
ORIGINAL RESEARCH
published: 17 January 2020

doi: 10.3389/fphy.2019.00214

Frontiers in Physics | www.frontiersin.org 1 January 2020 | Volume 7 | Article 214

Edited by:

Devendra Kumar,

University of Rajasthan, India

Reviewed by:

Muhammad Mubashir Bhatti,

Shanghai University, China

Najeeb Khan,

University of Karachi, Pakistan

*Correspondence:

Ilyas Khan

ilyaskhan@tdtu.edu.vn

Specialty section:

This article was submitted to

Mathematical Physics,

a section of the journal

Frontiers in Physics

Received: 28 September 2019

Accepted: 21 November 2019

Published: 17 January 2020

Citation:

Alqahtani AM and Khan I (2020)

Time-Dependent MHD Flow of

Non-Newtonian Generalized Burgers’

Fluid (GBF) Over a Suddenly Moved

Plate With Generalized Darcy’s Law.

Front. Phys. 7:214.

doi: 10.3389/fphy.2019.00214

Time-Dependent MHD Flow of
Non-Newtonian Generalized Burgers’
Fluid (GBF) Over a Suddenly Moved
Plate With Generalized Darcy’s Law
Aisha M. Alqahtani 1 and Ilyas Khan 2*

1Mathematical Sciences Department, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh,

Saudi Arabia, 2 Faculty of Mathematics and Statistics, Ton Duc Thang University, Ho Chi Minh City, Vietnam

Time-dependent magnetohydrodynamic (MHD) motion of a generalized Burgers’ fluid

(GBF) is investigated in this article. GBF is a highly complicated non-Newtonian fluid and

is of highest degree in the class of rate type fluids. GBF is taken electrically conducting

by using the restriction of small magnetic Reynolds number. Darcy’s law has been used

here in its generalized form using the GBF constitutive relation; hence, the medium is

made porous. The impulsive motion in the fluid is induced due to sudden jerk of the

plate. Exact expressions for velocity as well as for shear stress fields are obtained using

the Laplace transform method. The solutions for hydrodynamic fluid (absence of MHD)

in a non-porous medium as well as those for a Newtonian fluid (NF) executing a similar

motion are also recovered. Results are sketched in terms of several plots and discussed

for embedded parameters. It is found that the Hartmann number and porosity of the

medium have strong influence on the velocity and shear stress fields.

Keywords: time-dependent flow, MHD, generalized Burgers’ fluid, generalized Darcy’s law, Laplace transform

INTRODUCTION

Most of the fluid problems (published literature), or fluid problems with heat transfer or heat and
mass transfer together, are computed numerically due to the difficult nature of these problems.
Indeed, the exact solutions for these problems are either not possible or quite difficult to obtain.
These difficulties further increase if one is interested to solve such a problem using the integral
transform techniques such as Laplace transform, Fourier transform, etc. In the Laplace transform,
particularly the most difficult job is how to take the inversion. Therefore, some of the researchers
are then using numerical inversion to somehow solve the inversion problem. However, such
solutions are then not the so-called pure exact solutions. Among the interesting studies on exact
solutions and, of course, the pioneering work includes the work of Rajagopal [1], where he studied
non-Newtonian second-grade fluid for different flow motions and obtained exact solutions for
each flow case. The flow was unsteady unidirectional and one-dimensional. Eight different flow
cases were discussed. This work was then extended in 2007 by Hayat et al. [2] for the case of
MHD flow and porous medium. More exactly, the fluid was taken electrically conducted and
passing through a porous medium. They discussed seven different flow situations and obtained
exact solution either by perturbation method or Fourier transform method. Other interesting
studies on exact solutions include the work of Erdogan [3], Erdogan and Imrak [4], and Tan and
Masuoka [5, 6]. Hayat et al. [7, 8] established for rotating flows exact analytic solutions for two
different types of non-Newtonian fluids, namely, the second-grade fluid and the Maxwell fluid.
They considered transient problems in both cases with combined effects of MHD and porosity.
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The obtained exact solutions were discussed for various
embedded parameters and concluded. Fetecau et al. [9] in a
short note investigated analytically the Stokes’ second problem
(SSP) for Newtonian fluids (NF) flow. Fetecau and Fetecau [10]
considered an unsteady problem of a Maxwell fluid (MF, non-
Newtonian) over a rigid plate moved due to a sudden jerk. In
another paper, Fetecau and Fetecau [11] extended the idea of
MF to an Oldroyd-B fluid (OBF, non-Newtonian) and examined
exact solutions for the first problem of Stokes’. Vieru et al. [12]
also determined exact solution for the flow situation of an OBF
over an infinite rigid plate.

In the group of viscoelastic fluids, Burgers’ fluids and the
corresponding generalized Burgers’ fluids (GBFs) are less studied
in the literature compared to other fluids in that group. Indeed,
the resulting equations based on their complicated constitutive
relations are not easy to handle. The exact solutions for these
fluids problems are not possible unless we impose several
assumptions. Even then, the exact solutions for these fluid
problems are limited to certain well-known problems. Some
famous fluid problems for Burgers or GBFs have been studied
in Ravindran et al. [13], Hayat et al. [14], Khan et al. [15], Tong
and Shan [16], Xue and Nie [17], Hayat et al. [18], Vieru et al.
[19], Khan et al. [20–22], Fetecau et al. [23] and related references
therein. However, for several other problems, such solutions
are either too much complicated or even not possible. Such a
complication even increases if the problem under consideration
is composed of fractional differential equations, such as the
problem considered in these articles on different aspects of
sciences and engineering [24–36]. Some other related studies
regarding fluid dynamics problems can be seen in Waqas et al.
[37], Marin et al. [38], Jamil [39], and Jamil et al. [40, 41]. Roberts
and Kaufman [42] is used for some of the Laplace inversion
formulas needed for this work.

The main purpose of the present article is to study the time-
dependent flow of GBF (incompressible) over an infinite (in
horizontal-direction) rigid plate given sudden jerk. Simultaneous
effects of MHD and porosity are also taken into consideration.

Exact analytic solutions are obtained for the dimensionless
fluid velocity and non-trivial shear stress exerted by the fluid
on the plate. Laplace transform is indeed a suitable method
to solve this problem. Clearly, these solutions satisfy the given
imposed conditions [initial and boundary conditions (IBCs)]
and can produce other exact analytic solutions for other non-
Newtonian fluids problems such as Burgers’ fluids, OBFs, and
Maxwell fluids performing a similar type of motion. Exact
solutions for Newtonian fluids performing the same motion
can also be obtained as a special case by vanishing all other
non-Newtonian parameters. Graphical results are plotted and
discussed for embedded parameters. Solutions for other fluids
(generalized Burger fluids without MHD and porosity effects,
Newtonian fluids) in limiting sense are also recovered.

PROBLEM FORMULATION AND INTEGRAL
TRANSFORM SOLUTION

The problem formulation states that an incompressible
flow strongly depends on time (unsteady flow) of a highly

non-Newtonian fluid known as GBF lies in a semi-infinite
porous space y > 0 ; i.e., the fluid is over a rigid plate kept at
y = 0. The axes (x−axis and y−axis) are taken perpendicular
to each other; i.e., the x−axis is taken in the flow direction
while the y−axis is chosen normal to the direction of the flow.
MHD effect is considered under which the fluid behaves like
an electrically conducting liquid under the influence of an
applied magnetic field such that the induced magnetic field is
v (0, t) = V , v

(

y, t
)

→ 0 as y → ∞; t > 0, neglected
assuming that magnetic Reynolds number is too small. GBF
is initially taken at rest (for time t = 0); however, for time
t > 0, the plate is give a sudden jerk (impulsive motion
of the plate) and the fluid starts with the same impulsive
motion. The scenario stated above is formulated in the form
of partial differential equation with physical boundary and
initial conditions as given below (for detailed analysis of the
governing equation, one may refer to Xue and Nie [17] and
Hayat et al. [18]):

ρ

(

1+ λ
∂

∂t
+ γ

∂2

∂t2

)

∂v

∂t
= µ

(

1+ λr
∂

∂t
+ γ1

∂2

∂t2

)

∂2v

∂y2

−δB20

(

1+λ
∂

∂t
+γ

∂2

∂t2

)

v

−
µϕ

k

(

1+λr
∂

∂t
+γ1

∂2

∂t2

)

v, (1)

(

1+ λ
∂

∂t
+ γ

∂2

∂t2

)

T(y, t) = µ

(

1+ λr
∂

∂t
+ γ1

∂2

∂t2

)

∂v(y, t)

∂y
,

(2)

v (0, t) = V , v
(

y, t
)

→ 0 as y → ∞; t > 0, (3)

v
(

y, 0
)

=
∂v
(

y, 0
)

∂t
=

∂2v
(

y, 0
)

∂t2
= 0; y > 0. (4)

in which v is the velocity component in x− direction, ρ is the
fluid density, µ is the dynamic viscosity, δ is the finite electrical
conductivity of the fluid, ϕ (0 < ϕ < 1) is the porosity, k > 0
is the permeability of the porous medium, λ and λr (< λ) are
respectively the relaxation and retardation times, γ and γ1
are the material constants having the dimensions as the square
of time, and V denotes the reference velocity.

The problem described by Equations (1)–(3),
after using non-dimensional quantities, takes the
following form:

(

1+
∂

∂τ
+ β

∂2

∂τ2

)

∂u (ξ , τ)

∂τ

=





(

1+α ∂
∂τ

+β1
∂2

∂τ2

)

∂2u(ξ , τ)

∂ξ2
−M2

(

1+ ∂
∂τ

+ β ∂2

∂τ2

)

u (ξ , τ)

− 1
K

(

1+ α ∂
∂τ

+ β1
∂2

∂τ2

)

u (ξ , τ) , ξ , τ > 0,



 (5)

(

1+
∂

∂τ
+ β

∂2

∂τ 2

)

s =
(

1+ α
∂

∂τ
+ β1

∂2

∂τ 2

)

∂u

∂τ
, ξ , τ > 0,

(6)

u (0, τ) = 1, u (ξ , τ) → 0 as ξ → ∞ τ > 0, (7)
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u (ξ , 0) =
∂u (ξ , 0)

∂τ
=

∂2u (ξ , 0)

∂τ 2
= 0, ξ > 0, (8)

where

τ =
t

λ
, ξ =

y

cλ
, u =

v

V
, s =

T

ρcV
, c =

√

µ

ρλ
, (9)

α =
λr

λ
, β =

γ

λ2
, β1 =

γ1

λ2
, M2 =

δB20λ

ρ
,

1

K
=

µϕλ

ρk
. (10)

In the transformed q−plane, Equations (5)–(8) give

d2u
(

ξ , q
)

dξ 2
−

βq3 + a0q
2 + b0q+ c0

β1q2 + αq+ 1
u
(

ξ , q
)

= 0, (11)

u
(

0, q
)

=
1

q
, u

(

ξ , q
)

→ 0 as ξ → ∞, (12)

in which q is a Laplace transform parameter and

a0 = M2β +
β1

K
+ 1, b0 = 1+M2 +

α

K
, c0 = M2 +

1

K
,

(13)

u
(

ξ , q
)

= L−1 {u (ξ , τ)} =
∞
∫

0

e−qτu (ξ , τ) dτ .

The transformed solution of Equation (11) under the boundary
conditions (12) gives

u
(

ξ , q
)

=
1

q
exp



−ξ

√

βq3 + a0q
2 + b0q+ c0

β1q2 + αq+ 1



 . (14)

In obtaining u (ξ , τ) = L−1{u
(

ξ , q
)

}, we write Equation (14) as

u
(

ξ , q
)

= u1
(

q
)

u2
(

ξ , q
)

, (15)

with

u1
(

q
)

=
1

q
, (16)

u2
(

ξ , q
)

= exp

(

−ξ

√

w
(

q
)

)

;

w
(

q
)

=
βq3 + a0q

2 + b0q+ c0

β1q2 + αq+ 1
. (17)

Expressing u1 (τ ) = L−1{u1
(

q
)

}, u2 (ξ , τ) = L−1{u2
(

ξ , q
)

},
Equation (16) after Laplace inversion gives

u1 (τ ) = 1. (18)

To find u2 (ξ , τ) = L−1{u2
(

ξ , q
)

}, using the inversion formula
for compound functions

L−1{F
[

w
(

q
)]

} =
∞
∫

0

f (u) g (u, τ) du, (19)

where f (τ ) = L−1{F
(

q
)

} and g (u, τ) = L−1{e−uw(q)}.
Choosing f

(

ξ , q
)

= e−ξ
√
q, then

f (ξ , τ) = L−1{e−ξ
√
q} =

ξ

2τ
√

πτ
exp

(

−ξ 2

4τ

)

; ξ > 0 (20)

and

u2 (ξ , τ) = L−1{u2
(

ξ , q
)

} =
∞
∫

0

f (ξ , u) g (u, τ) du

=
ξ

2
√

π

∞
∫

0

1

u
√
u
exp

(

−ξ 2

4u

)

g (u, τ) du. (21)

In order to find g (u, τ) = L−1{e−uw(q)}, we express w
(

q
)

as follows

w
(

q
)

= b1 + a1q+
η1

q− q1
+

η2

q− q2
, (22)

a1 =
β

β1
, b1 =

(

a0 −
αβ

β1

)

1

β1
, c1 = b0 −

β

β1

−
α

β1

(

a0 −
αβ

β1

)

,

d1 = c0 +
(

a0 −
αβ

β1

)

1

β1
, η1 =

c1q1 + d1

q1 − q2
,

η2 = −
c1q2 + d1

q1 − q2
, (23)

where q1 and q2 are the roots of the equation β1q
2 + αq+ 1 =

0. Thus,

g (u, τ) = e−uη0L−1
{

exp
(

−
ua

d
q
)

[

1−H1
(

q
)

−H2
(

q
)

+H1
(

q
)

H2
(

q
)]}

,

with

H1
(

q
)

= 1− exp

(

−
uη1

q− q1

)

and

H2
(

q
)

= 1− exp

(

−
uη2

q− q2

)

.

Let us denote

h1 (τ ) = L−1{H1
(

q
)

} =
√

η1u

τ
eq1τ J1

(

2
√

η1uτ
)

, (24)
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and

h2 (τ ) = L−1{H2
(

q
)

} =
√

η2u

τ
eq2τ J1

(

2
√

η2uτ
)

, (25)

where J1 (·) denotes the Bessel function of first kind of order one
and then finally one has

g (u, τ) = δ (τ − ua1) e
−ub1

−√
η1u

τ
∫

0

δ (s− ua1)√
τ − s

eq1(τ−s)J1
(

2
√

η1u (τ − s)
)

ds

−√
η2u

τ
∫

0

δ (s− ua1)√
τ − s

eq2(τ−s)J1
(

2
√

η2u (τ − s)
)

ds

+u
√

η1η2

τ
∫

0

s
∫

0

×
δ (τ − s− ua1)√

σ (s− σ)
eq1σ+q2(s−σ)J1

(

2
√

η1uσ
)

J1
(

2
√

η2u (s− σ)
)

ds dσ

(26)

and L−1{e−αq} = δ (τ − α) . Here δ (·) indicates the Dirac
delta function.

Insertion of Equation (26) into Equation (21) leads to the
following result:

u2 (ξ , τ) =
ξ

2
√

π

∞
∫

0

δ (τ − ua1)

u
√
u

exp

(

−ξ 2

4u
− b1u

)

du

−
√

η1ξ

2
√

π

τ
∫

0

∞
∫

0

δ (s− ua1)

u
√

τ − s

× exp

(

−ξ 2

4u
+ q1 (τ − s) − b1u

)

J1
(

2
√

η1u (τ − s)
)

du ds

−
√

η2ξ

2
√

π

τ
∫

0

∞
∫

0

δ (s− ua1)

u
√

(τ − s)

exp

(

−ξ 2

4u
+ q2 (τ − s) − b1u

)

J1
(

2
√

η2u (τ − s)
)

du ds

+
√

η1η2ξ

2
√

π

τ
∫

0

s
∫

0

∞
∫

0

δ (τ − s− ua1)√
uσ (s− σ)

exp

(

−ξ 2

4u
+ q1σ + q2 (s− σ) − b1u

)

×J1
(

2
√

η1uσ
)

J1
(

2
√

η2u (s− σ)
)

du ds dσ .

(27)

Taking into consideration Equations (27) and (18), one obtains

u (ξ , τ) =
ξ

2
√

π

τ
∫

0

∞
∫

0

δ (s− ua1)

u
√
u

exp

(

−ξ 2

4u
− b1u

)

du ds

−
√

η1ξ

2
√

π

τ
∫

0

s
∫

0

∞
∫

0

δ (σ − ua1)

u
√
s− σ

exp

(

−ξ 2

4u
+ q1 (s− σ) − b1u

)

J1
(

2
√

η1u (s− σ)
)

du ds dσ

−
√

η2ξ

2
√

π

τ
∫

0

s
∫

0

∞
∫

0

δ (σ − ua1)

u
√
s− σ

J1
(

2
√

η2u (s− σ)
)

(28)

exp

(

−ξ 2

4u
+ q2 (s− σ) − b1u

)

du ds dσ

+
√

η1η2ξ

2
√

π

τ
∫

0

s
∫

0

σ
∫

0

∞
∫

0

δ (s− σ − ua1)√
uη (σ − η)

J1
(

2
√

η1uη
)

J1
(

2
√

η2u (σ − η)
)

× exp

(

−ξ 2

4u
+ q1η + q2 (σ − η) − b1u

)

du ds dσ dη.

Setting u = dv/a into Equation (28) and using the
following property:

b
∫

a

f (x) δ (x− x0) dx =
{

f (x0) for x ∈
[

a, b
)

,
0 for x /∈

[

a, b
) (29)

we arrive at the following result:

u (ξ , τ) =
ξ
√
a1

2
√

π

τ
∫

0

1

s
√
s
exp

(

−a1ξ
2

4s
−

b1s

a1

)

ds

−
√

η1ξ

2
√

π

τ
∫

0

s
∫

0

1

σ
√
s− σ

exp

(

−a1ξ
2

4σ
+ q1 (s− σ) −

b1σ

a1

)

×J1

(

2

√

η1

a1
σ (s− σ)

)

ds dσ

−
√

η2ξ

2
√

π

τ
∫

0

s
∫

0

exp

(

−a1ξ
2

4σ +q2 (s− σ)− b1σ
a1

)

σ
√
s− σ

×J1

(

2

√

η2

a1
σ (s− σ)

)

ds dσ

+
√

η1η2ξ

2
√
a1π

τ
∫

0

s
∫

0

σ
∫

0

J1

(

2
√

η1
a1

η (s− σ)

)

√
η (s− σ) (σ − η)

× exp

(

−a1ξ
2

4 (s− σ)
+ q1η + q2 (σ − η) −

b1

a1
(s− σ)

)

J1

(

2

√

η2

a1
(s− σ) (σ − η)

)

ds dσ dη.

(30)

Now, the expression for the shear stress can be easily found from
Equation (6) and hence finally we get.

s (ξ , τ) =
√

a1

πτ
exp

(

−a1ξ
2

4τ
−

b1τ

a1

)

−
√

η1

a1
√

π

τ
∫

0

1
√

τ − s
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FIGURE 1 | Velocity plots showing variations in K.

exp

(

−a1ξ
2

4s
+ q1 (τ − s) −

b1s

a1

)

J1

(

2

√

η1

a1
s (τ − s)

)

ds

−
√

η2

a1
√

π

τ
∫

0

1
√

τ − s
exp

(

−a1ξ
2

4s
+ q2 (τ − s) −

b1s

a1

)

J1

(

2

√

η2

a1
s (τ − s)

)

ds

+
√

η1η2

a1
√
a1π

τ
∫

0

s
∫

0

√
τ − s

√
σ (s− σ)

exp

(

−a1ξ
2

4 (τ − s)
+ q1σ + q2 (s− σ) −

b1

a1
(τ − s)

)

×J1

(

2

√

η1

a1
σ (τ − s)

)

J1

(

2

√

η2

a1
(τ − s) (s− σ)

)

ds dσ .

(31)

LIMITING CASES

Absence of MHD and Porosity
In limiting sense, when the magnetic effect is absent (M = 0 )
and the medium is non-porous, then the above solutions take the
following forms:

u (ξ , τ) =
ξ
√

β

2
√

β1π

τ
∫

0

1

s
√
s
exp

(

−βξ 2

4β1s
−
(

1

β
−

α

β1

)

s

)

ds

−
√

η3ξ

2
√

π

τ
∫

0

s
∫

0

1

σ
√
s− σ

exp

(

−βξ 2

4β1σ
+ q1 (s− σ) −

(

1

β
−

α

β1

)

σ

)

×J1

(

2

√

β1η3

β
σ (s− σ)

)

ds dσ

−
√

η4ξ

2
√

π

τ
∫

0

s
∫

0

1

σ
√
s− σ

J1

(

2

√

β1η4

β
σ (s− σ)

)

× exp

(

−βξ 2

4β1σ
+q2 (s− σ)−

(

1

β
−

α

β1

)

σ

)

dsdσ

FIGURE 2 | Velocity plots showing variations in M.

FIGURE 3 | Shear stress plots showing variations in K .

FIGURE 4 | Shear stress plots showing variations in M .
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+
√

β1η3η4ξ

2
√

βπ

τ
∫

0

s
∫

0

σ
∫

0

exp
(

−βξ2

4β1(s−σ)
+ q1η + q2 (σ − η)

−
(

1
β
− α

β1

)

(s− σ)

)

√
η (s− σ) (σ − η)

×J1

(

2

√

β1η3

β
η (s− σ)

)

J1

(

2

√

β1η4

β
(s− σ) (σ − η)

)

ds dσ dη.

(32)

s (ξ , τ) =
√

β

β1πτ
exp

(

−βξ 2

4β1τ
−
(

1

β
−

α

β1

)

τ

)

−
β1
√

η3

β
√

π

τ
∫

0

1
√

τ − s
exp

(

−βξ 2

4β1s
+ q1 (τ − s)

−
(

1

β
−

α

β1

)

s

)

×J1

(

2

√

β1η3

β
s (τ − s)

)

ds

−
β1
√

η4

β
√

π

τ
∫

0

1
√

τ − s
J1

(

2

√

β1η4

β
s (τ − s)

)

ds

× exp

(

−βξ 2

4β1s
+ q2 (τ − s) −

(

1

β
−

α

β1

)

s

)

+
β1
√

β1η3η4

β
√

βπ

τ
∫

0

s
∫

0

√
τ − s

√
σ (s− σ)

× exp

(

−βξ 2

4β1 (τ − s)
+ q1σ + q2 (s− σ)

−
(

1

β
−

α

β1

)

(τ − s)

)

J1

(

2

√

β1η3

β
σ (τ − s)

)

J1

(

2

√

β1η4

β
(τ − s) (s− σ)

)

ds dσ ,

(33)

with the following expressions for η3 and η4 :

η3 =

(

1− β
β1

− α
β1

+ α2β

β2
1

)

q1 + αβ

β2
1
− 1

β1

q1 − q2
,

η4 = −

(

1− β
β1

− α
β1

+ α2β

β2
1

)

q2 + αβ

β2
1
− 1

β1

q1 − q2
. (34)

It is important to note that if we put M = 1
K = 0 into the

governing Equation (6) and solve along with Equation (7) with
the prescribed boundary and initial conditions, we get the same
expressions for velocity and shear stress as given above.

Newtonian Fluid
For Newtonian fluid, we make λ, λr , γ , and γ1 equal to zero or
equivalently λ = λr = γ = γ1, then the solutions (30) and (31)
reduce to

u (ξ , τ) =
ξ

2
√

π

τ
∫

0

1

s
√
s
exp

(

−ξ 2

4s
−
(

M2 +
1

K

)

s

)

ds, (35)

FIGURE 5 | Velocity plots showing variations in K (Newtonian fluid).

FIGURE 6 | Velocity plots showing variations in M (Newtonian fluid).

s (ξ , τ) =
1

√
πτ

exp

(

−ξ 2

4τ
−
(

M2 +
1

K

)

τ

)

. (36)

Now, taking λ = λr = γ = γ1 in the governing Equation (6)
and solving the resulting equations with the given boundary and
initial conditions, we get

u
(

ξ , q
)

=
1

q
exp

(

−ξ
√
q
)

= u1
(

q
)

u2
(

ξ , q
)

(37)

where

u1
(

q
)

=
1

q
and u2

(

ξ , q
)

= exp

(

−ξ

√

q+M2 +
1

K

)

. (38)
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FIGURE 7 | Shear stress plots showing variations in K (Newtonian fluid).

FIGURE 8 | Shear stress plots showing variations in M (Newtonian fluid).

Taking the Laplace inverse of Equation (38), we get

u1 (τ ) = 1, u2 (ξ , τ)=
ξ

2τ
√

πτ
exp

(

−ξ 2

4τ
−
(

M2+
1

K

))

. (39)

The convolution product of u1 (τ ) = 1 and u2 (ξ , τ) gives

u (ξ , τ) =
ξ

2
√

π

τ
∫

0

1

s
√
s
exp

(

−ξ 2

4τ
−
(

M2 +
1

K

)

s

)

ds. (40)

The corresponding shear stress can be easily found by using
Equation (6); i.e.,

s
(

ξ , q
)

= −
exp

(

−ξ

√

w
(

q
)

)

√

w
(

q
)

; w
(

q
)

= q+M2 +
1

K
. (41)

Using a similar method as in the case of velocity, the final
expression for the shear stress is given as follows:

s (ξ , τ) =
1

√
πτ

exp

(

−ξ 2

4τ
−
(

M2 +
1

K

)

τ

)

. (42)

Here, we noted that in both cases, i.e., from the final solutions
given by Equations (30) and (31) and from the governing
Equations (5) and (6), we obtained the same exact results for
velocity and shear stress given by Equations (35), (36), (40),
and (42), respectively. Indeed, this provides a useful check
of correctness.

NUMERICAL RESULTS AND DISCUSSION

Figure 1 is plotted for K = 0.2, 0.4, 0.6, 0.8 when M =
0.2, α = 0.9, β1 = 0.5, β = 0.8 and τ = 0.5, whereas
Figures 2, 4 are sketched for M = 0, 1, 2, 3 when K =
2, α = 0.9, β1 = 0.5, β = 0.8, and τ = 0.5. Figures 1–4
have been displayed to see the influence of Hartmann number
M and porosity parameters K on the fluid velocity and the
corresponding shear stress of a GBF. To check the effects of
M and K on the fluid velocity and related shear stress for
a Newtonian fluid, Figures 5–8 are sketched. Figures 5, 7 are
plotted for different values of K when M = 0.2 and τ = 0.5,
whereas Figures 6, 8 are prepared for various values of M when
K = 2 and τ = 0.5. Note that Figures 1–8 provide a comparison
of velocity field and the related shear stress for the case of GBF
with that of a Newtonian fluid. Figure 1 shows the influence of
K on the Burgers’ fluid velocity; it can be noticed that velocity
increases with the increasing values of K, due to the decrease in
opposing forces. In Figure 2, the impact of M is shown on fluid
velocity; from this figure, it is noticed that velocity is a decreasing
function of M. This is because the greater values of M enhance
the Lorentz forces, which are the opposing forces. The same
behavior is noticed in Figures 5, 6 for Newtonian fluid. Figure 3
is plotted in order to show the effect ofK on shear stress; the shear
stress decreases with the increasing values of K. The behavior of
shear stress is noticed for different values of M in Figure 4. It is
observed that the shear stress increases with the increasing values
ofM. Figures 7, 8 also show the same behavior of shear stress for
Newtonian fluid.
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NOMENCLATURE

v (m/s) Velocity component in the x−direction

λ (s) Relaxation time

ρ (kg/m3) Fluid density

λr (< λ) (s) Retardation time

µ (kg/m s) Dynamic viscosity

γ (s2) and γ1 (s2) Material constants having the dimensions as the square of time

δ (s3A2/kgm3) Finite electrical conductivity

V (m/s) Reference velocity

ϕ (0 < ϕ < 1) Porosity

B0 (kg/s
2A) Applied magnetic field

k > 0 (m2) The permeability of the porous medium

v (y, t) (m/s) Fluid velocity

T (y, t) (kg/s2m) Shear tress

u (ξ , τ) (m/s) ands (ξ , τ) (Pa) Dimensionless fluid velocity and shear stress
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