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In this review, we concentrate on recent efforts of our group aimed at investigating the

nuclear equation of state of symmetric nuclear matter (equal concentrations of protons

and neutrons) and the one of pure neutron matter. Although idealized, these systems are

suitable “laboratories" to probe nuclear forces in the many-body system. The energy

per particle as a function of density can reveal rich information about the nature of

nuclear forces in the medium and how they impact observable properties. For instance,

the pressure in neutron-rich matter has been found to have profound impact on very

diverse systems, ranging from the thickness of the neutron skin in a heavy nucleus to the

properties of compact stars. The current trend in nuclear physics is to build few-nucleon

forces according to the prescription of chiral effective field theory. We open by reviewing

in depth how we develop equations of state based on state-of-the-art chiral interactions.

We then highlight some applications in neutron-rich nuclei and neutron stars.

Keywords: nuclear forces, chiral effective field theory, symmetry energy, neutron skin thickness, neutron stars

1. INTRODUCTION

Understanding the interaction of hadrons in nuclei is a most fundamental problem in nuclear
physics. Our present knowledge of the nuclear force in vacuum is still incomplete, although decades
of efforts have been devoted to this problem. The study of nuclear forces in many-body systems is,
of course, much more challenging because additional aspects are involved beyond those which can
be constrained by free-space nucleon-nucleon (NN) scattering. Predictive power with respect to
the properties of nuclei is the true test for a successful microscopic theory.

The system known as “nuclear matter" is a suitable, although idealized, theoretical “test bench”
for many-body theories. Nuclear matter is defined as an infinite system of nucleons interacting
via strong forces in the absence of electromagnetic interactions. Nuclear matter’s “signature” is
its energy per particle as a function of density and potentially additional “variables” (for instance,
isospin polarization or temperature). The nuclear matter equation of state (EoS) is precisely the
energy per particle as a function of density and other appropriate quantities. Naturally, the idealized
nature of this system, which implies translational invariance, simplifies theoretical calculations.
Furthermore, within the “local density approximation” (LDA), one can utilize the EoS directly in
calculations of actual nuclei. (We recall that LDA amounts to the assumption that the properties at
a point with density ρ in a nucleus are the same as they would be in infinite nuclear matter at the
same density).

When the densities of protons and neutrons are equal, we speak of isospin-symmetric nuclear
matter. The latter has been studied since the earlier works by Brueckner and others [1–4], who
introduced what became known as the Brueckner-Hartree-Fock (BHF) theory. The BHF theory
seeks to find the ground state energy of a many-body system [1–6] as a linked-cluster perturbation
expansion. The main point was the realization that regrouping the linked-cluster diagrams by the
number of hole lines allowed the series to converge.
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Other approaches to the development of the EoS were also
pursued, one of them being the variational method [7, 8]. The
latter yielded predictions in close agreement with those from
Brueckner theory if realistic NN potentials were adopted [9].

The BHF theory, or “conventional approach,” was followed
by the Dirac-Brueckner-Hartree-Fock (DBHF) approach [10–
13], developed during the 1980’s. The novel, and most striking
feature of the DBHF theory was its ability to describe the
saturation properties (both energy and density) of nuclear matter,
a fundamental aspect which reflects the saturating nature of the
nuclear force. The DBHF method contains important relativistic
features through the description of the nuclear mean field in
terms of a scalar and a vector components, strong and of opposite
sign. In their combination, they provide an explanation for the
binding of nucleons and the spin-orbit splitting in nuclear states.
The reader is referred to Muether et al. [14] for a relatively recent
review of the DBHF method and a variety of applications to both
nuclear matter and nuclei.

Irrespective of the many-body framework, a quantitative NN
potential must be part of its input. Presently, forces based on
nuclear chiral effective field theory (χEFT) [15–18] are the most
popular. Chiral effective field theory respects the symmetries of
quantum chromodynamics (QCD) but, at the same time, makes
use of the degrees of freedom typical of low-energy nuclear
physics, nucleons, and pions. Furthermore, it provides a clear
systematics to determine the few- and many-body diagrams
which must be present at each order of the perturbation.

Deriving nuclear forces directly from QCD is problematic.
For starters, each nucleon is, itself, a complicated many-body
system consisting of quarks, quark-antiquark pairs, and gluons,
thus rendering the two-nucleon problem an even more complex
many-body problem. Second, the interaction among quarks,
which is due to the exchange of gluons, is very strong at the
low energies involved in nuclear physics processes. For this
reason, it is difficult to find converging perturbative solutions.
Therefore, the first attempts to incorporate QCD in nuclear
physics consisted mostly of QCD-inspired quark models. On the
positive side, these models sought to explain nucleon structure
(which consists of three quarks) and nucleon-nucleon processes
(involving six-quarks) in an internally consistent manner. Some
global features of the two-nucleon force, like the “hard core,”
could be explained by these quark models. On the other hand,
quark-based approaches are, in fact, models rather than a theory.
From an entirely different point of view, one may confront the
six-quark problem by putting this system on a four dimensional
discrete lattice representing three dimensions in space and one in
time. This method is known as lattice QCD. Although progress in
lattice QCD goes on, such calculations are computationally very
demanding and thus the approach is not (currently) feasible as a
standard tool to make predictions of nuclear properties.

A new era for the theory of nuclear forces started when
Steven Weinberg worked out an effective field theory (EFT)
for low-energy QCD [16, 19]. He argued that all one needs
to do is to write the most general Lagrangian consistent with
all the properties of low-energy QCD, as this action would
render the theory equivalent to low-energy QCD. A crucially
important property for this discussion is SU(2)R × SU(2)L

symmetry, or chiral symmetry, which is “spontaneously” broken,
as briefly reviewed next. Massless spin- 12 fermions have their
spin and momentum either parallel to each other (“right-
handed”) or anti-parallel (“left-handed”), a property which is
referred to as having definite chirality. Since nucleons are made
of “up” and “down” quarks, which have nearly zero mass,
chiral symmetry holds approximately. As a consequence of
this symmetry, one might expect to find in nature mesons
of the same mass but opposite parity. However, such parity
“doublets” are not observed, which amounts to a “spontaneous”
breaking of the symmetry. According to a theorem first proven
by Goldstone, the spontaneous symmetry breaking implies the
existence of a pseudoscalar meson, the pion. Thus, the pion
plays an outstanding role in generating the nuclear force. Pions
and nucleons interact weakly at low energies as compared to
the gluons and quarks. Therefore, calculations of pion-nucleon
processes pose no problems. Moreover, in EFT one makes use of
expansions in powers of momentum over an appropriate “scale,”
which is the “chiral symmetry breaking scale,” close to 1 GeV. In
short, this is the essence chiral perturbation theory or ChPT, and
the reason why it allows to calculate the various contributions
to the potential systematically order by order, where each order
refers to a particular power of the momentum. Furthermore,
χEFT can generate not only the force between two nucleons, but
also many-nucleon forces in a consistent manner [17]. The χEFT
approach continues to gain popularity and is applied with great
success in contemporary theoretical nuclear physics [18, 20–22].

However, it is important to keep in mind that a low-
momentum expansion has a limited range of applicability. For
that reason, interactions derived from chiral perturbation theory
are not meant for applications to high energy processes or in
dense matter, where high Fermi momenta are involved, as is the
case in the interior of compact stars. In such situations, strategies
to extend chiral predictions must be adopted, and we will discuss
some instances where extensions become necessary.

Mean-field models, both relativistic and non-relativistic (see,
for instance [23, 24]) are still a popular, although non-
microscopic alternative to methods based on the in-medium
reaction matrix. They continue to be utilized frequently in the
development of the EoS and related predictions.

Describing the properties of (dense) systems from elementary
forces and including all required contributions is an extremely
challenging program, whose completion is not in sight. However,
χEFT provides a path on which to proceed systematically
toward that goal. We share the point of view that χEFT is
currently the most fundamental approach due to its strong
link with QCD. At the same time, the degrees of freedom
of the theory make calculations of low-energy observables a
manageable task.

Our main objective in this article is to provide a self-
contained review of the recent work with isospin symmetric
and asymmetric matter done systematically by our group and
based mainly on chiral interactions, comparing with empirical
constraints when available. We will place particular emphasis on
neutron-rich matter, which is currently the focus of numerous
empirical investigations both in terrestrial laboratories (especially
through experiments aimed at constraining the thickness of
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neutron skins), or through astrophysical observations of neutron
stars and related phenomena.

This article is organized as follows. After these opening
remarks, in section 2 we describe in detail the calculations of the
EoS, starting with the two-nucleon forces (2NF) and the three-
nucleon forces (3NF) which we apply (see sections 2.2.1 and
2.2.2, respectively). In section 2.3, we review and discuss some
of our results of the energy per particle in both symmetric and
neutron matter [25]. In section 3, we focus specifically on the
symmetry energy and the chief role its density dependence plays
for neutron-rich systems. We then develop a discussion on the
EoS in neutron stars (see section 4).We conclude with a summary
and an outlook in section 5.

2. NUCLEAR MATTER AND THE EQUATION
OF STATE

2.1. The G-Matrix and the Energy per
Particle
In the previous section, we mentioned the linked-cluster
perturbation series for the energy of a many-body system [1–6].
To facilitate convergence (otherwise problematic in view of
the strong repulsive core of the NN force), the linked-cluster
expansion for the energy per particle in nuclear matter [3] is
written in terms of the reaction matrix or “G-matrix,” which itself
is solution of the Bethe-Goldstone equation. Schematically, the
Bethe-Goldstone equation can be written as

G(E0) = V + V
Q

E− E0
G(E0) , (1)

where V is the NN potential, Q is the Pauli operator, and E0
the starting energy of the two nucleons. The second term on the
RHS of Equation (1) represents the infinite ladder sum which
builds short-range correlations (SRC) into the wave function. The
correlated (ψ) and the uncorrelated (φ) wave functions satisfy

Gφ = Vψ , (2)

from which one can write

ψ = φ + V
Q

E− E0
Gφ . (3)

At large distances, the correlated wave function is expected
to approach the uncorrelated one (a behavior known as the
“healing” property), whereas the two can be very different at
short range. Hence, the difference between the correlated and the
uncorrelated wave functions, or “defect function” f = ψ−φ, can
be associated to the degree of SRC.

Usually, its momentum-dependent Bessel transform is
considered instead, so as to bring out the dependence on
specific partial waves. For each angular momentum state [5], we
then have

f JSTLL′ (k) =
k Q̄(kF , k, Pc.m.

avg )G
JST
LL′ (P

c.m.
avg , k, k0)

E0 − E
, (4)

where the angle-averaging has been applied to the Pauli operator,
Q̄. Equation (4) is related to the probability of exciting two
nucleons having relative momentum k0 and relative orbital
angular momentum L to a state with relative momentum k
and relative orbital angular momentum L′. The integral of the
probability amplitude squared is known as the “wound integral”
and defined, for each partial wave at some density ρ, as

κ
JST
LL′ = ρ

∫ ∞

0
|f JSTLL′ (k)|

2dk . (5)

Thus, both f and κ contain information on correlations present
in the wave function and the G-matrix. The degree of SRC
has been traditionally associated with the “strength” of a given
potential, as indicated, for instance, by the deuteron D-state
probability [26].

The topic of SRC deserves a review by itself and will not
be covered here. However, we have taken the opportunity
to recall how one may obtain, through Equations (4–5),
some information about SRC in nuclear matter. The latter is
complementary to studies of SRC in nuclei, which are currently
the object of intense experimental investigations through high
momentum-transfer (inclusive or exclusive) electron scattering
measurements. (For a review on this topic, see [27] and
references therein). Two-nucleon dynamics at short distances
is mostly determined by the presence of short-range repulsion
in the two-nucleon force, which is one of the reasons why
a mean-field picture of the nucleus has strong limitations.
Short-range correlations, particularly two-nucleon correlations,
are therefore fundamentally important and open intriguing
questions concerning momentum distributions in nuclei as a tool
to probe the off-shell nature of the NN potential. For a recent
work of our group on SRC in A=2,3 nuclei see [28].

Back to Equation (1), we solve it self-consistently to obtain
theG-matrix together with the single-particle potential, which we
define for (anti-symmetrized) states below and above the Fermi
level according to the so-called “continuous choice”:

U(p) = Re
∑

q≤kF

< pq|G(E0)|pq− qp > . (6)

The starting energy is written as

E0 = e(q)+ e(p) (7)

in terms of on-shell single-particle energies

e(p) = T(p)+ U(p) , (8)

where T is the kinetic energy. The average energy per particle in
nuclear matter is then obtained from

E/A =
1

A

∑

p≤kF

T(p)+
1

2A

∑

p≤kF

U(p) . (9)

Equation (9) as a function of density is the nuclear EoS. Next,
we will address how the NN potential V in Equation (1)
is constructed.
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2.2. The Equation of State From Chiral
Forces
It is our philosophy that constructing the EoS microscopically
from state-of-the-art few-body interactions is the right way
to gain insight into effective nuclear forces in the medium.
High-precision meson-theoretic interactions [29–31] are
often utilized in contemporary calculations of nuclear matter,
structure, and reactions. However, in the meson-theoretic
approach it is difficult, if not impossible, to maintain a strong
connection between the 3NF, or more generally the A-nucleon
forces with A > 2, and the associated 2NF [32]. On the
other hand, χEFT [18, 20, 22] provides a systematic way to
construct nuclear many-body forces consistently [17] with
two-body forces, as well as to assess theoretical uncertainties
through a systematic expansion controlled by a counting
scheme [15]. Furthermore, and perhaps most importantly,
χEFT maintains consistency with the symmetries and
symmetry breaking pattern of the fundamental theory of strong
interactions, QCD.

Because of the strengths described above, χEFT has become
the authoritative approach for developing nuclear forces.
Applications include few-nucleon reactions [33–38], nuclear
structure, especially of light- and medium-mass nuclei [39–
55], cold infinite matter [22, 53, 56–64], infinite matter at
finite temperature [65, 66], and various aspects of nuclear
dynamics [67–73].

In regard to the connection between nuclear matter
properties and finite nuclei, it is interesting to point out
a persistent problem encountered in structure calculations
and related to the bulk properties of medium-mass nuclei.
Typically charge radii are underpredicted [74] while the
opposite is true for binding energies [75]. Including the
desired properties of medium-mass nuclei directly into the
fitting protocol for the low-energy constants (LECs) which
parametrize short-distance physics in chiral nuclear forces has
resulted in improved predictions [76]. However, for a truly
microscopic approach the 2NF should be constrained by two-
nucleon data and the 3NF by three-nucleon data, without
additional adjustments. Applications to A > 3 systems
would then be actual predictions, although they may carry
substantial uncertainties.

Two recent studies [54, 55] provide indications for how the
overbinding problem may be overcome. In these studies, a rather
soft nucleon-nucleon (NN) potential (due to renormalization
group evolution) along with 3NFs fitted to the binding energy
of 3H and the charge radius of 4He were employed to
calculate the ground-state properties of closed shell nuclei
from 4He to the light Tin isotopes [54, 55]. Predictions of
the ground-state energies were accurate, whereas the radii
were somewhat underpredicted, although still in fairly good
agreement with experiment. These features can be linked
to the good nuclear matter saturation properties of the
employed 2NF + 3NF combination [57]. In the above example,
the 2NF was soft and alone would lead to substantial
overbinding in nuclear matter, whereas the addition of a
repulsive 3NF contribution leads to a much better description
of the nuclear matter saturation point [57]. As we mentioned

earlier, the first quantitative explanation of nuclear matter
saturation was achieved in this way within the framework
of Dirac-Brueckner-Hartree-Fock theory [12, 14, 77–79]. As
an alternative, one could begin with a relatively repulsive
2NF and then add an attractive, density-dependent 3NF
contribution. An example of such combination is provided by
the Argonne v18 (AV18) 2NF [31] together with the Urbana
IX 3NF [80]. However, in this way satisfactory predictions for
both the nuclear matter saturation energy and density cannot
be obtained [81] and the binding energies of medium-mass
nuclei are seriously underpredicted [82]. A similar scenario
presents itself when the AV18 2NF is used in combination
with the Illinois-7 3NF [82, 83]. Efforts to treat the 3NF
microscopically were reported in Zuo et al. [84] and Li et al.
[85]. In Li et al. [85], in particular, a 3NF including the
1, Roper, and nucleon-antinucleon excitations was proposed,
based on the Bonn [86] and the Nijmegen [30] one-boson-
exchange potentials.

The predictions reviewed in this work are based on the high-
quality soft chiral NN potentials from leading order to fifth order
of the chiral expansion constructed in Entem et al. [87]. More
details are provided below.

2.2.1. Two-Nucleon Forces
The NN potentials used in this review go over five orders in
the χEFT series, from leading order (LO) to fifth order (N4LO).
This set of interactions is more internally consistent as compared
to earlier ones [88, 89], in that the same power counting and
regularization schemes are used for each order.

Furthermore, the long-range contributions are fixed by the
πN LECs provided by the recent analysis of Hoferichter et al.
[90, 91], which provided very accurate determinations. The errors
in those πN LECs are small enough to be safely ignored in the
process of uncertainty quantification. We also recall that, at the
fifth (and highest) order, the NN data below pion production
threshold are reproduced with the precision of a χ2/datum equal
to 1.15.

Prior to iterating the potential in the Lippmann-Schwinger
equation, one must remove high-momentum components,
in line with the low-momentum expansion concept of
chiral perturbation theory. For the interactions we use, this
step is carried out through the application of a non-local
regulator function:

f (p′, p) = exp[−(p′/3)2n − (p/3)2n] , (10)

where p′ ≡ |Ep ′| and p ≡ |Ep | are the final and initial nucleon
momenta in their center-of-mass system, respectively. We will
consider only values of the cutoff parameter 3 smaller than
or equal to 500 MeV, which have been found to have good
perturbative properties. The soft nature of the potentials has been
confirmed by the Weinberg eigenvalue analysis of Hoppe et al.
[92] and in the context of the perturbative calculations of infinite
matter of Drischler et al. [93].

2.2.2. Three-Nucleon Forces
Three-nucleon forces contribute for the first time at the third
order of the chiral expansion (N2LO), where they contain three
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FIGURE 1 | The 3NF at N2LO with (A) the 2PE, (B) the 1PE, and (C) the

contact terms.

parts [33]: the two-pion-exchange (2PE) term, which is of
long-range nature, the medium-range one-pion exchange (1PE)
contribution, and a short-range contact term. These diagrams
are shown in Figure 1. We apply these 3NFs in the form of
the density-dependent effective two-nucleon interactions [94,
95], which can be expressed in terms of the well-known non-
relativistic two-body nuclear force operators and thus easily
incorporated in the usual NN partial wave formalism and
subsequently in the computation of the EoS via the particle-
particle ladder approximation. We recall that the strategy of
including the 3NF as an effective density dependent 2NF was first
proposed in Baldo et al. [96] within the BHF theory.

The effective density-dependent two-nucleon interactions can
be regrouped into six topologies involving one loop. Three
of them originate from the 2PE graph of the chiral 3NF
(Figure 1A), and depend on the LECs c1,3,4, which already appear
in the 2PE part of the NN force. Two one-loop topologies
are derived from the 1PE diagram (Figure 1B), and contain
the LEC cD. Last, we have the one-loop topology related
to the 3NF contact diagram (Figure 1C), associated with the
LECs cE. Note that, in pure neutron matter, the contributions
proportional to the LECs c4, cD, and cE vanish [56]. In recent
nuclear matter calculations [63, 93], progress has been made
toward including N3LO three-body interactions in the two-
body normal-ordering approximation as well as including the
residual three-body normal-ordered force. Our group is in the
process of including effective density-dependent 3NF at N3LO
as from Kaiser et al. [97, 98]. We have preliminary evidence
that the contributions from the short-range terms [97] may be
negligibly small.

The LECs cD and cE which we use are determined via the
three-nucleon system. They are constrained to reproduce the
A = 3 binding energies and the Gamow-Teller matrix element
of tritium β-decay through the procedure described in Gardestig
and Phillips [99], Gazit et al. [100], and Marcucci et al. [101]. The
regulator function applied to the 3NF is

f (q) = exp[(−q/3)4] , (11)

as in Navrátil [102], with q = |Ep ′ − Ep | the momentum transfer.
Note that this choice makes the 3NF local in coordinate space,
which, in turn, facilitates the construction of the A = 3 wave
functions [103].

The complete 3NF at orders higher than the third (N2LO)
is very challenging, both in its development and applications,
and, therefore, it is frequently excluded from nuclear structure
studies. Note, though, that good progress is being made toward

TABLE 1 | Values of the LECs c1,3,4, cD, and cE for different orders of the 2NF in

the χEFT expansion, and the 3NF at N2LO, and different values of the

momentum-space cutoff 3.

3 (MeV) n c1 c3 c4 cD cE

N2LO 450 2 −0.74 −3.61 2.44 0.935 (0.215) 0.12 (0.04)

500 2 −0.74 −3.61 2.44 0.495 (0.195) −0.07 (0.04)

N3LO 450 2 −1.07 −5.32 3.56 0.675 (0.205) 0.31 (0.05)

500 2 −1.07 −5.32 3.56 −0.945 (0.215) −0.68 (0.04)

N4LO 450 2 −1.10 −5.54 4.17 1.245 (0.225) 0.28 (0.05)

500 2 −1.10 −5.54 4.17 −0.670 (0.230) −0.83 (0.03)

The LECs c1,3,4 are given in units of GeV−1, while cD and cE are dimensionless. The

numbers in parentheses indicate the error arising from the fitting procedure. In addition,

we also show the value for the exponent n that appears in the regulator function of

Equation (10).

TABLE 2 | Same as Table 1, but including the 2PE 3NF at N3LO and N4LO.

3 (MeV) n c1 c3 c4 cD cE

N2LO 450 2 −0.74 −3.61 2.44 0.935 (0.215) 0.12 (0.04)

500 2 −0.74 −3.61 2.44 0.495 (0.195) −0.07 (0.04)

N3LO 450 2 −1.20 −4.43 2.67 0.670 (0.210) 0.41 (0.05)

500 2 −1.20 −4.43 2.67 −0.750 (0.210) −0.41 (0.04)

N4LO 450 2 −0.73 −3.38 1.69 0.560 (0.220) 0.46 (0.05)

500 2 −0.73 −3.38 1.69 −0.745 (0.225) −0.15 (0.04)

That is, at each order, the 2PE term of the 3NF is included summing up all contributions

up to that order. (The N2LO numbers are the same as in Table 1).

the inclusion of the subleading 3NF at N3LO [63, 93, 97, 98,
104, 105]. However, in Krebs et al. [106] it was shown that the
2PE 3NF has nearly the same analytical structure at the third
(N2LO), fourth (N3LO), and fifth (N4LO) orders. Thus, one can
parametrize the sum of all the three orders of 3NF contributions
in terms of a set of effective LECs. Therefore, at least for this very
important component of the 3NF, complete calculations up to
N4LO are possible.

In the N4LO rows of Table 2 we give the effective LECs c1,3,4
obtained in Krebs et al. [106]. Concerning the 2PE 3NF at N3LO,
Equation (2.8) of Bernard et al. [107] provides the corrections
to the ci. (Note, though, that there is an error in the values
given below that equation. The correct values for δc3 and δc4 are
δc3 = −δc4 = 0.89 GeV−1.) With these corrections, we obtain
the values given in the N3LO rows of Table 2. Then, inserting the
ci of Table 2 in the expression for the N2LO 3NF, we are able to
include the 2PE parts of the 3NF up to N3LO and up to N4LO in
a straightforward way, with the LECs cD and cE refitted. Their
values, also listed in Table 2, are different from those listed in
Table 1 but of the same order and with the same sign.

We close this section by highlighting that, of all possible
3NF contributions, the 2PE 3NF is the first to have been
calculated [108]. The prescriptions outlined above allow to
include this very important 3NF up to the highest order we
consider at this time.
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FIGURE 2 | (Left) Ground state energy per particle of SNM as a function of density from the chiral two- and three-body forces with cutoff 3 = 450MeV. The three

dotted curves show predictions which include only two-body forces. For the 3NF contributions at N2LO and above, the LECs of Table 2 are used. The shaded box

locates the approximate empirical saturation energy and density. (Right) Ground state energy per particle of SNM as a function of density at the indicated orders and

with varying cutoff parameters. Other details as on the left.

2.3. Predictions for the Equation of State
2.3.1. Symmetric Matter Predictions
We begin with the symmetric nuclear matter (SNM) EoS. This is
displayed in Figure 2, where, on the left, the momentum-space
cutoff is fixed at 450 MeV but the chiral order of the two-body
force is varied from leading to fifth order. The 3NFs are chosen
with LECs in Table 2, which at N3LO and N4LO include the 2PE
3NF at fourth and fifth order, respectively. (We note that, in all
that follows, when we refer to predictions obtained with 3NF at
N3LO or at N4LO, we mean to say that the 2PE 3NF is included
up to those orders). The dashed lines indicate results at N2LO
and above with no three-body forces present, while the solid
lines include the 3NF when appropriate, that is, at N2LO and up.
Formally, we observe a good convergence pattern at the two-body
level with this family of NN potentials, but naturally we do not
expect realistic saturation behavior when soft two-body forces
alone are included in the calculation of the EoS. We see that the
inclusion of 3NFs is necessary beyond about half nuclear matter
saturation density and that for this set of nuclear potentials the
total 3NF contribution to the EoS decreases with the chiral order
from N2LO to N4LO.

We note that the uncertainty band obtained by varying the
chiral order from N2LO to N4LO while keeping 3 fixed to 450
MeV encloses the empirical saturation point. The saturation
energy varies in the range −14MeV . E0 . −18MeV while
the saturation density varies between 0.155 fm−3 . ρ0 .

0.195 fm−3. We stress that, once the two- and three-nucleon
forces are fixed by the NN data and the properties of the three-
nucleon system, no parameters are readjusted, making the many-
body calculation parameter-free. Since the predicted binding
energies and charge radii of intermediate-mass nuclei are closely

related to the corresponding saturation point in SNM, we see
the possibility that the new class of chiral potentials constructed
in Entem et al. [87] and used in this work may lead to more
reliable predictions in ab initio calculations of finite nuclei. For
densities larger than ρ & 0.20 fm−3, the predictions shown on the
LHS of Figure 2 display a trend that does not suggest satisfactory
convergence, since the three (saturating) solid curves are about
equally spaced. This is most likely due to the incompleteness of
the 3NF at orders above N2LO. It is natural to expect that such
trend will be a recurrent theme in later results. As discussed
in section 2.2.2, we believe that including the important 2PE
contribution consistently across all orders is important and
insightful. For instance, our results suggest that the missing 3NF
contributions at orders higher than N3LO can be expected to play
a substantial role toward a successful convergence.

On the RHS of Figure 2 we show the dependence of the
SNM EoS on the choice of momentum-space cutoff 3 in the
two- and three-body forces as well as the order in the chiral
expansion. In the present work we consider only the two cases
3 = 450, 500MeV, see comments in section 2.2.1. At orders
N2LO, N3LO, and N4LO, the cutoff dependence appears to be
comparable but generally smaller than the truncation errors.

In Figure 2, we show the impact of choosing at fourth (N3LO)
and fifth (N4LO) order in the chiral expansion either the N2LO
3NF coupling strengths shown in Table 1 (labeled “I” in the
figure) or those obtained by including the 2PE 3NF contributions
at higher order shown in Table 2 (labeled “II” in the figure). We
only show results for potentials with momentum-space cutoff
3 = 450MeV, but we expect similar results for the3 = 500MeV
cutoff potentials due to the identical change in the important ci
LECs (i = 1, 3, 4). We see that at N4LO the impact is rather
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FIGURE 3 | Energy per particle in SNM as a function of density at N3LO and

N4LO with a cutoff of 3 = 450MeV. For the 3NF contributions, the LECs of

either Table 1 or Table 2 are applied as indicated by labels “I” or “II”,

respectively. Case “II” is characterized by including the 2PE 3NF up to the

given order. The approximate empirical saturation energy and density are

indicated by the gray box.

large and roughly of the same size as variations in the chiral
order from N2LO to N4LO. However, the additional theoretical
uncertainty resulting from the choice of LECs entering into the
2PE 3NF would extend the overall error band inferred from the
RHS of Figure 2 only moderately and only at the largest densities
considered. In other words, Figure 3 shows that the truncation
error (compare N3LO II and N4LO II) can be much smaller
than the uncertainty arising from using different sets of LECs
(compare N4LO I and N4LO II), indicating the importance of
completeness in the 3NF at all orders.

Before closing this section, we summarize the saturation
properties of SNM at the various orders and cutoff values. In
Table 3, we show saturation density, saturation energy, and the
isoscalar incompressibility. For the latter, constraints can be
obtained from giant monopole resonance energies. In De et al.
[109], the authors obtain a range of 211.9 ± 24.5 MeV. Our
predictions at N3LO are consistent with this range, whereas
the larger values at N4LO reflect the larger saturation density
at that order.

Parameters which involve isospin asymmetry will be
discussed later.

2.3.2. Neutron Matter Predictions
We next consider the ground state energy of neutron matter
(NM) as a function of density, employing the same set of chiral
potentials and many-body methods discussed previously in the
case of symmetric nuclear matter. The EoS for both SNM and
NM are crucial to determine the density-dependent nuclear

TABLE 3 | Saturation properties from N2LO to N3LO and two values of the cutoff.

3 (MeV) ρ0 (fm−3) e0(ρ0) (MeV) K0 (MeV)

N2LO 450 0.155± 0.015 −14.2± 2.3 217.4± 3.6

500 0.170± 0.010 −14.9± 0.5 214.4± 8.0

N3LO 450 0.170± 0.025 −16.4± 1.7 221.2± 51.5

500 0.180± 0.023 −15.4± 2.2 206.4± 49.2

N4LO 450 0.195± 0.012 −18.1± 0.8 272.7± 24.3

500 0.203± 0.010 −17.6± 0.9 255.6± 21.2

symmetry energy and to better understand the properties of
neutron-rich nuclei and neutron stars, aspects which will be
addressed in later sections.

In Figure 4, on the LHS, we show the energy per particle of
NM as a function of density starting from chiral two- and three-
body forces with the same value of the momentum-space cutoff
3 = 450MeV but at different orders in the chiral expansion.
As in the case of symmetric nuclear matter, we observe good
convergence at the level of 2NF alone. When 3NFs are included,
we find somewhat smaller truncation errors compared to the
case of SNM. This may be due in part to the absence of large,
central isospin-0 partial waves in NM, which appear to be more
sensitive to differences among interactions. Clearly, the 3NF plays
an outstanding role in very neutron-rich systems at and beyond
nuclear saturation density, where its contribution to the EoS
growsmore strongly with the density than the 2NF contributions.

On the RHS of Figure 4 we display the energy per particle
of pure neutron matter as a function of density when varying
both the order in the chiral expansion and the momentum-space
cutoff 3 from 450 to 500 MeV. We see that, in comparison
to the analogous study in symmetric nuclear matter, the pure
neutron matter results display a much weaker cutoff dependence,
which may again be due to the absence of strong isospin-0
partial waves. Interestingly, even in the case of the relatively large
density ρ = 0.4 fm−3, corresponding to a Fermi momentum of
kF = 450MeV which lies at the effective breakdown scale of the
expansion, there is relatively little cutoff dependence.

Once again, we observe that the order-by-order pattern
is not satisfactory when moving from N3LO to N4LO. The
impact of including the 2PE 3NF up to fourth (N3LO)
and fifth (N4LO) order (consistent with the order of the
2NF), compared to including only the third-order (N2LO)
contributions, through the adoption of the LECs given inTable 2,
is demonstrated in Figure 5. As in the case of symmetric
nuclear matter, the effect at N4LO is much larger than at N3LO
due to the larger change 1c3 = 2.16GeV−1 vs. 1c3 =
0.89GeV−1, respectively, in the c3 LEC at these two orders in
the chiral expansion. Moreover, the choice of LECs entering
into the 2PE 3NF contributions again results in a moderate
systematic increase in the pure neutron matter energy per
particle at the highest densities considered. As we mentioned
earlier, the investigation of higher-order 3NF contributions is
in progress.

Before closing this section, we take the opportunity to
comment on how our SNM and NM EoS compare with those
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FIGURE 4 | (Left) Ground state energy per particle of NM as a function of density at the indicated orders in the chiral expansion. The three dotted curves show

predictions including only the 2NF. The cutoff parameter is fixed at 3 = 450MeV and the 3NF LECs from Table 2 are used. (Right) Ground state energy per particle

of NM as a function of density at the indicated chiral orders and with varying cutoff. The LECs of Table 2 are used.

from Drischler et al. [93]. There, chiral interactions including
full 3NF and 4NF at N3LO are applied to investigate nuclear
saturation. Judging from the RHS of Figure 4 in Drischler et al.
[93], where the EoS for both SNM and NM [63] are displayed, we
conclude that our EoS at N3LO are qualitatively comparable with
them within the density range covered in Figure 4 in Drischler
et al. [93], namely up to ρ=0.20 fm−3, with ours revealing more
attraction. We also point out that, in Drischler et al. [93], the 3NF
couplings are fit to triton and to saturation properties, whereas
we do not impose any constraints other than those from the
two- and the three-nucleon systems. Even so, we find (confirming
the conclusion from [93]) that realistic saturation properties are
possible at N3LO.

3. THE SYMMETRY ENERGY AND
RELATED ASPECTS

3.1. Review of Some Basic Concepts and
Definitions
The properties of isospin-polarized matter have relevance for
a number of open questions in nuclear physics and nuclear
astrophysics. For instance, the existance of the neutron drip
lines, the thickness of neutron skins, and the properties
of neutron stars all have in common a strong sensitivity
to the EoS of neutron-rich matter. The symmetry energy
determines to a good approximation the energy per particle
in homogeneous nuclear matter with any degree of isospin
asymmetry (cf. Equation 14 below). The symmetry energy
and its density dependence are therefore a key focus of
contemporary theoretical and experimental investigations, and
much effort has been devoted to identifying nuclear observables
which correlate with this important property of infinite
matter [25, 45, 53, 56–64, 110–120].

FIGURE 5 | Ground state energy per particle of NM as a function of density at

N3LO and N4LO with cutoff equal to 450 MeV. Similar to Figure 3, for the 3NF

contributions the LECs of either Table 1 or Table 2 are applied as indicated by

labels “I” or “II,” respectively.

The isospin asymmetry parameter is a measure of the relative
densities of neutrons and protons and is defined as

α =
(ρn − ρp)

(ρn + ρp)
, (12)

where ρn and ρp are the neutron and proton densities. It is useful
to write the energy per particle in isospin asymmetric matter at
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FIGURE 6 | Energy per particle in isospin-asymmetric nuclear matter. In each

case, the isospin asymmetry parameter is given. Calculations conducted at

N3LO of the 2NF (and the 2PE 3NF included up to N3LO) with cutoff equal to

500 MeV.

some density as an expansion with respect to α:

e(ρ,α) = e(ρ,α = 0)+
1

2

(

∂2e(ρ,α)

∂α2

)

α=0
α2 +O(α4) . (13)

Frequently, the expansion above is truncated at the term
quadratic in α, resulting in the popular parabolic approximation:

e(ρ,α) ≈ e0(ρ)+ esym(ρ) α
2 , (14)

where e0(ρ) = e(ρ,α = 0). [Equation (14) has been verified to be
valid up to fairly high densities [119].] Within the assumption
of Equation (14), the symmetry energy, esym, is the difference
between the energy per particle in neutron matter and the one
in symmetric matter. We can expand the symmetry energy about
the saturation density, ρ0,

esym(ρ) ≈ esym(ρ0)+
L

3

ρ − ρ0

ρ0
+

Ksym

18

(ρ − ρ0

ρ0

)2
+ ... . (15)

The slope parameter, L, is defined as

L = 3ρ0

(

∂esym(ρ)

∂ρ

)

ρ0

, (16)

and therefore is a measure of the density dependence of the
symmetry energy around saturation density. We recall that L is
an important quantity because of its significance for the skin
thickness in neutron-rich nuclei. Experiments which plan to
measure the neutron radius of 208Pb and 48Ca using electroweak
probes, such as PREX II [121] and CREX [122], respectively,

FIGURE 7 | The EoS of SNM at the three chiral orders considered here (cutoff

fixed at 450 MeV) compared with the phenomenological EoS of Alam et al.

[135].

are expected to provide accurate measurements of the neutron
skin. As a consequence, one hopes for reliable constraints on
the symmetry pressure, clearly related to the slope parameter (see
section 3.3.1 below). Also, the radius of the average-mass neutron
star is known to be sensitive to the pressure in neutron matter at
normal density, PNM0 , which is simply related to L (for fixed ρ0)
due to the vanishing of the density derivative of e(ρ,α = 0) at
saturation. That is:

PNM0 ≈ L ρ0/3 . (17)

The reader is referred, for instance, to Sammarruca and
Millerson [123] and the comprehensive list of citations therein.

The isovector incompressibility, Ksym, is associated with the
next higher-order derivative, that is, it measures the curvature of
the symmetry energy at saturation density. It is defined as:

Ksym = 9ρ20

(

∂2esym(ρ)

∂ρ2

)

ρ0

. (18)

Correlations between L and both Ksym and the symmetry
energy at saturation, esym(ρ0) [124–126] have been examined.
Predictions for the isovector incompressibility carry large
uncertainty, as is the case for the isoscalar one. Attempts to
constrain the second derivative of the symmetry energy (that is,
its curvature) are discussed in Vidaña et al. [127], Ducoin et al.
[128], and Santos et al. [129].

3.2. Predictions of Symmetry Energy and
Related Properties
Figure 6 displays the energy per particle in isospin asymmetric
matter as a function of density and for increasing degree
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FIGURE 8 | The symmetry energy vs. density. The curves are obtained from

the various microscopic EoS for NM at the indicated chiral orders and cutoff

values, combined with the phenomenological EoS for SNM [135] as explained

in the text. The additional predictions and various constraints are from:

Danielewicz and Lee [136], dark green; Tsang et al. [137], magenta contour;

Russotto et al. [138, 139], yellow and brown shaded areas. (The data points

were extracted from the graphs assuming ρ0 = 0.16 fm−3 and using

WebPlotDigitizer opensource software, https://automeris.io/WebPlotDigitizer).

TABLE 4 | Predicted values of symmetry energy and related properties at three

orders of chiral perturbation theory and two values of the cutoff parameter

obtained as explained in the text.

3 (MeV) esym(ρ0) (MeV) L (MeV) Ksym (MeV)

N2LO 450 32.8± 0.4 52.2± 0.8 −117.6± 36.1

500 32.2± 0.5 50.2± 1.5 −106.3± 31.1

N3LO 450 32.4± 1.0 53.0± 7.2 −81.5± 32.8

500 31.7± 0.6 48.8± 4.6 −75.2± 32.8

N4LO 450 31.4± 0.5 45.8± 3.1 −114.3± 14.3

500 31.1± 0.2 44.2± 1.8 −108.0± 12.9

of asymmetry, cf. Equation (14), for one selected order and
cutoff [130].

As we already noted in conjunction with Figure 2, the
saturation properties of the chiral interactions we are considering
are different from one another, with the saturation density
varying between about 0.16 and 0.20 fm−3. Clearly, this will
impact the expansion parameters contained in Equation (15),
see definitions in Equations (16–18), differently than if the
derivative were evaluated, in all cases, at some common,
nominal saturation density ρ0. On the other hand, analyses of
correlations between the symmetry energy, its density slope, and
the neutron skin thickness are typically done utilizing families
of phenomenological models, such as large sets of Skyrme

interactions or relativistic mean-field (RMF) models [131].
These models are constructed so as to have in common
good saturation properties (usually by adjusting parameters to
empirical properties of nuclei) while differing in the slope of the
symmetry energy which, at saturation, is essentially a measure for
the pressure in pure neutron matter (see Equation 17). Already
almost two decades ago, Brown [132] considered a set of Skyrme
interactions whose predictions of the density slope of the NMEoS
around normal density differed dramatically and found a linear
relation between such derivative and the neutron skin thickness
in 208Pb. Similar investigations have been and continue to be
done with RMFmodels, with families of interactions constructed
so as to span a large range of L values. For instance, RMF models
such as NL3 [133] and IU-FSU [134] give values of L equal
to 118.2 and 47.2 MeV, respectively. (Not surprisingly, these
models span a large range of both neutron skin values and stellar
radii). In Roca-Maza et al. [24], the authors utilize a large set of
RMF models all of which describe accurately the nuclear binding
energies and charge radii across the periodic table (which should
constrain tightly the binding energy and saturation density of
SNM). On the other hand, the same models predict very different
neutron root-mean-squared (r.m.s.) radii, since the isovector
channel is poorly constrained [24].

Our EoS are microscopic and parameter-free and we are not
in the practice of constructing families of parameterized EoS
models to establish phenomenological correlations. Nevertheless,
for the purpose of demonstration, next we wish to perform a
study meant to highlight the role of neutron matter pressure
for the neutron skin thickness once the uncertainty associated
with the saturation point in SNM, cf. Figure 2, is removed.
To that end, we will construct “semi-microscopic” models of
asymmetric matter as follows: for the symmetric part, we will
use an established phenomenological EoS, such as the one from
Alam et al. [135]. For the neutron matter part, currently our
focal point, we will continue to use the chiral EoS presented in
section 2.3.2. We then proceed treating these six cases (three
chiral orders and two cutoffs) as six EoS models differing in
their NM components. Figure 7 shows the phenomenological
EoS of SNM in comparison with our chiral predictions with
cutoff equal to 450 MeV. Figure 8 displays the symmetry energy
obtained with ourmicroscopic NMEoS combined with SNMEoS
represented by the black curve in Figure 7. We also include in
the figures the results of several analyses and constraints [136–
139]. The predictions based on our microscopic NM EoS are
considerably softer than those constraints above normal density.
Table 4 contains values for the parameters defined previosly
through Equation (15), for the six EoS models which we have
constructed as described.

We now proceed to discuss the spread of our values for
the symmetry energy, the L parameter, and the isovector
incompressibility in the framework of chiral uncertainties of the
NM EoS. We recall that one of the strengths of χEFT is the
opportunity of order-by-order improvement of the predictions.
Naturally, the truncation error at a given order should be a
reasonablemeasure of the uncertainty which arises from omitting
the next order contributions. If the value of the observable X has
been calculated at order n+ 1, than the truncation error at order
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n can be estimated as the difference between the values at order
n+ 1 and n:

ǫn = |Xn+1 − Xn| , (19)

which is a reasonable way to estimate what one is missing by
retaining only terms up to order n. On the other hand, if Xn+1

is not known, then some alternative prescription must be used.
We use the definition [87]

ǫn ≈ |Xn − Xn−1|
Q

3
, (20)

where Q is a momentum characteristic for the observable under
consideration and 3 is the cutoff. For the fifth (and highest)
order, we use Equation (20) and we find it reasonable to
define Q as the r.m.s. value of the relative momentum of two
neutrons in neutron matter at the given density [see [123] and
references therein].

We wish to express our final results for the symmetry energy,
the slope parameter, and the isovector incompressibility at N3LO.
To that end, we average the predictions for the quantity X
obtained with the two values of the cutoff separately at N3LO
and N4LO, yielding X̄4 and X̄5, respectively. The truncation
uncertainty at N3LO can then be estimated as 1X = |X̄4 − X̄5|.
As an alternative, we choose to take the largest of the errors at the
two cutoff values.

Applying that prescription, we obtain for the symmetry
energy, the slope parameter, and the isovector incompressibility
at N3LO (all numbers in MeV):

esym = 32.1±1esym 1esym = 1.0 , (21)

L = 50.9±1L 1L = 7.2 , (22)

Ksym = −78.4±1Ksym 1Ksym = 32.8 . (23)

We see that Ksym shows large variations, which reflect the
extreme sensitivity of the second derivative to the details of the
interactions for each of the curves in Figure 8. We emphasize
that variations among those curves are due entirely to the
NM predictions.

A phenomenological study of the EoS based on Skyrme
density functionals [135] reports the slope parameter to be L =
65.4±13.5MeV, whereas the isovector incompressibility is found
to be within the range Ksym = −22.9 ± 73.2 MeV. Lattimer and
Lim [140] determined L to be between 40.5 and 61.9MeV. For the
isovector incompressibility, they suggest a linear relation between
Ksym and L, that is, Ksym ≈ aL − b, with a, b equal to 3.33 and
281 MeV, respecively [128], or 2.867 and 260 MeV [127]. More
recent constraints obtained from tidal deformabilitie inferred
from GW170817, report 30 < L < 86 MeV and−140 < Ksym <

16 MeV or 40 < L < 62 MeV and −112 < Ksym < −52
MeV [141].

Before closing this section, we take the opportunity to address
the pressure in neutron matter at saturation density, which,
for the EoS of SNM which we have chosen is equal to 0.155
fm−3. Using Equation (17) and the uncertainty on L, we find
(in MeV/fm3):

PNM0 = 2.66±1P 1P = 0.37 . (24)

3.3. Symmetry Energy Slope and Neutron
Skins
The neutron skin is defined as the difference between the r.m.s.
radii of the neutron and proton density distributions:

Sn = Rn − Rp , (25)

where

Ri =

√

1

Ti

∫ ∞

0
ρi(r) r2 d3r , (26)

i = n, p and Tn, Tp = N, Z respectively.
As mentioned before, the neutron skin thickness, particularly

for 208Pb, is of great contemporary interest due to the possibility
of constraining the slope of the symmetry energy through skin
measurements [24, 142–147].

3.3.1. The Experimental State-of-the-Art
While electron scattering has been very successful in providing
accurate information on the proton distributions within the
nucleus, mapping neutron densities is a much more challenging
task. In particular, measurements which make use of hadronic
probes carry large uncertainties due to the model dependence of
the nuclear interactions used in the analyses.

On the other hand, parity-violating electron scattering is in
principle capable of providing accurate information on the weak
charge distribution in the nucleus through the coupling of the
neutron to the Z-boson. The typical parity-violating electron
scattering experiment measures the difference between the cross
sections for scattering of right-handed and left-handed electrons,
that is

APV =
σR − σL

σR + σL
, (27)

which is proportional to the ratio of the weak to the charge form
factor of the nucleus [110] and thus can be related to coordinate
space densities by Fourier transform. The challenging aspects of
measuring observables related to parity violation is that they can
be etremely small, in the case of APV between 10−4 to 10−7 [110].

The first PREX experiment [148, 149] provided a value of
0.33(+0.16, −0.18) fm for the skin of 208Pb, which carries a large
experimental error due to technical problems which resulted
into poor statistics. However, the planned PREX-II and CREX
experiments have a target uncertainty of±0.06 fm and±0.02 fm
for the neutron skin of 208Pb and 48Ca, respectively [121, 122].

Furthermore, additional constraints are expected from the
forthcoming MESA accelerator in Mainz [150], which promises
to constraint the neutron skin of 208Pb within ±0.03 fm and
the one of 48Ca within ±0.02 fm, same as the target uncertainty
of CREX. Note that these two nuclei are both stable, doubly-
magic, and with a relatively large neutron to proton asymmetry,
which is part of the reasons why investigations have concentrated
on them.

For an extensive review of correlation analyses based on a large
set of relativistic and non-relativistic nuclear density functionals
see [110].
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TABLE 5 | Predicted neutron skin of 208Pb and 48Ca.

Nucleus Order 3 = 450 MeV (fm) 3 = 500 MeV (fm)

208Pb N2LO 0.155 ± 0.005 0.147 ± 0.004

N3LO 0.150 ± 0.009 0.143 ± 0.004

N4LO 0.141 ± 0.004 0.139 ± 0.002

48Ca N2LO 0.150 ± 0.003 0.144 ± 0.002

N3LO 0.147 ± 0.005 0.142 ± 0.002

N4LO 0.141 ± 0.003 0.140 ± 0.001

3.3.2. Predictions
We now move to neutron skins, specifically for the 208Pb and
48Ca nuclei, as predicted by the EoS models based on the six
chiral interactions in NM as described previously. Using the
energy per particle in infinite isospin-asymmetric matter as given
in Equation (14), we can establish a simple but direct connection
with the energy per nucleon in a spherically symmetric nucleus
through the semi-empirical mass formula:

E(Z,A) =

∫

d3r ρ(r) e(ρ,α)+

∫

d3r f0 |∇ρ|
2 + ECoul , (28)

where the Coulomb contribution is written as:

ECoul =
e2

ǫ0

∫ ∞

0
dr

′
[r

′
ρp(r

′
)

∫ r
′

0
d3r ρp(r)] . (29)

The parameter f0 is a fitted constant for which we used a value of
65 MeV fm5, consistent with the range determined in Oyamatsu
et al. [151].

We use the two-parameter Thomas-Fermi distribution
function to describe the nucleon density:

ρ(r) =
ρa

1+ e(r−rb)/c
. (30)

The “radius” rb and the “diffuseness” c are themselves evaluated
through minimization of the energy per nucleon, while ρa is
easily obtained from normalization.

Table 5 shows the values of the neutron skin thickness
predictions along with the truncation error for 208Pb and 48Ca.
Proceeding as described previously, and taking the largest of the
errors at the two cutoff values, we state our final estimates for the
neutron skins of 208Pb and 48Ca as

Sn(
208Pb) = 0.147±1Sn 1Sn = 0.009 , (31)

Sn(
48Ca) = 0.145±1Sn 1Sn = 0.005 . (32)

Note that the skin depends considerably on the constant
f0 appearing in Equation (28). We have not included that
uncertainty in Equations (31–32) as we are focusing on chiral
truncation errors. We report, however, that varying f0 between 60
and 70 MeV fm5 introduces an uncertainty of 0.01 fm, essentially
independent of chiral order or cutoff.

FIGURE 9 | Correlation between the slope parameter (L) and the neutron skin

thickness of 208Pb obtained with RMF models. The error bars represent the

target precision for the future PREX-II [121] and MREX [150] experiments.

Reproduced from Physics Today 72, 7, 30 (2019) (https://doi.org/10.1063/PT.

3.4247) with the permission of the American Institute of Physics.

We close this section by showing in Figure 9 a typical
correlation between L and the thickness of the neutron skin in
208Pb obtained with a large set of successful RMF models. As
we discussed previously, the ranges we give in Equations (22)
and (31) are relatively small, which is, of course, desirable, since
they originate from chiral uncertainties in the NM rather than
variations of phenomenological parameterizations. We note that
our range of values seem to be located on the low end of the
correlation in Figure 9, with L approximately between 44 and 58
MeV and the skin between approximately 0.14 and 0.16 fm.

4. THE EQUATION OF STATE AND
NEUTRON STARS

4.1. Some General Aspects
It is remarkable that the relation between the mass and the radius
of neutron stars is uniquely determined by the EoS together
with the star’s self-gravity through the Tolman-Oppenheimer-
Volkoff (TOV) equations of General Relativity [152]. In fact,
although the detailed structure of a neutron star is complex
and varies as a function of density, the part of its core
mostly composed of a uniform liquid of neutrons, protons, and
leptons in β-equilibrium accounts for almost all the mass and
the volume. Therefore, these compact systems are intriguing
testing grounds for both nuclear physics [153–156] and General
Relativity. Extensive effort has been and continue to be devoted
to constraining properties of compact stars from astrophysical
observations see, for instance [156–160].
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The largest possible value for the mass of a neutron star was
estimated by Rhoades and Ruffini [161] based on the following
assumptions: (1) General Relativity is the appropriate theory
of gravitation; (2) the EoS obeys the Le Chatelier’s principle
(∂P/∂ǫ ≥ 0) and is consistent with causality, ∂P/∂ǫ ≤ c2;
and (3) the EoS is reliably known below some density. Subject
to these conditions, it was determined that the maximum mass
of a neutron star cannot exceed 3.2 solar masses. Note that,
releasing the causality constraint, the limit can be as high as 5
solar masses [162, 163] due to the increased stiffness of the EoS at
supernuclear densities.

While the maximum mass is mostly determined by the
stiffness of the EoS at densities greater than a few times saturation
density, the star radius is impacted mainly by the slope of the
symmetry energy. More precisely, it is closely connected to
the internal pressure (that is, the energy gradient) of matter at
densities between about 1.5ρ0 and 2-3ρ0 [157]. The mass and the
radius of the neutron star are predicted by the TOV equation as
we review next.

The equations for a perfect fluid in hydrostatic equilibrium
allow to determine the pressure and the total mass-energy density
as a function of the radial distance from the center of the star.
These coupled equations are

dP(r)

dr
= −

G

c2
(P(r)+ ǫ(r))(M(r)+ 4πr3P(r)/c2)

r(r − 2GM(r)/c2)
, (33)

with

dM(r)

dr
= 4πr2ǫ(r)/c2 , (34)

where ǫ is the total mass-energy density. The star gravitational
mass is

M(R) =

∫ R

0
4πr2(ǫ(r)/c2)dr , (35)

with R the value of r where the pressure vanishes. It’s worth
recalling that no mass limit exists in Newtonian gravitation.

Recently, the LIGO/Virgo [164] detection of gravitational
waves originating from two neutron stars spiraling inward and
merging, the neutron star merger GW170817, has generated even
more interest and excitement around these highly exotic systems.

The dimensionless tidal deformability is related to the neutron
star response to the tidal field induced by the companion star and
is defined as

3 =
2

3
k2

( R

M

)5
, (36)

where the Love number k2 reflects the quadrupole component
of the gravitational potential induced by the companion star at
the surface [165]. It depends on the neutron star compactness,
M/R, and the energy density and pressure profile of the star. The
tidal deformability can be obtained by solving the appropriate
equations together with the TOV equations which yield the
M(R) relation [166]. Hence, the merger detection can provide
constraints on the star radius based on the tidal deformabilities
of the colliding system [167]. In fact, the August 2017 first

direct detection of a binary neutron star merger helped establish
new limits on the radius of a 1.4 M⊙ neutron star. Additional
references addressing the radius of a 1.4M⊙ neutron star include
[166, 168–172].

The correlation between the neutron skin thickness (discussed
in section 3.3) and the radius of a neutron star originates from
the sensitivity of the star radius to the pressure at normal density.
Note that such correlation weakens as the mass increases see,
for instance [110], which is why the radii of lighter stars are
good candidate to help constrain the neutron skin of 208Pb and,
in turn, the slope of the symmetry energy around saturation
density. Based on these considerations, an upper limit of 0.25 fm
was found for the neutron skin thickness of 208Pb. Additional
observations from the LIGO-Virgo collaboration scheduled for
2019 are likely to provide stronger constraints.

In the remainder of this section, after reviewing how the
EoS of β-stable matter is obtained from conditions of charge
neutrality and energy minimization (section 4.2), we will address
(spherical) neutron star properties, with emphasis on the radius
of a “typical” neutron star, namely one with amass approximately
equal to 1.4 M⊙. The reasons for this choice have been given in
the previous paragraph.

4.2. The EoS of β-Stable Matter
In this section, we review the basic equations which we use to
obtain the EoS for stellar matter in β-equilibrium.

The total energy per particle, etot , related to the total energy
density, ǫtot , by etot = ǫtot/ρ, for neutrons and protons in β
equilibrium with leptons (electrons and muons) is given by:

etot = e0 + esym(Yn − Yp)
2 +

∑

i=n,p

Yimi + ee + eµ , (37)

where Yi, i = n(p), stands for the neutron(proton) fraction.
On the right-hand side are the baryon contributions including
their rest energies (first three terms), and the relativistic electron
and the muon energies per baryon (last two terms). Note that,
in the equation above, e0 and esym are the EoS of symmetric
nuclear matter and the symmetry energy, respectively. All terms
are functions of density.

The relativistic energy density for particle species “i” having
Fermi momentum (kF)i is given by

ǫi =
γ

2π2

∫ (kF)i

0

√

k2 +m2
i k

2 dk , (38)

where γ is an appropriate degeneracy factor. The partial densities
are related to the respective Fermi momenta as

ρi =
γ

2π2

∫ (kF)i

0
k2 dk , (39)

which gives, for spin- 12 fermions (γ=2),

ρi =
(kF)3i
3π2

, (40)

Frontiers in Physics | www.frontiersin.org 13 December 2019 | Volume 7 | Article 213

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Sammarruca and Millerson Nuclear Forces in the Medium

with the corresponding particle fractions given by

Yi =
ρi

ρ
. (41)

The chemical potential for species “i” is defined as

µi =
∂ǫi

∂ρi
=

∂ǫi

∂(kF)i

∂(kF)i
∂ρi

=

√

(kF)2i +m2
i , (42)

where we have used Equations (38–39) to perform the derivatives
with respect to the upper integration limit.

The standard procedure is to minimize the total energy per
particle with the constraints of fixed baryon density and global
charge neutrality:

ρp + ρn = ρ ⇒ Yp + Yn = 1 (43)

and

ρp = ρe + ρµ ⇒ Yp = Ye + Yµ . (44)

The resulting set of equations allow to solve for the various lepton
fractions from which one can easily obtain the corresponding
energy densities.

For the purpose of applying the Lagrange multipliers method,
we define the functional

F = etot + λ1η1 + λ2η2 , (45)

where

η1 = 1− Yn − Yp (46)

and

η2 = Yp − Ye − Yµ , (47)

and set

∂F

∂Yi
= 0 . (48)

Equations (45–48) then yield

∂F

∂Yp
=
∂etot

∂Yp
− λ1 + λ2 = 0 ⇒ µp = λ1 − λ2 (49)

∂F

∂Yn
=
∂etot

∂Yn
− λ1 = 0 ⇒ µn = λ1 (50)

∂F

∂Ye
=
∂etot

∂Ye
− λ2 = 0 ⇒ µe = λ2 (51)

∂F

∂Yµ
=

∂e

∂Yµ
− λ2 = 0 ⇒ µµ = λ2 . (52)

Thus,

µµ = µe (53)

FIGURE 10 | Fractions of neutrons, protons, electrons, and muons as a

function of density at the indicated orders for 3 = 450 MeV.

and

µp = µn − µe . (54)

The equations above allow to solve for the various lepton
fractions and, through Equation (38), the corresponding energies
are easily obtained. For electrons, we find the ultra-relativistic
approximation to be appropriate and set their rest energy to zero
in Equation (38).

In Figure 10, we show the predicted fractions for the various
species (neutrons, protons, and leptons) at the three highest
orders of χEFT which we consider. We note that the proton
fraction goes up to just above 10% at the highest densities being
considered. This is a rather low value, most likely related to
the relatively soft nature of the symmetry energy displayed in
Figure 8. It implies that neutron stars (with central densities up
to those included in the figure) will not cool down via direct
Urca processes.

One is now in the position to calculate the pressure in β-stable
matter. The pressure is related to the energy density through

P(ρ) = ρ2
d(etot)

dρ
. (55)

In order to continue the discussion started in section 3.2 and
extend it to neutron star radii in a consistent manner, in this
section we will use the same interactions constructed in section 3
in terms of an empirical SNMEoS and themicroscopic NM chiral
EoS. Note, from section 4.2, that the symmetry energy, and thus
the EoS of both SNM and NM are needed to obtain the various
particle fractions. As mentioned earlier, those fractions tend to
be rather small (see Figure 10), and thus the results shown in
this and the next sections are to a large extent determined by our
chiral predictions in NM.

We close this section by showing in Figure 11 the calculated
pressure in β-stable matter at the third, fourth, and fifth orders
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FIGURE 11 | (Left) pressure in β-equilibrated matter vs. density at the given chiral orders (of the NM chiral EoS). Predictions with both cutoffs are shown, revealing

that the two sets of curves are very similar. (Right) the corresponding energy per particle. These are the predictions which we retain up to 2ρ0.

of the 2NF together with the 3NF constructed as described
in section 2.2.2. Of course we are referring to the chiral 3NF
appropriate for NM, where the LECs c4, cD, and cE vanish [56].

The BHF approach to nuclear matter is appropriate for the
description of homogeneous matter, such as a homogeneous
fluid of nucleons. Below nuclear densities, the chiral EoS are
joined with the crustal equations of state from Harrison and
Wheeler [173] and Negele and Vautherin [174], performing a
smooth interpolation between the two EoS. The crust has crystal-
like composition, and contains light [173] or heavy [174] metals
together with a gas of electrons.

4.3. Predicting Neutron Star Masses and
Radii
We now proceed to discuss specifically neutron star predictions.
As mentioned above, we will focus on the radius of a star with
mass equal to 1.4 M⊙. We note, in passing, that the increased
population of neutron stars observed around the mass range of
1.4M⊙ may be related to the physics of white dwarfs, atomic stars
supported by electron (rather than neutron) degeneracy pressure.
Since the Chandrasekhar limit of white dwarfs is approximately
1.4 M⊙ [175], their collapse is likely to generate neutron stars in
that mass range.

As stated in section 1, χEFT is a low-energy theory and
thus limitations to its domain of applicability must be carefully
considered. To begin with, the chiral symmetry breaking scale,
3χ ≈ 1 GeV, imposes clear limitations on the momentum or
energy ranges where pions and nucleons can be taken as suitable
degrees of freedom [15, 17]. Furthermore, the cutoff parameter
3 appearing in the regulator function (cf. Equation 10), has the
purpose to remove high momentum components. Naturally, the
strength of the cutoff determines to which degree such high-
momentum components are suppressed. On the other hand,
central densities of compact astrophysical systems can reach as
high as several times the density of normal saturated matter,
resulting, of course, in the presence of Fermi momenta which

are beyond the reach of χEFT. Therefore, if one wishes to make
predictions based, to some extent, on χEFT, methods to extend
those predictions must be devised.

It has been observed that the pressure as a function of baryon
density (or mass density) for a very large number of existing EoS
can be fitted by piecewise polytropes, namely functions of the
form P(ρ) = αρŴ [176]. (Note that, in our definitions, ρ denotes
the baryon density). Guided by this observation, we find it
reasonable to extrapolate the pressure predictions obtained from
the EoS shown in Figure 11 using polytropes, as we have done
in Sammarruca and Millerson [123]. More precisely, we employ
our semi-microscopic predictions up to about 2ρ0, where ρ0 is
defined to be 0.16 fm−3, approximately the density of saturated
matter. The reason for choosing 2ρ0 as a matching density is
as follows: since we are dealing with a perturbative expansion
in the parameter Q/3, we base our arguments on the size of
the expansion parameter for typical momenta of the system
under consideration. The highest momentum for pure neutron
matter around twice normal density is approximately 420MeV, as

obtained from the usual relation ρ =
k3F,n
3π2 , with kF,n the neutron

Fermi momentum. And of course, the highest momentum in
β-stable matter is slightly lower due to the presence of a small
proton fraction. In conclusion, we are still below (although
getting close to) 3 ∼ 450 − 500 MeV. Furthermore, the r.m.s.
value of the relative momentum for two nucleons in infinite
matter is lower than their maximum momentum, and in fact it
can be estimated to be about 60% of the Fermi momentum [177].
Thus, on statistical grounds, we should be safe from “cutoff
artifacts,” even in the presence of smooth regulators.

We then proceed to match polytropes with diverse adiabatic
indices, preserving continuity of the pressure. The range of the
polytropic index was taken to be between 1.5 and 4.5 [123] (based
on guidelines from the literature [176]), and these extensions
are calculated up to about 3ρ0. At this density, every polytrope
is again joined continuously with another set of polytropes
spanning the same range in values of Ŵ. In this way, we
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FIGURE 12 | (Top) Pressure in β-equilibrated matter vs. density at N3LO for 3=450 MeV (left) and 3=500 MeV (right) extended with polytropes as explained in the

text. The vertical axis and the vertical yellow line mark the two matching densities (see text for details). (Bottom) Vaues of the pressure as a function of density taken

from Table 5 of Hebeler et al. [178]. The lower (higher) values correspond to the “soft” (“stiff”) predictions shown in that table.

FIGURE 13 | The mass vs. radius relation at the given chiral order. (Left) 3=450 MeV; (Right) 3=500 MeV. The purple curves are the result of extending the

predictions at N4LO, while the red and the green curves are obtained extrapolating the predictions at N3LO and at N2LO, respectively. The horizontal yellow lines

marks the value of 1.4 M⊙. The shaded area in the background is the constraint taken from Steiner et al. [159].

are able to cover a large set of possible EoS continuations,
simulating scenarios where the EoS displays different degrees
of “softness” or “stiffness” in different density regions, and thus

we can estimate a realistic uncertainty. We stress again that
this procedure is a way to simulate the uncertainty arising
from reasonable parameterizations of the EoS as determined
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by phenomenological studies in the literature, and is not to
be understood as a replacement for a theoretical model. A
demonstration of this procedure is shown in Figure 12 (top row)
for the case of N3LO with3 = 450 MeV. (Note that cgs units are
adopted in Figure 12 as those are popular in astronomy and may
facilitate comparison by other authors).

In Hebeler et al. [178], the β-equilibrated EoS based on
microscopic chiral interactions in neutron matter, is extended
to high densities employing a general piecewise polytropic
extrapolation, which leads to a very large number of EoS.
Applying causality and the requirement that the EoS must be
able to support a mass of 1.97 M⊙, the author select a range of
possible EoS, ranging from “soft” to “stiff.”We show the resulting
uncertainty band in the bottom row of Figure 12, noting that our
uncertainty band from Figure 12 is consistent with it.

Having built up the EoS at all needed densities, we are now
in the position to solve the TOV [152] star structure equations
and obtain the mass as a function of the radius for a sequence
of stars differing in their central densities, up to several times
normal density. The M(R) relations we obtain are shown on
the bottom row of Figure 13. Note that only combinations of
polytropic indices which can support a maximum mass of at
least 1.97 M⊙ have been retained for the purpose of Figure 13,
to account for the observation of a pulsar with a mass of 2.01 ±
0.04M⊙ [179]. It is appropriate to point out here that most recent
observations [180] are consistent with the even higher value of
2.14M⊙. In future work, we will apply this new constraint, which
will result in a more limited set of acceptable EoS.

The causality constraint imposes limitations and those are
applied in Figure 13. That is, one must require that the speed
of sound in stellar matter is less than the speed of light, a
condition which can be expressed as dP

dǫ
< 1, where ǫ is the total

energy density.
Table 6 shows the the radius and the central density of

the 1.4 M⊙ neutron star when the pressure curves at the
fourth and fifth orders from Figure 11 are extrapolated via
piecewise polytropes with adiabatic indices Ŵ1 and Ŵ2 as
shown. The speed of sound at central density is also included.
Confirming what we found in Sammarruca and Millerson
[123], Table 6 demonstrates quite clearly that the radius is
practically insensitive to how the continuation is done. In
particular, no changes are observed due to variations of the
polytrope attached at 3ρ0, and changes by less that one
kilometer occurr in response to varying the first polytropic index.
Note that the central densities we predict for the canonical-
mass star are typically in the order of, and can exceed 3ρ0.
These densities are at or above those where the spreading
of the pressure can be quite large (see Figure 12). Evidently,
the radius of a star with this kind of mass responds to
pressures at much lower than central densities, in line with
earlier observations (see, for instance [178, 181]), where the
insensitivity of the radius to the higher densities was pointed
out. Tables similar to Table 6 with 3=500 MeV and at N4LO
with changing value of 3 are not included but do lead to very
similar observations.

At the same time, the very small spreading of the pressure
at normal to moderately high densities (see Figure 11), would

TABLE 6 | Adiabatic indices, Ŵ1 and Ŵ2, of the polytropes attached at the two

matching densities, followed by the radius and the central density of the 1.4 M⊙

neutron star.

Ŵ1 Ŵ2 R (km) ρ (fm−3) vs(c)

1.5 3.5 11.19 0.653 0.718

1.5 4.0 11.28 0.615 0.767

1.5 4.5 11.34 0.589 0.813

2.0 3.0 11.49 0.620 0.642

2.0 3.5 11.56 0.585 0.695

2.0 4.0 11.60 0.564 0.741

2.0 4.5 11.62 0.548 0.786

2.5 3.0 11.83 0.543 0.621

2.5 3.5 11.84 0.529 0.677

2.5 4.0 11.85 0.521 0.734

2.5 4.5 11.86 0.514 0.789

3.0 2.5 12.05 0.488 0.555

3.0 3.0 12.06 0.485 0.615

3.0 3.5 12.06 0.482 0.671

3.0 4.0 12.05 0.479 0.721

3.0 4.5 12.06 0.478 0.766

3.5 1.5 12.19 0.445 0.650

3.5 2.0 12.19 0.445 0.653

3.5 2.5 12.18 0.444 0.660

3.5 3.0 12.18 0.444 0.673

3.5 3.5 12.18 0.444 0.665

3.5 4.0 12.18 0.444 0.671

3.5 4.5 12.18 0.444 0.676

4.0 1.5 12.27 0.420 0.759

4.0 2.0 12.27 0.420 0.744

4.0 2.5 12.27 0.420 0.734

4.0 3.0 12.27 0.419 0.731

4.0 3.5 12.27 0.420 0.726

4.0 4.0 12.27 0.420 0.710

4.0 4.5 12.27 0.420 0.699

4.5 1.5 12.32 0.404 0.792

4.5 2.0 12.32 0.404 0.781

4.5 2.5 12.32 0.403 0.775

4.5 3.0 12.32 0.403 0.772

4.5 3.5 12.32 0.403 0.772

4.5 4.0 12.32 0.403 0.766

4.5 4.5 12.32 0.404 0.750

The speed of sound is also shown, in units of the speed of light. The microscopic part of

the NM predictions are obtained at N3LO with 3=450 MeV.

suggest similarity of the radius in all cases (differing in chiral
order and/or cutoff). This is in fact the case. Taking into
consideration both the truncation error and the uncertainty
from the polytropes, one may state, estimating the error
pessimistically, that RN3LO ≈ 11.8± 1 km forM=1.4M⊙.

For completeness, in Figure 13 the full M(R) relation is also
displayed. However, we stress that, at the high central densities
probed by the heaviest stars, it is not possible to make reliable
statements at this time. Predictions are no longer constrained by
the chiral theory and are mostly phenomenology.
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FIGURE 14 | (Left) Pressure in β-stable matter as a function of density obtained with the Bonn B meson-exchange potential and the DBHF approach to nuclear and

neutron matter. The blue and the red curves are obtained using the phenomenological EoS for SNM or the microscopic one, respectively. (Right) The mass vs. radius

relation for a neutron star obtained with the DBHF calculations as explained in the text. As before, the lavender shaded area is the constraint from Steiner et al. [159].

To broaden the scopes of this discussion, we will include
next a set of predictions obtained in a more “traditional” way
rather than with χEFT. In particular, we will use a meson-
exchange potential (the Bonn B potential [86]) and the DBHF
approach mentioned in the Introduction and used extensively
in the past by one of the authors of this review [14]. We recall
that the characteristic feature of the DBHFmethod is its ability to
effectively take into account an important class of 3NF generated
by the so-called “nucleon-antinucleon Z-diagrams” (see [14] and
references therein).

However, one of the problems with the traditional approaches
based either on meson-theoretic potentials (such as Bonn
B or CD-Bonn [29]) or entirely phenomenological ones
(such as AV18 [31]), is the absence of guidelines to select
the 3NF contributions to be included (among the infinitely
many possibilities). Typically, a particular diagram or
set of 3NF diagrams are chosen to accompany the 2NF,
but no well-defined link exists between the 2NF and the
associated 3NF. On the other hand, the chiral approach,
through the order-by-order scheme, prescribes exactly
which 2NF, 3NF, and higher-body force must be retained at
each order.

In Figure 14, we show the pressure in β-stable matter from
the DBHF EoS. Comparison between the blue and the red curves
demonstrate that choosing a phenomenological SNM EoS (red
curve) as compared to the microscopic one (blue curve) has
only a minor impact on the EoS for β-stable matter (which
is comprised mostly of neutrons), particularly from low to
medium densities.

We then proceed to compare the pressure predictions based
on the meson-exchange model with the predictions from
Figure 11. As to be expected, differences become larger with
increasing density, with the chiral EoS being substantially softer
at the higher densities.

Once again, we place our focus on the radius of the average-
mass star, which we find to be approximately equal to 12.5 km
for the DBHF calculations. This value is reasonably close to our
previous, chirally based predictions, which makes sense based
on our earlier discussions and the fact that the DBHF pressure
around normal density is not very different from the one in the
chirally-based models (see Figure 15).

Finally, we employ the DBHF EoS in the TOV equations
and calculate the M(R) relation, which is shown on the RHS
of Figure 14. The blue and red curves correspond to the blue
and red curves in Figure 14. Differences become noticible for
the heavier stars and are consistent with those seen in Figure 14.
In other words, the model with the larger pressure at the higher
densities generates the larger maximum mass.

We end this exercise with an important comment: even if
a theory (of nucleons and mesons) can be formally taken to
high densities, as we have done with the DBHF predictions,
the composition and thus the EoS of stellar matter in the inner
core is simply unknown. At densities as high as those typical of
compact stars, hyperons are expected to exist on simple energetic
grounds. Similarly, other non-nucleonic degrees of freedom, such
as quark degrees of freedom, can exist as the result of phase
transitions. These possibilities have been explored by several
groups (see, for instance [182–185]). Such investigations are
not within the scope or the reach of χEFT. The polytropic
extrapolations we have performed do indeed simulate a broad
set of possible EoS consistent with current constraints but whose
specific composition remains unknown.

Of course, we also take note of some other works aimed at
incorporating aspects of chiral dynamics in the development
of EoS suitable for astrophysical phenomena, such as Rapaj
et al. [186]. In the latter reference, the authors calculate
neutron star masses and radii with mean-field models whose
parameters are made consistent with a chiral EoS at low to
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FIGURE 15 | Pressure in β-stable matter from the red curve on the LHS of

Figure 14 compared with the predictions from the LHS of Figure 11.

moderate densities. Constraints from χEFT on neutron star tidal
deformabilities were investigated in Lim and Holt [166]. General
relativistic simulations of neutron star mergers based on the EoS
of Bombaci and Logoteta [111] have been reported in Endrizzi
et al. [187].

We close this section with a few final remarks addressing
predictions vs. constraints. Masses of neutron stars can be and
have been measured with high precision. However, simultaneous
measurements of radii are much more problematic. Some
techniques do exist, such as those based on photospheric radius
expansion [188]. Current observations have begun to determine
the M(R) relation. In Steiner et al. [159], the authors determine
the radius of a 1.4 M⊙ neutron star to be between 10.4 and
12.9 km. Furthermore, from their Bayesian analysis of several
EoS parameterized so as to be consistent with a baseline data
set (see [159] and references therein), they are able to determine
the M(R) relation within a range of masses. Our predictions
fall within those constraints, shown in Figure 13 as the shaded
purple area. Recent LIGO/Virgo measurements have constrained
the radius of a 1.4 M⊙ neutron star to be between 11.1 and 13.4
km [164, 167]. The predictions from our group are well within
these new constraints.

5. SUMMARY AND CONCLUSIONS

In this review, we have stressed the importance of the nuclear
EoS toward understanding of nuclear interactions in themedium.
First, we presented a detailed review of our most recent EoS
based on state-of-the-art chiralNN potentials. We operate within
the framework of chiral effective field theory. Our approach is

microscopic in that chiral two-nucleon forces are fitted to two-
nucleon data and never readjusted in the medium. To render
the nuclear matter calculations manageable, the leading chiral
3NF is included as an effectively two-body density-dependent
potential. The relevant LECs, cD and cE, are obtained from
accurate fittings within the three-nucleon sector. Actually, we go
beyond the leading 3NF by effectively including the 2PE 3NF up
to the highest order we consider at this time. This is possible
because the 2PE 3NF has essentially the same analytical structure
at N2LO, N3LO, and N4LO. Thus, one can add the three orders
of 3NF contributions and parameterize the result in terms of
effective LECs.

The contribution from the 3NF is remarkable, although
somewhat weaker in NM, due to the fact that some of the
leading 3NF contributions vanish in a system of only neutrons.
Therefore, the lack of full order consistency between the 2NF
and the 3NF sectors is likely to impact the EoS of NM to a
lesser degree as compared to the the case of SNM. In fact, we
find that the NM EoS is under better control with regard to the
order-by-order pattern.

In view of the considerations above, in discussions of some
observables sensitive to the EoS of neutron-rich matter, we have
chosen to emphasize the role of the NM EoS by constraining
the SNM EoS to be an empirical one. This allowed us to better
scrutinize the role of neutron matter pressure on the neutron
skin thickness.

A contemporary discussion of neutron-rich matter must
include some of the most exotic and intriguing (neutron-
rich) systems in the universe—neutron stars. We reviewed
the outstanding role of the EoS in calculations of neutron
star structure.

We discussed the limitations of χEFT as a low-
energy theory. The high Fermi momenta involved in
the core of neutron stars cannot be probed with χEFT.
This is also the case for average-mass stars, where
typical central densities can be as high as three times
normal nuclear density. Therefore, we extend our EoS
to high densities via polytropes with a broad range of
adiabatic indices.

Although extrapolation with polytropes, or any other
continuation method one may choose, should in no way be seen
as a replacement for true predictions, it gave us the opportunity
to explore the sensitivity of specific predictions to the behavior
of the EoS at the high densities unreachable to χEFT. In fact,
we were able to confirm what has been observed previously
with other methods. Namely, the radius of the typical-mass
neutron star is essentially insensitive to the pressure in the high-
density regime. Instead, it is mostly controlled by the pressure
in NM at normal densities. Therefore, we feel confident that
our χEFT-based predictions of neutron-rich matter are on solid
ground for lighter stars, including those with the “canonical”
mass of 1.4M⊙.

At this point, to broaden the scopes of the discussion,
we included a set of predictions based on a very different,
and more traditional philosophy. We calculated the NM EoS
from the Bonn B meson-theoretic potential and the DBHF
approach to neutron matter. The purpose of this comparison
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was, mostly, to highlight the different philosophy of the
“single-shot” calculation as compared to the chiral approach,
where order-by-order and other uncertainty considerations
play a major role in the extraction and interpretation of
the result.

In line with the observed sensitivity of the
radius to, mainly, the pressure in NM at normal
density, and the fact that the meson-theoretic and
the chiral EoS are similar up to moderate densities,
the value we obtained for the radius of the M =
1.4M⊙ neutron star was close to those from the
chirally-based calculations.

Of course, the complete chiral 3NF at N3LO must be
included, as done in Drischler et al. [93]. Our approach
to fitting the cD and cE LECs is different, as the authors
of Drischler et al. [93] include nuclear matter saturation
properties in their fitting protocol, whereas we fit those
constants within the three-nucleon sector. We are presently
calculating the various contributions of the 3NF at N3LO
in the form of density-dependent effective interactions [97,
98] and noticed that the short-range terms [97] tend to
be very small. It will be interesting to see how the full

contribution impacts our calculations of the NM EoS and
related observables.
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