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We study the role of the system response time in the computational capacity of

delay-based reservoir computers. Photonic hardware implementation of these systems

offers high processing speed. However, delay-based reservoir computers have a

trade-off between computational capacity and processing speed due to the non-zero

response time of the non-linear node. The reservoir state is obtained from the sampled

output of the non-linear node. We show that the computational capacity is degraded

when the sampling output rate is higher than the inverse of the system response time.

We find that the computational capacity depends not only on the sampling output

rate but also on the misalignment between the delay time of the non-linear node

and the data injection time. We show that the capacity degradation due to the high

sampling output rate can be reduced when the delay time is greater than the data

injection time. We find that this mismatch gives an improvement of the performance

of delay-based reservoir computers for several benchmarking tasks. Our results show

that the processing speed of delay-based reservoir computers can be increased while

keeping a good computational capacity by using a mismatch between delay and data

injection times. It is also shown that computational capacity for high sampling output

rates can be further increased by using an extra feedback line and delay times greater

than the data injection time.

Keywords: reservoir computing, delayed-feedback systems, memory capacity, system response time, information

processing rate

1. INTRODUCTION

Reservoir computing (RC) is a successful brain-inspired concept to process information with
temporal dependencies [1, 2]. RC conceptually belongs to the field of recurrent neural networks
(RNN) [3]. In these systems, the input signal is non-linearly projected onto a high-dimensional
state space where the task can be solved much more easily than in the original input space. The
high-dimensional space is typically a network of interconnected non-linear nodes (called neurons).
The ensemble of neurons is called the reservoir. RC implementations are generally composed of
three layers: input, reservoir, and output (see Figure 1). The input layer feeds the input signal to
the reservoir via fixed weighted connections. The input weights are often chosen randomly. These
weights determine how strongly each of the inputs couples to each of the neurons. In traditional
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FIGURE 1 | Schematic illustration of delay-based RC. NL stands for Non-linear Node. The NL can have one (β2 = 0) or two delay lines. The points ri (n) represent the

virtual nodes separated by time intervals θ . The masked input u(n+ 1) ⊗ Mask is injected directly following u(n) ⊗Mask.

RNN the connections among the neurons are optimized to
solve the task. Nevertheless, in RC, the coupling weights in the
reservoir are not trained and can be chosen at random. The
reservoir state is given by the combined states of all the individual
nodes. Under the influence of input signals, the nodes of the
reservoir remain in a transient state such that each input is
injected in the presence of the response to the previous input.
As a result the reservoir can retain input data for a finite amount
of time (short-term memory [4]), and it can compute linear and
non-linear functions of the retained information. The reservoir
output is constructed through a linear combination of neural
responses, with readout weights that are trained for the specific
task. These weights are typically obtained by a simple linear
regression. The strength of the reservoir computing scheme
lies in the simplicity of its training method, where only the
connections with the output are optimized.

Hardware implementations of RC are sought because they
offer high processing speed [5], parallelism, and low power
consumption [6] compared to digital implementations. However,
traditional RC involves a large number of interconnected
non-linear neurons, so the hardware implementation is very
challenging. Recently, it has been shown that RC can be
efficiently implemented using a single non-linear dynamical
system (neuron) subject to delayed feedback (delay-based
RC) [7]. This architecture emulates the dynamic complexity
traditionally achieved by a network of neurons. In delay-based
RC, the spatial multiplexing of the input in standard RC systems
with N neurons is replaced by time-multiplexing (see Figure 1).
The reservoir is composed of N sampled outputs of the non-
linear node distributed along the delay line, called virtual nodes.
Connections between these N virtual nodes are established
through the delayed feedback when a mismatch between the
delay and data injection times is introduced [8]. Delay-based RC
has facilitated hardware implementation in photonic systems that
have the potential to develop high-speed information processing.
An overview of recent advances is given in Van der Sande

et al. [9]. However, the information processing rate is limited by
the non-zero response time of the system. The reservoir state
is obtained from the sampled output of the non-linear node.
The information processing (or data injection) time is given by
Tp = Nθ , where θ is the inverse of the output sampling rate, i.e.,
the time interval between two virtual nodes (see Figure 1). The
information processing rate Tp

−1 can be increased by decreasing
the node distance (higher sampling output rate). However, when
θ is less than the response time of the system T, virtual nodes
are connected through the non-linear node dynamics. Network
connections due to inertia lead to virtual node-states with similar
dependence on inputs. Then the number of independent virtual
nodes decreases and the diversity of the reservoir states is
reduced. As a consequence computational capacity is degraded.
Then there is a trade-off between information processing capacity
and rate in delay-based reservoir computers.

In this work we show, using numerical simulations, that the
computational capacity is degraded when the sampling output
rate is higher than the inverse of the system response time.
We obtain the memory capacities for different values of θ/T
and the mismatch between the delay and data injection times.
Until now only two different delay-based reservoir architectures
have been considered: θ < T without mismatch [7] and θ ≫

T with mismatch time θ [8]. We find that the computational
capacity depends not only on the sampling output rate but
also on the misalignment between the delay time of the non-
linear node and the data injection time. We show that the
capacity degradation due to high sampling output rate can be
reduced when the delay time is greater than the data injection
time. We also find that this mismatch gives an improvement of
the performance of delay-based reservoir computers for several
benchmarking tasks. Then, delay-based reservoir computers can
achieve a high processing speed and good computational capacity
using a mismatch between delay and data injection times.

We first consider a simple architecture of a single non-linear
node with one feedback delay line. The linear and non-linear
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information processing capacities are obtained for different
values of θ/T. It is found that information processing capacity
is boosted for small values of θ/T if the delay of the non-linear
node τ is greater than Tp. A similar performance is obtained
for small and large values of θ/T for channel equalization and
also for NARMA-10 task if values of the delay time greater than
Tp are used. Then the information processing rate is increased
without causing system performance degradation. This is due to
the increase in reservoir diversity. Another strategy to increase
reservoir diversity is to use an extra feedback line. We show that
memory capacity can be further increased with this architecture
for small values of θ/T when the delay time is greater than the
information processing time.

2. MATERIALS AND METHODS

2.1. Delay-Based Reservoir Computers
Traditional RC implementations consist of a large number N of
randomly interconnected non-linear nodes [3]. The state of the
reservoir at time step n, r(n), is determined by:

r(n) = f (γWinu(n)+ βWr(n− 1)), (1)

where u(n) is sequentially injected input data and f is the
reservoir activation function. The matrices W and Win contain
the (generally random) reservoir and input connection weights,
respectively. The matrix W (Win) is rescaled with a connection
(input) scaling factor β (γ ). The exact internal connectivity is
not crucial. In fact, it has been shown that simple non-random
connection topologies (e.g., a simple chain or ring) gives a good
performance [10].

Delay-based RC is a minimal approach to information
processing based on the emulation of a recurrent network
via a single non-linear dynamical node subject to delayed
feedback. The reservoir nodes (called virtual nodes) are the
sampled outputs of the non-linear node distributed along the
delay line (see Figure 1). In the time delay-based approach
there is only one real non-linear node. Thus, the spatial
multiplexing of the input in standard RC is replaced here by
time multiplexing. The advantage of delay-based RC lies in the
minimal hardware requirements. There is a price to pay for
this hardware simplification: compared to an N-node standard
spatially-distributed reservoir, the dynamical behaviour in the
system has to run at an N-times higher speed in order to have
equal input-throughput.

The dynamics of a delay-based reservoir has been described as
[7, 11–16]:

Tẋ(t) = −x(t)+ f
(

βx(t − τ )+ γ J(t)
)

, (2)

where T is the response time of the system, τ the delay time,
β > 0 the feedback strength and γ the input scaling. The masked
input J(t) is the continuous version of the discrete random
mapping of the original input Winu(n). In our approach, every
time interval of the data injection/processing time Tp represents
another discrete time step. This time is given by Tp = Nθ , where
θ is the temporal separation between virtual nodes. Individual

virtual nodes are addressed by time-multiplexing the input signal.
An input mask is used to emulate the input weights of traditional
RC. This mask function is a piecewise constant function, constant
over an interval of θ , and periodic with period Tp. The N mask
values mi are drawn from a random uniform distribution in the
interval [–1,1] The procedure to construct the continuous data
J(t) is the following. First, the input stream u(n) undergoes a
sample and hold operation to define a stream which is constant
during one Tp, before it is updated. Every segment of length
Tp is multiplied by the mask (see Figure 1). The masked input
u(n+ 1)⊗Mask is injected directly following u(n)⊗Mask. After
a time Tp, each virtual node is updated.

The reservoir state that corresponds to the input u(n), r(n) =
[r1(n) . . . rN(n)], is the collection of N outputs of the dynamical
system, ri(n) = x(nTp − (N − i)θ), where i = 1, . . . ,N (see
Figure 1). These N points are called virtual nodes because they
correspond to taps in the delay line and play the same role as the
neurons in standard RC. The node responses ri(n) are used to
train the reservoir to perform a specific task. As in the standard
RC [1, 17], only the output weightsWout are computed to obtain
the output ŷ = Woutr. A linear regression method is used to
minimize the error between the output ŷ and the desired target
y in the training phase. The testing is then performed using
previously unseen input data of the same kind as those used
for training.

2.1.1. Interconnection Structure of Delay-Based

Reservoir Computers
In delay-based reservoir computers virtual nodes are connected
through the feedback loop with nodes affected by previous
inputs. Virtual node states also depend on close (in time) nodes
through the inherent dynamics of the non-linear node. We can
identify four time scales in the delayed feedback system with
external input described by Equation (2): the response time
T of the non-linear node, the delay time τ , the separation of
the virtual nodes θ , and the data injection/processing time Tp.
Setting the values of the different time scales creates a fixed
interconnection structure. The virtual nodes can set up a network
structure via the feedback loop by introducing a mismatch
between Tp and τ . Interconnection between virtual nodes due to
the inherent dynamics of the non-linear node is obtained if the
node separation θ is smaller than the response time of the system
T. Due to inertia the response of the system is not instantaneous.
Therefore, the state of a virtual node depends on the states of
nodes that correspond to previous taps in the delay line. However,
if θ is too short, the non-linear node will not be able to follow
the changes in the input signal and the response signal will be
too small to measure. Typically, a number of θ = 0.2T is quoted
[7, 11–16, 18].

When θ ≫ T the state of a given virtual node is independent
of the states of the neighboring virtual nodes. Then virtual nodes
are not coupled through the non-linear node dynamics. The
reservoir state is only determined by the instantaneous value of
the input J(t) and the delayed reservoir state. The system given
by Equation (2) can then be described with a map:

x(t) = f
(

βx(t − τ )+ γ J(t)
)

. (3)
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A network structure can be obtained via the feedback loop by
introducing a mismatch between Tp and τ . This mismatch can
be quantified in terms of the number of virtual nodes by α =

(τ − Nθ)/θ . In the case of 0 ≤ α < N and θ ≫ T, the virtual
node states are given by:

ri(n) =

{

f (βri−α(n− 1)+ γmiu(n)) if α < i ≤ N
f (βrN+i−α(n− 2)+ γmiu(n)) if i ≤ α

The network topology depends on the value of α. When α = 1
(i.e., τ = Tp+θ) the topology is equivalent to the ring topology in
standard RC systems [10]. When α < 0, a number |α| of virtual
nodes are not connected through the feedback line with nodes at
a previous time. When α and N have no common divisors, all
virtual nodes are connected through feedback in a single ring.
However, when N and α are not coprimes, subnetworks are
formed with a similar dependence on inputs and the reservoir
diversity is reduced.

Although the two types of virtual node connections are not
exclusive, only two cases have been considered until now: delay-
based reservoirs connected through system dynamics (α = 0 and
θ < T) [7, 12–18], or by the feedback line (θ ≫ T) [8, 15, 19].

It is clear that the information processing rate of delay-based
reservoir computers Tp

−1 depends on the node separation. Then
reservoir computers with nodes connected only through the
feedback line (θ ≫ T) are slower than a counterpart exploiting
the virtual connections through the system dynamics (θ < T).
However, as we will show in 3.1, information processing capacity
is degraded when θ < T. In this case, the computational capacity
increases with the mismatch between the delay and data injection
times (see section 3.1).

2.2. Computational Capacity
Delay-based reservoir computers can reconstruct functions of h
previous inputs yk(n) = y(u(n − k1), . . . , u(n − kh)) from the
state of a dynamical system using a linear estimator ŷk. Here k
denotes the vector (k1, . . . , kh). The estimator ŷk is obtained from
N internal variables (node states) of the system. The suitability
of a reservoir to reconstruct yk can be quantified by using the
capacity [20]:

C
[

yk
]

= (1−

∑

n(ŷk(n)− yk(n))
2

∑

n(yk(n))
2

). (4)

The capacity is C
[

yk
]

= 1 when the reconstruction error for yk
is zero. The capacity for reconstructing a function of the inputs
y, C

[

y
]

, is given by the sum of C
[

yk
]

over all sequences of past
inputs [20]:

C
[

y
]

=
∑

k

C
[

yk
]

. (5)

The total computational capacity CT is the sum of C
[

yk
]

over
all sequences of past inputs and a complete orthonormal set
of functions. When yk is a linear function of one of the past
inputs, yk(n) = u(n − k), the capacity C

[

y
]

corresponds to the
linear memory capacity introduced in Jaeger [4]. The capacity
of the system to compute non-linear functions of the retained

information is given by the non-linear memory capacity [20].
The computational capacity is given by the sum of the linear and
non-linear memory capacities. The total capacity is limited by the
dimension of the reservoir. As a consequence, there is a trade-off
between linear and non-linear memory capacities [20].

The total computational capacity of delay-based reservoirs
is given by the number of linearly independent virtual nodes.
The computational power of delay-based reservoir computers
is therefore hidden in the diversity of the reservoir states. In
the presence of inertia (θ < T) non-linear node dynamics
couples close (in time) virtual nodes. This coupling reduces
reservoir diversity, and then computational capacity is degraded.
The computational capacity of delay-based reservoir depends not
only on the separation between the virtual nodes but also on
the misalignment between Tp and τ , given by α. When α <

0, the state of a virtual node of index i > (N − |α|), ri(n),
is a function of the virtual node state ri−N+|α|(n) at the same
time. Then the reservoir diversity and computational capacity are
reduced. Computational capacity is also reduced if |α| and N are
not coprimes. In this case, the N virtual nodes form gcd(|α|,N)
ring subnetworks, where gcd is the greatest common divisor.
Each subnetwork has p = N/gcd(|α|,N) virtual nodes. Virtual
node-states belonging to different subnetworks have a similar
dependence on inputs and reservoir diversity is reduced.

2.3. Reservoir Computers With Two Delay
Lines
An architecture with several delay lines has been proposed [21,
22] to increase the memory capacity of delay-based reservoir
computers with virtual nodes connected only through non-linear
system dynamics (θ < T and α = 0). Several delay lines are
added to preserve older information. The longer the delay, the
older the response that is being fed back. Even without explicitly
reading the older states from the delay line, the information is
re-injected into the system and its memory can be extended.
We apply this approach to delay-based reservoir computers
with virtual nodes that are connected through non-linear node
dynamics and by the feedback line.

The dynamics of reservoir computers with two delay lines is
described by:

Tẋ(t) = −x(t)+ f
(

β1x(t − τ1)+ β2x(t − τ2)+ γ J(t)
)

, (6)

where βi ≥ 0 is the feedback strength of the delay line i. The total
feedback strength is β = β1 + β2. The corresponding delays are
given by τ1 = Nθ + α1 and τ2 = 2Nθ + α2, where 0 ≤ αi < Nθ .
The reservoir state is the same as in one delay-based RC, i.e., the
virtual nodes correspond to taps only in the shorter (τ1) delay
line. In the case of α1 = 0, it has been shown [23] that the best
performance for NARMA-10 task is obtained when τ1 and τ2 are
coprimes. In this case, the number of virtual nodes that are mixed
together within the history of each virtual node is maximized.

If the mismatches αi (i = 1, 2) are zero, the virtual node states
at time n depend on the reservoir state at time (n−1) and (n−2)
via the delay line 1 and 2, respectively. In one-delay reservoirs
(β2 = 0), the number of virtual nodes whose state at time n
depends on the reservoir state at time (n − 2) increases with
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the mismatch (see Equation 2.1.1 for the case without inertia).
When a second delay is added with a mismatch α2 > 0, some
virtual nodes at time n are connected with nodes at time (n− 3).
The number of virtual nodes with states at time n that depend
on the reservoir state at time (n − 3) increases with α2. These
connections with older states can extend the memory of the
two-delay reservoir computer.

3. RESULTS

In this section, we show the numerical results obtained for
the memory capacities and performance of a non-linear delay-
based RC system. We study a delay-based reservoir computer
with a single non-linear node for the one and two delay lines
architectures. The one-delay system is governed by Equation (2)
and the two-delay reservoir by Equation (6). In both cases the
reservoir activation function f is given by:

f (z) = fs
1− exp(−λz)

a+ exp(−λz)
, (7)

where a = 2 and λ = 1. The value of fs = 2.5 is
chosen to have, when β < 1, a stable fixed point for the
system defined by Equation (2) in absence of input (γ =

0). This non-linear function is asymmetric to allow that the
reservoir computer reconstructs even functions of the input.
Similar results are obtained for different reservoir activation
functions, in particular for a sin2 function, that corresponds to
an optoelectronic implementation [8, 11, 13–15].

The number of virtual nodes used in the numerical
simulations is a prime number, N = 97, to avoid the capacity
degradation due to the formation of subnetworks. The rest of
fixed parameters are: T = 1 and β = β1 = 0.8 for the one-
delay reservoir computer and β1 + β2 = β = 0.8 for the
two-delay reservoir computer. The effective non-linearity of the
delay-based reservoir computer can be changed with the scaling
input parameter γ . In this work, we consider γ = 0.1 and γ = 1
that correspond to low-to-moderate and strong non-linearity,
respectively. The total capacity of a linear reservoir computer
with f (z) = z will also be analyzed.

All the results presented in this paper are the average over
5 simulation runs with different training/test sets and different
masks. A total of 8,000 inputs (6,000 for training and 2,000 for
testing) are used for computational capacities and the NARMA-
10 task. The dataset for the channel equalization task has 10,000
points for training and 6,000 for testing.

3.1. Computational Capacity
To analyze the computational capacity of the non-linear delay-
based reservoir computer, we calculate by using (Equations 4 and
5) four capacities as in Duport et al. [19], namely linear (LMC),
quadratic (QMC), cubic (CMC) and cross (XMC) memory
capacities, which correspond to functions y given by the first,
second and third order Legendre polynomials, respectively. In
order to obtain these capacities a series of i.i.d. input samples
drawn uniformly from the interval [–1, 1] is injected into the
reservoir. The LMC is obtained by summing over k the capacity

C
[

yk
]

for reconstructing yk(n) = u(n− k). It corresponds to the
linear memory capacity introduced in Jaeger [4]. The QMC and
CMC are obtained by summing over k the capacity for yk(n) =

(3u2(n − k) − 1)/2 and yk(n) = (5u3(n − k) − 3u(n − k))/2,
respectively. The XMC is obtained by summing over k, k′ for
k < k′ the capacities for the product of two inputs, yk,k′ =

u(n− k) · u(n− k′). In non-linear systems, the sum Cs = LMC+

QMC+CMC+XMC does not include all possible contributions
to CT , so Cs ≤ CT , whereas for linear systems Cs = LMC = CT .
Finally, note that in some cases the main contribution to the
LMC is due to the sum of C

[

yk
]

over a large range of values
of k greater than a certain value kc with large normalized-root-

mean-square reconstruction errors NRMSRE(k)=
√

1− C
[

yk
]

.

This corresponds to a memory function m(k) = C
[

yk
]

with
a long tail. In these cases a high LMC can be obtained but the
reconstruction error for yk when k > kc is large. This low quality
memory capacity leads to poor performance for tasks requiring
long memory, such as NARMA-10 task [10]. A memory capacity
with good quality (quality memory capacity) can be calculated
by summing only the capacities for yk over k until they drop
below a certain value q. If we consider that the error is small when
NRMSRE(k) < 0.3, this corresponds to C

[

yk
]

> 0.91. Then we
consider a value q = 0.9 to obtain the quality memory capacity

C
[

y
]q= 0.9

.

3.1.1. Memory Capacities of One-Delay Reservoir

Computers
First, we simulate a delay-based reservoir computer with a single
delay line. We focus on the influence of the system response
time on the computational capacity for different values of the
mismatch α between the data injection and delay times. Until
now two values of the mismatch have been used: α = 0 with
θ = 0.2T [7, 12–18], and α = 1 with θ ≫ T [8, 15, 19].

We first consider a linear system with f (z) = z in Equation
(2). As stated before, the total computational capacity of this
system can be obtained from the linear memory capacity, e.g.,
Cl
T = LMC. Figure 2 shows the total computational capacity of

the linear reservoir computer as a function of the node separation
for two different values of the detuning between Tp and τ : α = 0

and α = 1. For α = 1 (Figure 2B), Cl
T increases with θ/T and

the upper bound CT = N = 97 is almost reached for θ/T = 10.
Similar behaviour is obtained for detuning values 1 < α < N.
Then almost all the nodes are linearly independent for θ/T = 10

and non-zero α. The quality memory C
l(q= 0.9)
T = LMCq=0.9

of the linear delay-based reservoir computer also increases with
θ/T following the same behavior than Cl

T for α = 1. However,

when θ < T a total capacity Cl
T < 50 is obtained. Then a

clear degradation of the capacity is observed with respect to its
upper bound, given by N = 97, when the node separation is
smaller than the response time of the non-linear node dynamics.
In this case virtual nodes with an index difference smaller than
T have similar states. Then reservoir diversity is reduced and
the information processing capacity is degraded. When θ/T
increases the coupling between close (in time) virtual nodes
decreases, and the capacity increases.
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FIGURE 2 | Computational capacity of the linear delay-based RC with one delay line as a function of θ/T for (A) α = 0 and (B) α = 1. The solid line with blue circles is

the total computational capacity (Cl
T ) and the dashed line with black points is the total quality computational capacity calculated for q = 0.9.

In the special case of zero detuning (α = 0), the only coupling
between the virtual nodes is through the system dynamics with
non-zero response time. For α = 0, the total capacity of the linear
delay-based reservoir computer has a maximum value Cl

T = 38
at θ/T ∼ 1.2 (see Figure 2A). In this case a clear degradation of
the capacity is observed for any value of θ/T. The maximum is
due to the trade-off between the fading of the coupling through
the system dynamics for low sampling output rates and the very
similar responses to different inputs for small θ . Furthermore,
for α = 0, the quality memory capacity decreases with θ/T

and the maximum C
l(q=0.9)
T is obtained at θ/T = 0.2. For low

inertia, θ/T = 4, we obtain a normalized-root-mean-square
reconstruction error NRMSRE(k) > 0.6 when k > 2. For θ/T
= 1 a NRMSRE(k) > 0.3 when k > 12 is obtained.

We consider now a non-linear delay-based reservoir
computer with an activation function given by Equation (7) and
a low-to-moderate non-linearity (γ = 0.1). In this case, the
capacity Cs has a behaviour as a function of θ similar to that of
the total capacity of the linear case Cl

T (see Figure 3). For α = 1,
Cs increases with θ/T, and a value of Cs = 93 is obtained at
θ/T = 4. If all the capacities would be considered for α = 1,
CT ∼ N. The increase in Cs with θ/T is mainly due to the XMC
and to the LMC. When θ/T < 1 a capacity Cs < 75 is obtained.
However, this degradation in Cs is smaller than in the linear case.
It is worth mentioning that for α = 1, Cs is greater than the total
capacity of the linear case Cl

T . Then we have Cl
T < Cs ≤ Cnl

T ,

where Cnl
T is the total capacity of the non-linear system. This is

due to the fact that non-linearity increases the number of linearly
independent virtual node states, since correlations between
virtual nodes are smaller for non-linear delay-based reservoir
computer. In the case without mismatch (α = 0) the capacity
Cs of the non-linear reservoir computer (see Figure 3A) has a
maximum as in the linear case at θ/T ∼ 1.2. The degradation of
Cs is smaller than that of Cl

T in the linear case.
We have shown that the computational capacity is degraded

when the sampling output rate is higher than the inverse of
the system response time. However, the information processing

capacity of delay-based reservoir computers depends not only
on output sampling rate (i.e., the separation between the virtual
nodes) but also on the detuning between Tp and τ , i.e., α. To
study this dependency, we calculate the memory capacities as a
function of α for a non-linear delay-based reservoir computer
with two different response times: an instantaneous response to
the input T = 0 (Figures 4C,D) and T = θ/0.2 (Figures 4A,B).
This node separation θ = 0.2T is the one used in most of the
reservoirs with connections through system dynamics [7, 12–18].
The capacities for T = 0 correspond to a node separation much
larger than T. When θ/T ≫ 1 the nodes response to an input
reach the steady state after a time θ . Then the reservoir state
is given by Equation (2) for T = 0. As a consequence, when
θ/T ≫ 1 the computational capacity tends to the value obtained
for T = 0. For a mismatch α = 1 this limit is reached for

θ/T > 4 (see Figure 3B). Two values of γ = 0.1 and γ = 1
that correspond to low-to-moderate and strong non-linearity,
respectively are considered. We also calculate the total capacity

as a function of α for a linear reservoir computer with θ = 0.2T

(Figure 4B).
The virtual states of delay-based systems with an

instantaneous response to the input are given by the map
of Equation (3). When N and α are coprimes, we have for
0 < α < N a total capacity CT ≈ N. Thus, increasing α in
the case of T = 0 does not increase the total capacity; it only

changes the relative contribution of the different capacities to

Cnl
T . This is clearly shown in Figure 4D where a low-to-moderate

non-linearity (γ = 0.1) is considered. Here, the non-linear

memory capacities of degree greater than two are zero (i.e.,

CMC), and Cs ∼ 95 for 0 < α < 90. This value is very close
to the upper bound for the capacity CT = N = 97. Since

CT is limited by N, there is a trade-off between the linear and
non-linear capacities. Then the increase in the LMC with α is
compensated by a decrease of the XMC in Figure 4D. In the
case of strong non-linearity (γ = 1), Figure 4C shows that Cs

is not close to the upper bound for the capacity CT = N = 97.
Then there is a significant contribution to Cnl

T of capacities with
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FIGURE 3 | Memory capacities of the non-linear delay-based RC with one delay line as a function of θ/T for (A) α = 0 and (B) α = 1 when γ = 0.1. The blue stars,

red circles, green crosses, pink diamonds correspond to the LMC, QMC, CMC, and XMC. The black solid line is the Cs.

FIGURE 4 | Memory capacities of the one delay-based RC as a function of α. Left panels (A,C): γ = 1. Right panels (B,D): γ = 0.1. Top panels (A,B): T = θ/0.2.

Bottom panels (C,D) T = 0. The blue stars, red circles, green crosses, pink diamonds correspond to the LMC, QMC, CMC, XMC, respectively. The solid black line is

the Cs. The dotted black line in (B) is the Cl
T .
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a non-linear degree greater than the ones considered in Cs. An
increase in Cs with α is obtained. This increase is mainly due
to LMC and XMC. It only indicates that the contribution to Cnl

T
of the capacities with a lower non-linear degree considered in
Cs increases.

Now we analyze the capacity dependence on α when θ/T =

0.2. We consider integer values of α. Similar results are obtained
when α is not an exact integer. We first consider the linear
system. In this case the total capacity Cl

T is given by the LMC.
As seen in Figure 2A the capacity is degraded when θ < T due
to the similar evolution in time of close (in time) virtual nodes
connected through non-linear node dynamics. Figure 4B shows
that Cl

T increases with α. A significant increase of nearly 50%
is obtained for the capacity when the mismatch is large. This is
due to an increase in reservoir diversity. When the mismatch α is
increased, virtual nodes are connected through feedback to nodes
that are not connected through system dynamics. This improves
reservoir diversity, and a larger capacity can be achieved.

In the non-linear case with θ/T = 0.2, Figures 4A,B show
that regardless of the non-linearity, Cs increases with α. This
increase can not be attributed only to a change in the contribution
of linear and non-linear capacities to the total capacity Cnl

T . As
seen for the linear case, when θ/T = 0.2 the total capacity
Cl
T increases with α due to an increase in reservoir diversity.

This should also lead in the non-linear case to an increase in
the total capacity Cnl

T with α. It is worth mentioning that in the
case of T = θ/0.2 we obtain a similar Cs for low-to-moderate
(see Figure 4B) and strong (Figure 4A) non-linearity. However,
the relative contribution of the linear memory capacity is higher
for low non-linearity. Finally, note that regardless of the non-
linearity and T, higher order capacities such as QMC and CMC
remain almost constant with α and the change of Cs is due to
LMC and XMC.

3.1.2. Memory Capacities of Two-Delay Reservoir

Computers
We have shown that the computational capacity is boosted for
small values of θ/T when the delay time of the non-linear node
is greater than the data injection time. This mismatch between τ

and Tp allows higher processing speeds of delay-based reservoir
computers without performance degradation. This is due to
the increase in reservoir diversity. To further increase reservoir
diversity in the case of T = θ/0.2, we explore the effect of adding
a extra feedback line to the non-linear node. Figure 5 shows the
Cs of the two-delay reservoir computer vs. the misalignment of
the second delay when γ = 0.1. The mismatch of the first delay
is fixed at α1 = 73 (Figure 5, left) and α = 1 (Figure 5, right). In
both cases the maximum of Cs reached for the two-delay system
is Cs ∼ 61. This value is obtained in the two cases, α1 = 1 and
α1 = 73, for α2 ∼ 70 when β2 = 0.75 and just in the case of
α1 = 73 also for α2 ∼ 82 and β2 = β1 = 0.4. The maximum Cs

obtained for the two-delay system is slightly higher than the one
reached for its one-delay counterpart. In the one-delay system
the maximum capacity is Cs ∼ 57 that is obtained for α ∼ 80
(see Figure 4B). Therefore, the calculated information processing
capacity for high sampling output rates can be further increased
by using an extra feedback line and delay times greater than the

information processing time. However, the second delay does not
significantly improve the computational capacity of the one-delay
system. Moreover, when the first delay mismatch is fixed near its
optimal value for the one-delay system (α ∼ 80), the effect of
the second delay feedback strength or misalignment is small [see
Figure 5 (right)]. However, when the first delay mismatch is not
close to its optimal value for the one-delay system, the maximum
Cs reached for the one-delay system is outperformed by adding
a second delay with a high strength (β2 = 0.75) and a mismatch
10 < α2 < 90 [see Figure 5 (left)].

The contributions of the individual memory capacities to Cs

for the two-delay system are depicted in Figures 6, 7 for α1 = 1
and α1 = 73, respectively. Figure 6 shows that the increase in
Cs obtained for α1 = 1 is mainly due to the increase in LMC
and QMC. It is interesting that in the case of α2 = 73, the same
Cs ∼ 61 can be obtained with different relative contributions of
the memory capacities to Cs. The case of α2 ∼ 70 and β2 = 0.75
yields to a higher LMC and a lower XMC than in the one-delay
system. The case of α2 ∼ 82 and β2 = 0.4 gives the Cs ∼ 61
thanks mainly to the increase in the XMC.

3.2. Delay-Based Reservoir Computer
Performance
Finally we study the effect of increasing the mismatch α on
the performance of a delay-based reservoir computer for two
different response times of the non-linear node dynamics: T = 0
and T = 0.2θ . Two tasks are considered: the NARMA-10 task
and the equalization of a wireless communication channel. These
two tasks are benchmarking tasks used to assess the performance
of RC [1, 10].

The NARMA-10 task consists in predicting the output of an
auto-regressive moving average from the input u(t). The output
y(t + 1) is given by:

y(t+1) = 0.3y(t) + 0.05y(t)

9
∑

i=0

y(k−i) + 1.5u(t−9)u(t)) + 0.1

(8)
The input u(t) is independently and identically drawn from
the uniform distribution in [0, 0.5]. Solving the NARMA-10
task requires both memory and non-linearity. Figure 8 (left)
shows the normalized-root-mean-square error (NRMSE) of the
NARMA-10 task as a function of α for γ = 0.1. We consider
a small value of γ = 0.1 because a long memory is required to
obtain a good performance for NARMA-10 task. Regardless the
response time (T = 0 or T = θ/0.2), the NRMSE decreases
when the processing and delay times are mismatched (α > 0).
However, for T = 0 the NRMSE is almost the same for a wide
variety of values of α, and a mismatch α = 1 is enough to
obtain a NRMSE= 0.31 close to the absolute minimum (NRMSE
= 0.28 for α = 78). When the response time of the non-
linear node is larger than node separation (T = θ/0.2), the
NRMSE decreases from a NRMSE ≈ 0.46 at α = (0, 1) to a
NRMSE = 0.34 at α ∼ 72. This is due to the long memory
required to obtain a good performance for NARMA-10 task.
In the case of T = θ/0.2, the required LMC is not reached
until α ∼ 72 (see Figure 4B). Our results show that a similar
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FIGURE 5 | Cs of the two-delay-based RC as function of α2. Left: α1 = 1. Right: α1 = 73. The solid black line is the value of Cs for the one-delay case with α = α1.

Red circles, green diamonds and blue starts correspond to the Cs with two delays and a β2 of 0.05, 0.4, and 0.75, respectively. These results are obtained for

T = θ/0.2 and γ = 0.1.

FIGURE 6 | Memory capacities for the two-delay RC as function of α2 for a fixed α1 = 1, T = θ/0.2 and γ = 0.1. The red circles, green diamonds and blue stars

correspond to β2 equal to 0.05, 0.4, and 0.75, respectively. The solid black line is for β2 = 0 and corresponds to the one-delay system with α = 1 and β = 0.8.

performance can be obtained for small and large values of T/θ

thanks to the mismatch α. Therefore, increasing α allows a faster
processing information (higher sampling output rate) without
causing system performance degradation.

The equalization of a wireless communication channel
consists in reconstructing the input signal s(i) from the
output sequence of the channel u(i) [1]. The input to
the channel is a random sequence of values s(i) taken in

Frontiers in Physics | www.frontiersin.org 9 December 2019 | Volume 7 | Article 210

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Ortín and Pesquera Delay-Based RC: Capacity vs. Rate

FIGURE 7 | Memory capacities for the two-delay-based RC as function of α2 for a fixed α1 = 73, T = θ/0.2 and γ = 0.1. The red circles, green diamonds and blue

stars correspond to β2 equal to 0.05, 0.4, and 0.75, respectively. The solid black line is for β2 = 0 and corresponds to the one-delay case with α = 1 and β = 0.8.

{−3,−1, 1, 3}. The input s(i) first goes through a linear
channel yielding:

q(i) = 0.08s(i+2)− 0.12s(i+1)+ s(i)+ 0.18s(i−1)− 0.1s(i−2)

+ 0.091s(i−3)− 0.05s(i−4)+ 0.04s(i−5)+ 0.03s(i−6)+ 0.01s(i−7)

It then goes through a noisy non-linear channel:

u(i) = q(i)+ 0.036q(i)2 − 0.011q(i)3 + v(i), (9)

where v(i) is a Gaussian noise with zero mean adjusted in power
to give a signal-to-noise ratio (SNR) of 20 dB. The performance is
measured using the Symbol Error Rate (SER), that is the fraction
of inputs s that are misclassified. The SER for the equalization
with a SNR of 20dB is depicted as a function of α for γ =

1 in Figure 8 (right). In the case of T = 0, there is a clear
improvement of the performance from α = 0 to α = 1 but
the errors are almost constant when α is further increased. When
T = θ/0.2 performance improves with α until a minimum SER
= 0.012 is reached when α ∼ 4. This SER is similar to that
obtained when T = 0. Then, regardless the value of T/θ , a
similar performance is obtained by using the mismatch α. A SER

of 0.01 for the channel equalization task has been obtained using
an optoelectronic reservoir computer [15].

It is not straightforward how the processing capacity will
translate into the performance for specific tasks. Different
tasks require to compute functions with different degrees of
non-linearity and memory. Information processing capacity
should be complemented with those requirements to identify
optimized operating conditions for the reservoir. For the channel
equalization task, when T = 0 the capacities LMC and XMC
increase with α showing a very large increase from α = 0 to
α = 1 (see Figure 4C). The SER shows also a clear decrease
from α = 0 to α = 1 but it is almost constant when α > 1
[see Figure 8 (right)]. The capacities LMC and XMC achieved for
α = 1 when T = 0 are enough to solve the channel equalization
task. However, the quadratic capacity QMC is almost constant
when α > 1. As a consequence the SER is almost constant for
α > 1. When taking a small node separation (θ = 0.2T) the
capacities LMC and XMC increase with α (see Figure 4A). This
increase in processing capacity leads to a better performance with
α and the SER decreases from 0.017 for α = 0 to a minimum
error of 0.012 for α = 4. This is an improvement in performance
of around 30%. However, the increase in the total capacity for
α > 4 (mainly due to the LMC) does not translate into the
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FIGURE 8 | Performance of the non-linear one delay-based RC for two tasks as function of α. Left: NARMA-10 for γ = 0.1. Right: Equalization with SNR = 20 dB

and γ = 1. The blue stars correspond to the case of T = 0 and the red circles to the case of T = θ/0.2.

performance. The reason is the same as for the case of T = 0.
The capacities LMC and XMC achieved for α = 4 are enough to
solve the channel equalization task while the capacities QMC and
CMC do not increase with α.

The addition of the second delay line to the non-linear node
does not improve the performance for the equalization task. In
the case of T = 0, the extra delay line slightly improves the
performance for the NARMA-10 task. The minimum error is
NRMSE ∼ 0.25 when α1 = 77, α2 = 20 and β1 = β2 = 0.4.
When T = θ/0.2 a NRMSE= 0.27 is obtained for α1 = 77, α2 =

86, β1 = 0.05, and β2 = 0.75, while a minimum NRMSE=0.34
was obtained with one delay line for α ∼ 72. This performance
improvement for the NARMA-10 task when T = θ/0.2 is at the
cost of adding second delay line and optimizing more parameters
to minimize the error. A NRMSE of 0.22 for the NARMA-10 task
has been obtained using a photonic reservoir computer based on
a coherently driven passive cavity with a greater number of virtual
nodes N = 300 [24] than the one we used, N = 97.

4. DISCUSSION

We have investigated the role of the system response time in the
computational capacity of delay-based reservoir computers with
a single non-linear neuron. These reservoir computers can be
easily implemented in hardware, potentially allowing for high-
speed information processing. The information processing rate,
given by 1/Tp = (Nθ)−1, can be increased by using a high
sampling output rate (small node separation θ). However, we
have shown that the computational capacity is reduced when
node separation is smaller than system response time. We can
thus conclude that there is a trade-off between information
capacity and rate in delay-based reservoir computers. In this
context, parallel-based architectures with k non-linear nodes
reduce the information processing time by a factor of k for the
same total number of virtual nodes. It has been shown [16, 25]
that for (θ/T) < 1 and without mismatch between Tp and
τ , performance is improved when different activation functions

are used for the non-linear nodes. However, the hardware
implementation becomes more involved than the one of a delay-
based reservoir computer with a single non-linear node.

We have considered a different strategy still based on the
simple architecture of a single non-linear node to tackle the trade-
off between information capacity and rate. In this strategy, the
mismatch between delay and data injection times α is used to
increase reservoir diversity when θ < T. For small values of
(θ/T) and α, the states of virtual nodes that are separated by
less than T (i.e., with an index difference smaller than T/θ)
are similar. When the mismatch is increased, virtual nodes are
connected through feedback to nodes that are not connected
through non-linear node dynamics. Reservoir diversity is then
increased. Our results show that the linear memory capacity
increases the mismatch α. In this way the capacity degradation
due to high sampling output rate is reduced by increasing α.

Another strategy to increase reservoir diversity when θ < T
is to use an extra feedback line. We show that the linear memory
capacity can be further increased with this architecture by using
long delay times (large mismatch α). However, only a slight
increase in the calculated capacity is obtained.

We have also obtained the performance of delay-based
reservoir computers for two benchmarking tasks: channel
equalization and NARMA-10. Our results show that for fast
reservoirs with θ < T performance improves when themismatch
α increases. A similar performance is obtained for small and large
values of (θ/T) for channel equalization and also for NARMA-10
tasks if delay and injection times are mismatched.

We can thus conclude that the processing speed of delay-
based reservoir computers can be increased while keeping a good
computational capacity by using a mismatch between delay and
data injection times.
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