Undeformed Crystal Volume
Energy of the crystal in ground state (at zero strain and in
the absence of external fields), H0, is defined as the energy
per unit volume, i.e., an energy density, with units of J/m3.
The energy, H, is calculated as the energy per primitive cell of
the strained crystal divided by the volume of the unstrained
crystal. It also has units of J/m3, as though it were an energy
per unit volume, but it is really an energy per undeformed
unit volume. The expansion of the energy density can be
written as

H = Ho + Aαxα +
1

2
Bαβxαxβ (1)

Where in collective notations xα = (um, ηj,Eα) : um is
the displacement of atoms from equilibrium positions, ηj
is the strain in Voigt notations, and Eα is the external
electric field. The “gradient” vector A and “Hessian matrix”
B are:

A =





F/V
σ

−P



 ,B =





K/V − 3/V − Z∗/V

−3T/V λ eT

−Z∗T/V − e − χ



 (2)

Here F notates force computed at xα = 0, σ–stress and P–
polarization. The notations in tensor B on the diagonal: K–force
constant matrix, λ –elastic constant, χ-dielectric susceptibility
matrices; and off-diagonal components: 3-force response
“internal strain tensor,” Z∗-Born dynamical charges, and e is
piezoelectric tensors (V-cell volume). For a detailed description
of the formalism of the elementary response tensors [35, 36]
(see [19, 20] and the references therein). The determination
of above parameters allows an accurate description of the
energy landscape for modeling of realistic devices at finite
temperatures. Below, we determine the major physical
quantities in energy expansion of total energy per volume of
undeformed crystal.

Numbers of approaches have shown predictive capabilities of
classical Hamiltonians based on the above parameterization [37–
39]. The advantage of atomistic simulations at finite temperatures
is well-established [40, 41]. However, in case of ferroelectric
materials there is a need of connecting atomic positions, strains
and external electric field with parameters describing polar
materials such as polarization and stress. The interplay between
structural, elastic and electric properties in ferroelectrics is
essential for the understanding and designing of ferroelectric
devices. This information is frequently missing in the studies of
ferroelectrics, particularly, when studies mainly focus only on a
specific selected property.

RESULTS AND DISCUSSION

Electric Polarization of α-DIPAB
The calculated spontaneous polarization of the polar ferroelectric
phases is presented in Table 1. The magnitude of spontaneous
polarization is Ps = 22.64 µC/cm2 in agreement with previous
theoretical data and also with the theoretical calculations using
hybrid density functionals [4]. This value is comparable to the
one in perovskite-based ferroelectric such as BTO. Ferroelectrics
lose their intrinsic spontaneous polarization at temperatures
above a transition temperature (Curie temperature Tc) and
become paraelectric. We found that the energy difference
between ferroelectric P21 (α) phase and P21/m (β) paraelectric
phase is 15.3 eV. This energy difference can be used to calculate
the Curie temperature of α-DIPAB crystal [42, 43]. The details
of the derivation of tonsorial elements of matrices A and
B is provided in the Supplementary Information. Below we
describe and calculate each of the tonsorial elements of matrices
A and B.

The Static Dielectric Tensor
ε
0
ij at Constant Vanishing Strain (η= 0) of

α-DIPAB
The accurate determination of the static dielectric tensor ε

0
ij of a

material is crucial for a realistic design of opto-electronic devices.
In this section, we focus on investigating the dielectric

properties of α-DIPAB by calculating their response to
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TABLE 2 | The electronic contribution to the static dielectric tensor ε0
ij at constant

vanishing strain (η = 0) of α-DIPAB including local field effects (applying external
electric field) and Van der Waals forces.

Including local field effects ε0
11 ε0

22 ε0
33

2.403 2.413 2.381

homogeneous electric fields. It is usually difficult to handle
the electric field effects within crystalline solids. Currently,
density functional perturbation theory (DFPT) is considered as
the appropriate approach to handle the response of molecular
ferroelectrics to electric fields [18].

The elements of the static dielectric tensor are

ε0ij = δij + 1/ǫ0
dPi

dEj
(3)

Where E is the electric field and P is the total macroscopic
polarization. The ε0ij at constant vanishing strain (η = 0) is
related to the susceptibility tensor χij in Equation (2). It is defined
at fixed (vanishing) strain via ε

η
ij = (δij + χ

η
ij ).

In this section, we study the perturbations applied to the
crystal by applying homogeneous electric fields εα . As mentioned
above, ε0ij can be split into an electronic contribution and a lattice
contribution. The electronic contribution is manifested by the
crystal ability to rearrange charges in response to external electric
field considered with clamped nuclear position. The principle
components of the electronic contribution to the dielectric tensor
ε0ij of α-DIPAB obtained by applying an external field E =

0.01x̂ + 0.01ŷ + 0.01ẑ eV/A are presented in Table 2 including
the local field effects. The lattice contribution to the dielectric
tensor depends on the thermal phonon response and is not
considered here. Piecha et al. have shown that although the zero
temperature static dielectric permittivity of DIPAB in relatively
small it may reach much higher values at the maximum near the
phase transition at temperature∼ 426K [29].

The values of the principle components of the static dielectric
tensor are found to be smaller than in typical perovskite-
based ferroelectric. For example, it is about 50% of those
of Orthorhombic KNbO3 recently reported [44] and 46%
of the experimental finding [45] and 37% of the theoretical
value [46] of that of BTO. Accurate parameterization of ε0ij
tensor at constant vanishing strain (η = 0) provides a
deeper insight into understanding the origin of the dielectric
properties exhibited by the crystal. The understanding of these
properties is essential for proper description of the long wave
lattice dynamics.

Born Effective Charge Tensor of α-DIPAB
The accurate calculation of Born effective charge tensor
Z∗
ij is crucial for understanding of crystal lattice dynamics,

piezoelectric and ferroelectric properties. We computed
the Born effective charge tensors of α-DIPAB using
the density functional perturbation theory and from

the response to finite electric fields. The Born effective
charge tensor,

Z
∗

i,jk = V
∂Pj

∂ui,k
=

∂Fi,k

∂Ej
= −

∂2H

∂Ej∂ui,k
(4)

Where ∂Pj is the change in polarization prompted by the periodic
displacement ∂ui,k or to the force Fi,k induced on atom i by the
electric field Ej. Therefore, Z∗

ij in terms of atomic displacements
is given by

Pj =
e

V

∑

Z
∗

ijkδui,k (5)

Where i stands for the ith atom. The j and k indices
indicate the direction of the polarization component and atomic
displacement, respectively.

Tables 3, 4 present the Born effective charge tensor of bromine
and nitrogen atoms of α-DIPAB calculated from response to a
homogenous electric field and density functional perturbation
theory, respectively.

The complete Born effective charge tensors of all atoms
of α-DIPAB are reported in Tables S1, S2. Tables 3, 4 show
that the principal components of Born effective charge of the
two bromine and two nitrogen atoms predicted by the two
approaches are very close. It can be seen from Tables 3, 4;
Tables S1, S2 that the principal components of Z∗-tensor of
bromine atoms is >1e and for N, C, and H atoms is <1e. We
found that principle components of Born effective charge tensor
of bromine and nitrogen atoms are the most prominent and the
off-diagonal elements are relatively small. The acoustic-sum rule
[47] ensures that the charge neutrality is also satisfied at the level
of the Born effective charges. By examining Tables S1, S2, it is
obvious that this sum rule is satisfied.

By examining Tables 3, 4 and Figures 3, 4A–C, we found that
Born effective charges of carbon atoms covalently bonded to
nitrogen atom are positive and effectively create a local dipole
moments with negatively charged nitrogen site, while Br atom
also has an effective negative charge. The origin of this comes
from the charge transfer between molecules of DIPA and Br.
We found that Br p-states are weakly hybridized to states of α-
DIPAB and its p-states are located between HOMO and LUMO
states of the molecules. All these states are occupied, i.e., charge
is transferred from molecules to Br sites filling its 4p6 shell.
Inside the α-DIPAB molecule charge transfer occurs due to the
covalent bonding between C and N sites. Nitrogen is more
electronegative and shifts the center of bond charge toward N.
The indication of binding is seen in molecular orbital energies
where hybridized MO (having contribution from N and C sites)
are shifted with respect to “unmixed” carbon states (i.e., without
N states contribution to wave function).

The Piezoelectric Tensor of α-DIPAB
Piezoelectricity is the formation of electric polarization of
certain non-conducting crystals when they are mechanically
strained. As a result, piezoelectric material can yield electricity
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TABLE 3 | Calculated Born effective charge tensor of bromine and nitrogen atoms of α-DIPAB calculated by applying a homogenous electric field
−→
E = = 0.01x̂ + 0.01ŷ

+ 0.01ẑ eV/.

Atomic Species Z*
xx Z*

xy Z*
xz Z*

yx Z*
yy Z*

yz Z*
zx Z*

zy Z*
zz

Br1 −1.319 0.039 0.161 0.058 −1.366 0.076 0.188 0.080 −0.850

Br2 −1.319 −0.039 0.161 −0.058 −1.366 -0.076 0.188 −0.080 −0.850

N3 −0.777 −0.086 0.113 −0.102 −0.836 0.131 0.063 0.078 −0.751

N4 −0.777 0.086 0.113 0.102 −0.836 -0.131 0.063 −0.078 −0.751

TABLE 4 | Born effective charge tensor for Br and N ions of α-DIPAB using Density Perturbation Functional Theory (DPFT).

Atomic species Z*
xx Z*

xy Z*
xz Z*

yx Z*
yy Z*

yz Z*
zx Z*

zy Z*
zz

Br1 −1.242 0.077 0.103 0.046 −1.345 0.057 0.114 0.023 −0.917

Br2 −1.242 −0.077 0.103 −0.046 -1.345 −0.057 0.114 −0.023 −0.917

N3 −0.791 −0.087 0.109 −0.101 −0.847 0.132 0.078 0.085 −0.745

N4 −0.791 0.088 0.109 0.101 −0.847 −0.132 0.078 −0.085 −0.745

FIGURE 3 | The band structure of α − DIPAB phase.

through mechanical disturbance. Piezoelectricity has been
studied extensively, both experiments and theories for devices,
such as sensor and controller, such as in energy harvesting.

For piezoelectric effect, the polarization change per unit area
(Pi) or the magnitude of electric moment per unit volume (Ei) is
related to an applied stress or strain via the piezoelectric strain

coefficients (dijk) and the piezoelectric stress coefficient (eijk).
This relation can be described using the third-rank tensors [48]
with the following equations:

dijk =
dPi

dσjk
=

dηjk

dEi
(6)

eijk =
dPi

dηjk
=

dσjk

dEi
(7)

The piezoelectric eij coefficients are related to the piezoelectric dij
coefficients by elastic coefficients λkj [49], where ηijk is the strain
tensor and σijk is the stress tensor and the polarization changes
per unit area (Pi) is defined in Equation (5).

eij =
∑

k

dikλkj (8)

In terms of the energy defined in Equation (1), the clamped-ion
piezoelectric tensors (Voigt notation) can be written as

e
(0)
ij = −

∂2H

∂Ei∂ηj
|u (9)

The piezoelectric response is computed by calculating all
non-zero components of the piezoelectric tensor. The clamped-
ion piezoelectric coefficients e

(0)
ij tensor is shown in Table 5

relates polarization to applied strain, which represented
diagrammatically in Figure 4. For the monoclinic phase,

the coefficient e
(0)
22 links a uniaxial strain and spontaneous

polarization parallel to each other. Table 5 shows that e
(0)
21

component links a uniaxial strain applied perpendicular to
the N-C bonds and the resulting polarization is smaller than
e
(0)
22 . When the strain twists the N-C bonds, a large change in
polarization component is expected.

For the α-DIPAB, the most significant piezoelectric

coefficients are e
(0)
15 and e

(0)
35 . These coefficients indicate the
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FIGURE 4 | Energy level diagrams of α-DIPAB (A) entire energy level spectrum, (B) energy levels that represent the N-C hybridization, and (C) energy levels of Br 4p
band.

TABLE 5 | The piezoelectric tensor components e(0)ij of α-DIPAB in units of C/m2.

Phase e
(0)
14

e
(0)
15

e
(0)
21

e
(0)
22

e
(0)
23

e
(0)
26

e
(0)
34

e
(0)
35

P21 (α) 0.0782 0.220 −0.0142 0.0279 0.0038 0.00097 −0.0738 −0.2032

quantative rotation of the electric dipole from the z-direction
when η13 and η31shears are applied. The shear strain η13 twists
the N-C bond causing the polarization vector to rotate along
x-direction producing a large change in the electric dipole in
this direction as can be clearly demonstrated from Figure 5 that
shows 3D and 2D plots of the piezoelectric tensor of α-DIPAB.

As the homogenous electric field is applied to ferroelectric
phase of α-DIPAB, the Br, N, C and N ions positions are
displaced causing minor changes in crystal dimensions
and shear strains are generated [18, 50–54]. Such shear
strain induced by the application of electric fields are
crucial for the functioning of actuators and sensors [54].
Therefore, strain-induced piezoelectricity in ferroelectric

α-DIPAB manifested by significant values piezoelectric
coefficients makes it a potential candidate for the design
of non-volatile ferroelectric random-access memories
(NVFRAM’s) [18].

Internal Strain Tensors of α-DIPAB
Force-response internal strain tensor is defined as

3mj = −V
∂2H

∂um∂ηj
|E (10)

The force-response internal-strain tensor 3mj must be
distinguished from the displacement-response internal strain
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FIGURE 5 | (A) 3D plot, (B) xy 2D plot, and (C) yz 2D plot of the piezoelectric tensor of α-DIPAB.

tensor Tnj = 3mj(K−1)mn where K is the force constant matrix
that describes the first order displacements resulting from a
first-order strain.

Tables 6–9 present the force response “internal strain
tensor” from the displaced atoms of the bromine and
nitrogen atoms. They appear in crystals missing inversion
symmetry. Accurate parameterization of internal strain
tensor is important for the description of crystals
under stress.

The Elastic Stiffness Tensor of α-DIPAB
Potential applications of α-DIPAB in flexible electronic devices
could benefit from detailed understanding of elastic properties
of this material. Elastic moduli of materials show the connection
between the strain and stress applied to the system. Equation
(16) indicates the relationship of the stress and strain tensors
with the elastic moduli tensor. Elastic stiffness tensor of the
α-DIPAB with the simple monoclinic lattice that belongs
to the space group P21 has an asymmetric form. The
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TABLE 6 | Internal strain tensor (Voigt notation) of Br1 for displacements in x, y, z
(eV/Å).

Index 1 2 3 4 5 6

1 −2.560 −0.823 −0.225 0.989 −0.363 1.311

2 0.936 −3.199 −0.001 −0.520 1.475 −0.051

3 1.331 1.437 −0.110 −0.162 −0.279 −0.326

TABLE 7 | Internal strain tensor (Voigt notation) of Br2 for displacements in x, y, z
(eV/Å).

Index 1 2 3 4 5 6

1 2.560 0.823 0.225 0.989 −0.363 −1.311

2 0.936 −3.199 −0.001 0.520 −1.475 −0.051

3 −1.331 −1.437 0.110 −0.162 −0.279 0.326

calculated elements of the elastic moduli contribution from
ionic relaxation, lattice contribution and total elastic stiffness
tensor are presented in Table 10. Figure 6 shows the two
and three-dimensional surface constructions of the elastic
modulus for α-DIPAB. From Figure 6, it is obvious that elastic
modulus of α-DIPAB exhibits a large deviation in shape from
spherical symmetry indicating a strong anisotropic behavior
in different directions. The 3D contour deviates from the
spherical shape laterally along the z- axis along which it
exhibits the largest value. The large deviation from spherical
shape along z-axis indicates that elastic modulus of α-DIPAB is
highly anisotropic.

Anisotropies of mechanical properties are investigated by
calculating the directional dependences of Young’s modulus of
α-DIPAB. We found that the Young’s modulus exhibits evident
anisotropy, with the largest value 150 GPa along the normal of
{111} planes and the minimum value 50 GPa along the {100}
planes normal.

Several previous studies has been performed to study the
static and dynamic dielectric tensors, piezoelectric, and elastic
characteristics of the first known ferroelectrics crystals such as
Rochelle salt crystals [36, 37]. For the α-DIPAB, the elastic
stiffness tensor is symmetrical λEij = λEji obeying the relations

λE21 = λE12, λE31 = λE13, λE51 = λE15, λE61 = λE16. The table
shows that α-DIPAB exhibits negative diagonal elastic moduli
and the magnitudes of the components indicate that the material
is relatively soft. This result shows that this material has a
potential to be used in flex circuits for flexible electronic
applications. Flexible electronics is a technology for assembling
electronic circuit by mounting electronic devices on substrates
[55]. The Siegfried Bauer article “Sophisticated skin” and the
related articles [56–65] presented the idea of sophisticated
electronic skin for understanding the functioning of light-
emitting diodes (OLEDs).

Flexible electronics is projected to provide the market with
new generation of smart devices that are characterized of
low cost of production, lightweight, thinner, non-breakable.
Flexible electronic assemblies may be manufactured using boards
conform to a desired shape. The light weight and non-toxic

TABLE 8 | Internal strain tensor (Voigt notation) of N1 for displacements in x, y, z
(eV/Å).

Index 1 2 3 4 5 6

1 −9.884 2.800 −0.173 −10.36 1.297 6.976

2 −6.628 14.55 −1.207 6.751 5.693 1.058

3 8.121 −6.337 −0.795 1.346 −4.352 3.567

TABLE 9 | Internal strain tensor (Voigt notation) of N2 for displacements in x, y, z
(eV/Å).

Index 1 2 3 4 5 6

1 9.884 −2.800 0.173 −10.36 1.297 −6.976

2 −6.628 14.55 −1.207 −6.751 5.693 1.058

3 −8.121 6.337 0.795 1.346 −4.352 −3.567

TABLE 10 | Elastic moduli λEij at constant electric field E of α-DIPAB crystal (GPa).

Direction 1 2 3 4 5 6

1 −180 −6.5 −26 0.000 0.000 9.6

2 −6.5 −184 −22 0.000 0.000 4.5

3 −26 −22 −156 0.000 0.000 −11

4 0.000 0.000 0.000 −53 3.8 0.000

5 0.000 0.000 0.000 3.8 −74 0.000

6 9.6 4.5 −11 0.000 0.000 −78

nature of α-DIPAB with Young’s modulus of 50–150 GPa and
shear modulus of 4–26 GPa make it good candidate as substrate
for flex circuit boards and electronic skin.

SUMMARY AND CONCLUSIONS

In summary, ab initio computations are performed to compute
all tonsorial elements of the gradient vector and Hessian
matrix of α-DIPAB molecular crystal. The main theme of
this work is to reveal the relationship between the accurate
computation of diagonal force constant matrix, elastic constant,
dielectric susceptibility matrices; and off-diagonal components:
force response “internal strain tensor,” Born dynamical charges,
piezoelectric tensors and the modeling of potential α-DIPAB-
based devices. Accurate parameterization of all tonsorial
elements is essential for the accurate description of the
energy landscape for modeling of realistic optoelectronic and
piezoelectric devices at finite temperatures. Furthermore, we
found that α-DIPAB molecular crystal exhibits a significantly
enhanced spontaneous polarization of 22.64 µC/cm2 due the
stabilization of large unit-dipole canting. Interestingly, such large
value of spontaneous polarization of this easy processing, Lead-
free, environment friendly compound is comparable to those
of traditional perovskites. Consequently, α-DIPAB crystal offers
a low cost alternative for several expensive and environment
unfriendly perovskites. To get a deeper insight and to reveal
the actual structure of α-DIPAB crystal, it is critical to calculate
the Born effective charges for each species of the crystal. We
found a negative Born effective charge for nitrogen (∼ −0.8e),
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FIGURE 6 | (A) 3D, (B) xy 2D, and (C) yz 2D representation of the elastic modulus of α-DIPAB. The contour indicates the magnitude of elastic modulus along different
directions. The units along x and y-axes are GPa.

positive for carbon atom bonded to nitrogen (∼ +0.4e) and
negative of more than 1e for Bromine. Such values indicate
that during the growth of DIPAB, HBr molecules react with
DIPA components resulting in a crystal structure that could be
considered as “layered,” where bromine ions (Br−) intermediate
the indirect bonding between neighboring layers of DIPA+

molecules. Exploring α-DIPAB crystal for potential dielectric
applications lead us to compute the principle components of the
static dielectric tensor of α-DIPAB. We found it to be (∼ 2.5)
comparable with that of Diisoamylene (2.4) and about 50 % of
that of BTO. As a result, our findings provide substantial evidence
of the importance of this crystal for potential dielectric devices.

Accurate calculation of static dielectric constant is critical for
the molding and design of realistic capacitors employing the
dielectric properties of insulator α-DIPAB at finite temperatures.
As far as piezoelectric applications of α-DIPAB are concerned,
we found that α-DIPAB exhibits piezoelectric coefficients e15 =

0.220 C/m2 and e35 = −0.203 C/m2 indicating a significant
piezoelectric response that makes the molecule attractive for
several electro-mechanical applications such as micro-electro
mechanical (MEM) switch. The total elastic moduli calculations
show that α-DIPAB exhibits Young’s modulus of∼ 50−180 GPa,
while shear modulus of∼ 4−26GPa. Thus, α-DIPAB has a strong
potential for flexible electronic applications. Elastic properties of
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this material are of particular interest because of the potential
application in flexible electronic and sensor applications.
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