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In this paper, two structure-preserving nonstandard finite difference (NSFD) operator

splitting schemes are designed for the solution of reaction diffusion epidemic models. The

proposed schemes preserve all the essential properties possessed by the continuous

systems. These schemes are applied on a diffusive SEIQV epidemic model with

a saturated incidence rate to validate the results. Furthermore, the stability of the

continuous system is proved, and the bifurcation value is evaluated. A comparison is

also made with the existing operator splitting numerical scheme. Simulations are also

performed for numerical experiments.
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1. INTRODUCTION

Mathematical modeling has a prominent role in describing physical phenomena in various
disciplines of mathematics, physical sciences, social sciences, engineering, life sciences, and many
more [1–6]. The transmission of infectious diseases and the control of their spread can be
studied effectively by constructing mathematical models for various strategies like vaccination and
quarantine. The word quarantine denotes forced isolation or being cut off from interactions with
others. Quarantine is an effective intervention process for restraining the spread of infection by
isolating individuals who are affected by the disease. Such isolation has been adopted to decrease the
communication of infectious diseases like dengue, measles, smallpox, cholera, leprosy, tuberculosis,
and many more.

Epidemic models, that is, mathematical models of infectious diseases, are a simplified way to
illustrate the transmission dynamics of the complicated nonlinear processes and complex behavior
of an infectious disease in individuals within a population. These are deterministic models that are
used to allocate the population to different subclasses or compartments, describing a particular
stage of the epidemic. The incidence rate, which is proportional to the number of susceptible
and infected persons, is an important parameter of compartment-based epidemic models. The
mathematical models of infectious diseases are often based on bilinear incidence rate βSI, but
a more concise approach to use the saturated incidence rate rather than the bilinear incidence
rate. In the saturated incidence rate βSI

1+αI , if number of infected individuals I becomes very large,
βSI
1+αI approaches the saturation level. The infection force is measured by βI, which describes
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the penetration of the disease into a fully susceptible population.
1

1+αI is used to measure the inhibition effect of behavioral change
of susceptible persons. Liu and Yang [7] proposed the SEIQV
epidemic model, which uses the saturated incidence rate. The
model is expressed as:

dS(t)

dt
= b−

βS(t)I(t)

1+ αI(t)
−

(

ω + µ + q3
)

S(t) (1)

dE(t)

dt
=

βS(t)I(t)

1+ αI(t)
−

(

µ + σ + q2
)

E(t) (2)

dI(t)

dt
= σE(t)−

(

µ + ǫ + γ + q1
)

I(t) (3)

dQ(t)

dt
= q3S(t)+ q2E(t)+ q1I(t)− (µ + φ)Q(t) (4)

dV(t)

dt
= ωS(t)+ φQ(t)+ γ I(t)− µV(t) (5)

The variables and parameters of the model are defined as:
S(t) = Susceptible persons at time t,
E(t) = Exposed persons at time t,
I(t) = Infected persons at time t,
Q(t) = Quarantined persons at time t,
V(t) = Vaccinated persons at time t,
b = Rate of recruitment,
β = Rate of transmission,
µ = Rate of natural death,
ǫ = Rate of death due to disease in infected compartment,
α = Parameter that measures psychological or inhibitory effects,
γ = Rate at which infected individuals are being vaccinated
infected persons,
σ = Rate at which exposed persons become infected,
ω = Rate at which infected individuals are being vaccinated
susceptible persons,
φ = Rate at which infected individuals are being vaccinated
quarantined persons,
q1, q2, q3 = Effective quarantine probabilities.

The above model (1)–(5) assumes a homogeneous population,
where the population mixes in such a way that there is no
difference between person in one place and person in another
place. However, in actual scenarios, the disease may spread faster
in one place than in another because of different circumstances
like different weather conditions, etc. Hence, it is essential for
the variables to depend on space also. Therefore, we extend
system (1)–(5) to make it a reaction-diffusion system by adding a
diffusion term.

∂S(x, t)

∂t
= b−

βS(x, t)I(x, t)

1+ αI(x, t)
−

(

ω + µ + q3
)

S(x, t)

+ d1
∂2S(x, t)

∂x2
(6)

∂E(x, t)

∂t
=

βS(x, t)I(x, t)

1+ αI(x, t)
−

(

µ + σ + q2
)

E(x, t)+ d2
∂2E(x, t)

∂x2

(7)

∂I(x, t)

∂t
= σE(x, t)−

(

µ + ǫ + γ + q1
)

I(x, t)+ d3
∂2I(x, t)

∂x2

(8)

∂Q(x, t)

∂t
= q3S(x, t)+ q2E(x, t)+ q1I(x, t)− (µ + φ)Q(x, t)

+ d4
∂2Q(x, t)

∂x2
(9)

∂V(x, t)

∂t
= ωS(x, t)+ φQ(x, t)+ γ I(x, t)− µV(x, t)

+ d5
∂2V(x, t)

∂x2
(10)

with the initial conditions:

S(x, 0) = g1(x) 0 ≤ x ≤ L (11)

E(x, 0) = g2(x) 0 ≤ x ≤ L (12)

I(x, 0) = g3(x) 0 ≤ x ≤ L (13)

Q(x, 0) = g4(x) 0 ≤ x ≤ L (14)

V(x, 0) = g5(x) 0 ≤ x ≤ L (15)

The boundary conditions are no flux,

Sx (0, t) = Sx (L, t) = 0 (16)

Ex (0, t) = Ex (L, t) = 0 (17)

Ix (0, t) = Ix (L, t) = 0 (18)

Qx (0, t) = Qx (L, t) = 0 (19)

Vx (0, t) = Vx (L, t) = 0 (20)

Epidemic models always demonstrate two equilibrium points:
the disease-free equilibrium (DFE) point and the endemic
equilibrium (EE) point. The DFE point exists if R0 < 1, where
R0 is the reproductive number, which basically measures the
occurrence of disease. The EE point exists if R0 > 1. This
implies that the SEIQV reaction-diffusion system (6–10) always
converges to the DFE point or EE point if R0 < 1 or R0 > 1,
respectively. Analytical solution of the SEIQV epidemic system
is not possible, so we have to use numerical techniques to find
its solution. Note that the numerical technique must show the
same behavior as is possessed by the continuous SEIQV reaction-
diffusion epidemic system.

In this work, we propose two operator-splitting NSFD
methods, one explicit and one implicit. These methods are used
to solve the SEIQV epidemic model with diffusion. As S, E,
I, Q, and V are population sizes and evaluated in absolute
scale, we propose NSFD methods because they give a positive
solution. Also, the convergence of the proposed NSFD operator
splitting methods toward the equilibrium points is the same
as the convergence of continuous an SEIQV reaction-diffusion
epidemic system. The proposed splitting methods are designed
with the aid of rules given by Mickens [8]. In the recent era,
positivity preserving FD methods have gained importance, as
many physical dynamical systems possess the positivity property
[9–11]. The NSFD method presented by Mickens [8, 12, 13]
has becomes an effective and important structure-preserving FD
method for solving differential equations. In epidemic models,
population dynamics and population size cannot be negative,
so the numerical technique must be a positivity-preserving
technique. Various authors have used different positivity-
preserving numerical techniques for the approximate solution of
epidemic models: see, for example [14–22].
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In this work, we also show the numerical stability of
the SEIQV epidemic model with diffusion and evaluate the
bifurcation value of the vaccination parameter ω with the aid of
the Routh-Hurwitz method.

2. EQUILIBRIUM POINTS

The model (6–10) has two equilibrium points [7], the DFE point
and EE point. The DFE point is:

DFE = (S0,E0, I0,Q0,V0)

= (
b

ω + µ + q3
, 0, 0,

q3S0

µ + φ
,
ωS0 + φQ0

µ
) (21)

and the EE point is:

EE = (S∗,E∗, I∗,Q∗,V∗) (22)

where,

S∗ =

(

µ + σ + q2
) (

µ + ǫ + γ + q1
)

(1+ αI)

γβ

E∗ =

(

µ + ǫ + γ + q1
)

I

σ

Q∗ =
q3S+ q2E+ q1I

µ + φ

V∗ =
ωS+ φQ+ γ I

µ

I∗ =
σβb−

(

ω + µ + q3
) (

µ + σ + q2
) (

µ + ǫ + γ + q1
)

(

µ + σ + q2
) (

µ + ǫ + γ + q1
) (

β + α
(

ω + µ + q3
))

Reproductive number R0 is given as:

R0 =
σβb

(

ω + µ + q3
) (

µ + σ + q2
) (

µ + ǫ + γ + q1
) ,

when, d1 = d2 = d3 = d4 = d5 = 0

R0 is the reproductive value. Now, if R0 < 1, the model acquires
a DFE point, and if R0 > 1, the model acquires an EE point.

3. NUMERICAL STABILITY OF THE SEIQV
MODEL AT EQUILIBRIUM POINT

We evaluated the small perturbation S1(x, t), E1(x, t), I1(x, t),
Q1(x, t), and V1(x, t) so that (6)–(10) is linearized at the EE point
(S∗,E∗, I∗,Q∗,V∗), as discussed in Chakrabrty et al. [23].

∂S1

∂t
= a11S1 + a12E1 + a13I1 + a14Q1 + a15V1 + d1

∂2S1

∂x2
(23)

∂E1

∂t
= a21S1 + a22E1 + a23I1 + a24Q1 + a25V1 + d2

∂2E1

∂x2
(24)

∂I1

∂t
= a31S1 + a32E1 + a33I1 + a34Q1 + a35V1 + d3

∂2I1

∂x2
(25)

∂Q1

∂t
= a41S1 + a42E1 + a43I1 + a44Q1 + a45V1 + d4

∂2Q1

∂x2
(26)

∂V1

∂t
= a51S1 + a52E1 + a53I1 + a54Q1 + a55V1 + d5

∂2V1

∂x2
(27)

Suppose a Fourier series solution is demonstrated for Equations
(23)–(27) of the form:

S1(x, t) =
∑

k

Ske
λtcos(kx) (28)

E1(x, t) =
∑

k

Eke
λtcos(kx) (29)

I1(x, t) =
∑

k

Ike
λtcos(kx) (30)

Q1(x, t) =
∑

k

Qke
λtcos(kx) (31)

V1(x, t) =
∑

k

Vke
λtcos(kx) (32)

Here, k = nπ/2, (n = 1, 2, 3, ...) exhibits the value of the wave
number for the node n. Substituting Equations (28)–(32) in the
system (23)–(27), the system is converted into:

∑

k

(a11 − d1k
2
− λ)Sk +

∑

k

a12Ek +
∑

k

a13Ik +
∑

k

a14Qk

+
∑

k

a15Vk = 0 (33)

∑

k

a21Sk +
∑

k

(a22 − d2k
2
− λ)Ek +

∑

k

a23Ik

+
∑

k

a24Qk +
∑

k

a25Vk = 0 (34)

∑

k

a31Sk +
∑

k

a32Ek +
∑

k

(a33 − d3k
2
− λ)Ik

+
∑

k

a34Qk +
∑

k

a35Vk = 0 (35)

∑

k

a41Sk +
∑

k

a42Ek +
∑

k

a43Ik

+
∑

k

(a44 − d4k
2
− λ)Qk +

∑

k

a45Vk = 0

(36)
∑

k

a51Sk +
∑

k

a52Ek +
∑

k

a53Ik +
∑

k

a54Qk

+
∑

k

(a55 − d5k
2
− λ)Vk = 0 (37)

The variational matrix V for the system (33)–(37) is:

V =













a11 − d1k
2 a12 a13 a14 a15

a21 a22 − d2k
2 a23 a24 a25

a31 a32 a33 − d3k
2 a34 a35

a41 a42 a43 a44 − d4k
2 a45

a51 a52 a53 a54 a55 − d5k
2













(38)
where,

a11 = −
βI∗

(1+ αI∗)
− (ω + µ + q3), a12 = 0, a13 = −

βS∗

(1+ αI∗)2

Frontiers in Physics | www.frontiersin.org 3 January 2020 | Volume 7 | Article 220

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Ahmed et al. Numerical Analysis of SEIQV Model

TABLE 1 | Values of parameters.

Cases b µ σ β γ ω q1

1 0.7a 0.06a 0.7a 0.35a 0.15a 0.06a 0.2a

2 0.7 0.06 0.7 0.35 0.15 0.07 0.2

4 0.7 0.06 0.7 0.35 0.15 0.09 0.2

5 0.7 0.06 0.7 0.35 0.15 0.10 0.2

q2 q3 φ ǫ α

0.2a 0.1a 0.4a 0.05a 2a

0.2 0.1 0.5 0.05 2

0.2 0.1 0.6 0.05 2

0.2 0.1 0.7 0.05 2

0.2 0.1 0.8 0.05 2

aLiu et al. [7].

a14 = 0, a15 = 0, a21 =
βI∗

(1+ αI∗)
, a22 = −(σ + µ + q2)

a23 =
βS∗

(1+ αI∗)2
, a24 = 0, a25 = 0, a31 = 0, a32 = σ

a33 = −(µ + ǫ + γ + q1), a34 = 0, a35 = 0, a41 = q3, a42 = q2,

a43 = q1

a44 = −(µ + φ), a45 = 0, a51 = ω, a52 = 0, a53 = γ , a54 = φ,

a55 = −µ

The characteristics equation for matrix V is:

λ5 + ξ1λ
4
+ ξ2λ

3
+ ξ3λ

2
+ ξ4λ + ξ5 = 0

The expressions for ξ1, ξ2, ξ3, ξ4, and ξ5 with diffusion and
without diffusion are mentioned in Islam and Haider [24].

The Routh-Hurwitz stability criterion gives:

ξ1 > 0, ξ2 > 0, ξ3 > 0, ξ4 > 0, ξ5 > 0

t1 = ξ1ξ2ξ3 − ξ 23 − ξ 21 ξ4 > 0

and

t2 = (ξ1ξ4 − ξ5)(ξ1ξ2ξ3 − ξ 23 − ξ 21 ξ4)− ξ5(ξ1ξ2 − ξ3)
2

− ξ1ξ
2
5 > 0.

The Table 2 reflects the numerical stability of the equilibrium
point against the various cases, as discussed in Table 1.

4. BIFURCATION VALUE OF VACCINATION
PARAMETER ω INDEPENDENT OF
DIFFUSION

Considering the vaccination parameter ω, to find its bifurcation
value, a11, a12, are used instead of S∗,E∗, I∗,Q∗, and V∗.

a11 = −0.6893640968ω − 0.2309369724,

a13 = −1.1198107335ω − 0.3751365957

TABLE 2 | Stability of equilibrium point.

Case Point of equilibrium n ξ1 ξ2

1 (2.5707, 0.1400, 0.2131, 0.7124, 7.8528) 1 2.4122 1.8086

2 (2.5072, 0.1285, 0.1955, 0.5634, 8.1091) 1 2.5191 2.0081

3 (2.4468, 0.1175, 0.1787, 0.4605, 8.3142) 1 2.6259 2.2090

4 (2.3892, 0.1070, 0.1628, 0.3854, 8.4867) 1 2.7328 2.4112

5 (2.3343, 0.0970, 0.1475, 0.3283, 8.6366) 1 2.8397 2.6149

ξ3 ξ4 ξ5 t1 t2 Stability

0.5585 0.0715 0.0030 1.7083 0.2457 Stable

0.6450 0.0833 0.0035 2.3180 0.4095 Stable

0.7318 0.0944 0.0040 3.0585 0.6444 Stable

0.8191 0.1048 0.0043 3.9434 0.9685 Stable

0.9067 0.1146 0.0046 4.9869 1.4018 Stable

a21 = 0.0709369724− 0.3106359032ω, a22 = −0.96

a23 = 1.1198107335ω + 0.3751365957, a32 = 0.7,

a33 = −0.46, a41 = 0.1, a42 = 0.2

a43 = 0.2, a44 = −0.46, a51 = ω, a53 = 0.15, a54 = 0.4,

a55 = −0.06

a12 = a14 = a15 = a24 = a25 = a31 = a34 = a35 = a45 =

a52 = 0

The Routh-Hurwitz criterion for stability gives:

ξ1 = 0.6893640968ω + 2.1709369724 = f1(ω)

ξ2 = 0.5534988343ω + 1.3930221095 = f2(ω)

ξ3 = −0.7838675135ω2
+ 0.0368505571ω

+ 0.3691384683 = f3(ω)

ξ4 = −0.4076111070ω2
− 0.0380846274ω

+ 0.0451739663 = f4(ω)

ξ5 = −0.0216347434ω2
− 0.0023071181ω

+ 0.00165507 = f5(ω)

ξ1ξ2ξ3 − ξ 23 − ξ 21 ξ4 = −0.7198363952ω4
− 0.3846861900ω3

+ 0.4409094061ω2
+ 0.9265604777ω

+ 0.7671683354 = f6(ω)

(ξ1ξ4 − ξ5)(ξ1ξ2ξ3 − ξ 23 − ξ 21 ξ4)− ξ5(ξ1ξ2 − ξ3)
2
− ξ1ξ

2
5

= 0.2022686014ω7
+ 0.7777858386ω6

+ 0.3637035355ω5

− 0.4633365077ω4
− 0.8380985505ω3

− 0.5245415951ω2

+ 0.0491674986ω + 0.0622935244 = f7(ω)

where the values of ξ1, ξ2, ξ3, ξ4, and ξ5 are obtained from the
expression of the characteristic equation (without diffusion)
given in paper [24].

f5(ω) = 0 gives the value of bifurcation for ω. This
value transfers the stability of a continuous model from
stable to unstable. f5(ω) = 0 provides the bifurcation value
ω = 0.228360507. The EE point is stable for ω less than
ω = 0.228360507.
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5. BIFURCATION VALUE OF VACCINATION
PARAMETER ω WITH DIFFUSION

For the bifurcation value of vaccination parameter ω, the values
of S∗,E∗, I∗,Q∗, and V∗ are replaced into a11, a12, to

a11 = −0.6893640968ω − 0.2309369724,

a13 = −1.1198107335ω − 0.3751365957

a21 = 0.0709369724− 0.3106359032ω, a22 = −0.96

a23 = 1.1198107335ω + 0.3751365957, a32 = 0.7, a33 = −0.46,

a41 = 0.1

a42 = 0.2, a43 = 0.2, a44 = −0.46, a51 = ω, a53 = 0.15,

a54 = 0.4, a55 = −0.06

a14 = a12 = a15 = a24 = a25 = a31 = a34 = a35

= a45 = a52 = 0

The Routh-Hurwitz criterion for stability gives:

ξ1 = 0.6893640968ω + 2.3707964615 = f1(ω)

ξ2 = 0.60622790397ω + 1.7722067841 = f2(ω)

ξ3 = −0.7838675135ω2
− 0.0208144715ω

+ 0.5625469972 = f3(ω)

ξ4 = −0.4462934183ω2
− 0.0884716755ω

+ 0.0784487226 = f4(ω)

ξ5 = −0.0321693682ω2
− 0.0070094221ω

+ 0.0035676470 = f5(ω)

ξ1ξ2ξ3 − ξ 23 − ξ 21 ξ4 = −0.7299468904ω4
− 0.6247499708ω3

+ 0.5281660018ω2
+ 1.6725898825ω

+ 1.6061706299 = f6(ω)

(ξ1 ξ4 − ξ5)(ξ1ξ2ξ3 − ξ 23 − ξ 21 ξ4)− ξ5(ξ1ξ2 − ξ3)
2
− ξ1ξ

2
5

= 0.2245744816ω7
+ 1.0320435772ω6

+ 0.8416645931ω5

−0.5793147772ω4
− 1.7894315920ω3

− 1.3916904163ω2

+0.0896889602ω + 0.2457209648 = f7(ω)

f5(ω) = 0 gives ω = 0.24144152. The EE point is stable therefore
for any value less than ω = 0.24144152.

It can be seen that the value of bifurcation of ω for the system
with diffusion is greater than value of bifurcation of ω for the
system without diffusion.

6. NUMERICAL METHODS

In this section, we apply two proposed and classical splitting
methods to the SEIQV reaction-diffusion epidemic model with
diffusion. Operator-splitting techniques very effectively handle
the nonlinearity and complexity of reaction-diffusion equations.
Therefore, these techniques are used frequently by several
researchers for the solution of nonlinear differential equations
[23, 25–33]. The SEIQV epidemic model with diffusion is split in

two ways. The nonlinear reaction equations are split in the first
step as,

1

2

∂S

∂t
= b−

βSI

1+ αI
−

(

ω + µ + q3
)

S (39)

1

2

∂E

∂t
=

βSI

1+ αI
−

(

µ + σ + q2
)

E (40)

1

2

∂I

∂t
= σE−

(

µ + ǫ + γ + q1
)

I (41)

1

2

∂Q

∂t
= q3S+ q2E+ q1I − (µ + φ)Q (42)

1

2

∂V

∂t
= ωS+ φQ+ γ I − µV (43)

and the diffusion equations are split in the second step as:

1

2

∂S

∂t
= d1

∂2S

∂x2
(44)

1

2

∂E

∂t
= d2

∂2E

∂x2
(45)

1

2

∂I

∂t
= d3

∂2I

∂x2
(46)

1

2

∂Q

∂t
= d4

∂2Q

∂x2
(47)

1

2

∂V

∂t
= d5

∂2V

∂x2
(48)

Now, we apply forward and backward Euler methods with
operator splitting on the system (6)–(7).

S
m+

1
2

i = Smi + τ

(

b−
βSmi I

m
i

1+ αImi
−

(

ω + µ + q3
)

Smi

)

(49)

E
m+

1
2

i = Emi + τ

(

βSmi I
m
i

1+ αImi
−

(

µ + σ + q2
)

Emi

)

(50)

I
m+

1
2

i = Imi + τ
(

σEmi −
(

µ + ǫ + γ + q1
)

Imi
)

(51)

Q
m+

1
2

i = Qm
i + τ

(

q3S
m
i + q2E

m
i + q1I

m
i − (µ + φ)Qm

i

)

(52)

V
m+

1
2

i = Vm
i + τ

(

ωSmi + φQm
i + γ Imi − µVm

i

)

(53)

where Smi ,E
m
i , I

m
i ,Q

m
i and Vm

i at mτ ,m = 0, 1, ... and 0 + ih, i =
0, 1, ... reflects difference approximations of S,E, I,Q, and V . The

values of S
m+

1
2

i , E
m+

1
2

i , I
m+

1
2

i , Q
m+

1
2

i , and V
m+

1
2

i are the values
at the half time step. Both forward and backward Euler methods
have same process at first step, but, at the second half step of time,
they have different procedures. Since the forward Euler operator
splitting method is explicit, we use:

Sm+1
i = S

m+
1
2

i + λ1

(

S
m+

1
2

i−1 − 2S
m+

1
2

i + S
m+

1
2

i+1

)

(54)

Em+1
i = E

m+
1
2

i + λ2

(

E
m+

1
2

i−1 − 2E
m+

1
2

i + E
m+

1
2

i+1

)

(55)

Im+1
i = I

m+
1
2

i + λ3

(

I
m+

1
2

i−1 − 2I
m+

1
2

i + I
m+

1
2

i+1

)

(56)
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Qm+1
i = Q

m+
1
2

i + λ4

(

Q
m+

1
2

i−1 − 2Q
m+

1
2

i + Q
m+

1
2

i+1

)

(57)

Vm+1
i = V

m+
1
2

i + λ5

(

V
m+

1
2

i−1 − 2V
m+

1
2

i + V
m+

1
2

i+1

)

(58)

For the backward Euler method, we use:

− λ1S
m+1
i−1 + (1+ 2λ1) S

m+1
i − λ1S

m+1
i−1 = S

m+
1
2

i (59)

−λ2E
m+1
i−1 + (1+ 2λ2)E

m+1
i − λ2E

m+1
i−1 = E

m+
1
2

i (60)

−λ3I
m+1
i−1 + (1+ 2λ3) I

m+1
i − λ3I

m+1
i−1 = I

m+
1
2

i (61)

−λ4Q
m+1
i−1 + (1+ 2λ4)Q

m+1
i − λ4Q

m+1
i−1 = Q

m+
1
2

i (62)

−λ5V
m+1
i−1 + (1+ 2λ5)V

m+1
i − λ5V

m+1
i−1 = V

m+
1
2

i (63)

For the proposed NSFD operator splitting methods, we
implement the rules constructed by Mickens [8]. The technique
for both explicit and implicit schemes is similar at the first half
time step:

S
m+

1
2

i =
Smi + τb

1+
τβImi
1+αImi

+ τ
(

ω + µ + q3
)

(64)

E
m+

1
2

i =

Emi +
τβSmi I

m
i

1+αImi

1+ τ (µ + σ + q2)
(65)

I
m+

1
2

i =
Imi + τσEmi

1+ τ (µ + ǫ + γ + q1)
(66)

Q
m+

1
2

i =
Qm
i + τ (q3S

m
i + q2E

m
i + q1I

m
i )

1+ τ (µ + φ)
(67)

V
m+

1
2

i =
Vm
i + τ (ωSmi + φQm

i + γ Imi )

1+ τµ
(68)

A positive solution desires that if:

Smi ≥ 0,Emi ≥ 0, Imi ≥ 0,Qm
i ≥ 0,Vm

i ≥ 0

H⇒ S
m+

1
2

i ≥ 0,E
m+

1
2

i ≥ 0, I
m+

1
2

i ≥ 0,Q
m+

1
2

i ≥ 0,V
m+

1
2

i ≥ 0

(69)

The techniques for the implicit and explicit NSFD schemes are
not similar for the second half of the time step. The procedure for
the explicit NSFD scheme is as follows:

Sm+1
i = (1− 2λ1) S

m+
1
2

i + λ1

(

S
m+

1
2

i−1 + S
m+

1
2

i+1

)

(70)

Em+1
i = (1− 2λ2)E

m+
1
2

i + λ2

(

E
m+

1
2

i−1 + E
m+

1
2

i+1

)

(71)

Im+1
i = (1− 2λ3) I

m+
1
2

i + λ3

(

I
m+

1
2

i−1 + I
m+

1
2

i+1

)

(72)

Qm+1
i = (1− 2λ4)Q

m+
1
2

i + λ4

(

Q
m+

1
2

i−1 + Q
m+

1
2

i+1

)

(73)

Vm+1
i = (1− 2λ5)V

m+
1
2

i + λ5

(

V
m+

1
2

i−1 + V
m+

1
2

i+1

)

(74)

We use an implicit procedure for the second NSFDmethod at the
second half of the time step:

−λ1S
m+1
i−1 + (1+ 2λ1) S

m+1
i − λ1S

m+1
i−1 = S

m+
1
2

i (75)

−λ2E
m+1
i−1 + (1+ 2λ2)E

m+1
i − λ2E

m+1
i−1 = E

m+
1
2

i (76)

−λ3I
m+1
i−1 + (1+ 2λ3) I

m+1
i − λ3I

m+1
i−1 = I

m+
1
2

i (77)

−λ4Q
m+1
i−1 + (1+ 2λ4)Q

m+1
i − λ4I

m+1
i−1 = Q

m+
1
2

i (78)

−λ5V
m+1
i−1 + (1+ 2λ5)V

m+1
i − λ5V

m+1
i−1 = V

m+
1
2

i (79)

where,

λ1 = d1
τ

h2
, λ2 = d2

τ

h2
, λ3 = d3

τ

h2
, λ4 = d4

τ

h2
, λ5 = d5

τ

h2

6.1. Stability and Accuracy of Splitting
Schemes
In finite difference operator splitting techniques, the step
involving the reaction term is unconditionally stable because it
is solved exactly [25, 26]. On the other hand, the step involving
the diffusion term has different stability in different techniques.
The explicit procedure has conditional stability in the region:

λi ≤
1

2
, (i = 1, 2, 3, 4, 5). (80)

while the implicit procedure has unconditionally stability [25,
26]. The accuracy of both schemes is O(τ ) and O(h2) for all the
methods under study.

6.2. Positivity of Proposed Schemes
Equations (64)–(65) in the reaction step of both proposed
methods preserve the property of positivity depicted by the
continuous SEIQV model, as there is no negative term involved
in (64)–(65).

As far as the diffusion step is concerned, the proposed explicit
scheme (70)–(74) demonstrates the positivity of the solution if:

1− 2λi ≥ 0, i = 1, 2, 3, 4, 5

so,

λi ≤
1

2
, (i = 1, 2, 3, 4, 5)

which is the condition of stability for the explicit operator-
splitting NSFD scheme (70)–(74). This verifies that the explicit
NSFD scheme retains the positive solution in the region of
stability. M matrix theory has been used for the verification of
the positivity of the implicit NSFD method (75)–(79). For more
details [34] is referred.

6.2.1. Theorem [21, 22]

For any positive τ and h, the system described by (75)–(79) is
also positive, i.e., Sm > 0,Em > 0,Qm > 0 and Vm > 0,
∀m = 0, 1, 2...
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Proof
Equations (75)–(79) can be written as:

ASm+1
= Sm (81)

BEm+1
= Em (82)

CIm+1
= Im (83)

DQm+1
= Qm (84)

GVm+1
= Vm (85)

In Equations (81)–(85), the letters A, B, C, D, and G represent the
square matrices. Where,

A =







































a3 a1 0 · · · · · · · · · · · · 0

a2 a3 a2
. . .

...

0 a2 a3 a2
. . .

...
...

. . .
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . .
. . .

...
...

. . . a2 a3 a2 0
...

. . . a2 a3 a2
0 · · · · · · · · · · · · 0 a1 a3







































(86)

B =







































b3 b1 0 · · · · · · · · · · · · 0

b2 b3 b2
. . .

...

0 b2 b3 b2
. . .

...
...

. . .
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . .
. . .

...
...

. . . b2 b3 b2 0
...

. . . b2 b3 b2
0 · · · · · · · · · · · · 0 b1 b3







































(87)

C =







































c3 c1 0 · · · · · · · · · · · · 0

c2 c3 c2
. . .

...

0 c2 c3 c2
. . .

...
...

. . .
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . .
. . .

...
...

. . . c2 c3 c2 0
...

. . . c2 c3 c2
0 · · · · · · · · · · · · 0 c1 c3







































(88)

D =







































d3 d1 0 · · · · · · · · · · · · 0

d2 d3 d2
. . .

...

0 d2 d3 d2
. . .

...
...

. . .
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . .
. . .

...
...

. . . d2 d3 d2 0
...

. . . d2 d3 d2
0 · · · · · · · · · · · · 0 d1 d3







































(89)

G =







































g3 g1 0 · · · · · · · · · · · · 0

g2 g3 g2
. . .

...

0 g2 g3 g2
. . .

...
...

. . .
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . .
. . .

...
...

. . . g2 g3 g2 0
...

. . . g2 g3 g2
0 · · · · · · · · · · · · 0 g1 g3







































(90)

The off-diagonal entries of A are a1 = −2λ1, a2 = −λ1, and the
diagonal entries are a3 = 1 + 2λ1. The entries of B in the off-
diagonal are b1 = −2λ1, b2 = −λ1, and the diagonal entries are
b3 = 1+ 2λ2. The entries of C in the off-diagonal are c1 = −2λ3,
c2 = −λ3, and the diagonal entries are c3 = 1 + 2λ3. The off-
diagonal entries of D are d1 = −2λ4, d2 = −λ4, and the diagonal
entries are d3 = 1 + 2λ4. The off-diagonal entries of G are
g1 = −2λ5, g2 = −λ5, and the diagonal entries are g3 = 1+ 2λ5.
Thus, A, B, C, D, and G are M-matrices, and Equations (81), (82),
(83), (84), and (85) are:

Sm+1
= A−1Sm (91)

Em+1
= B−1Em (92)

Im+1
= C−1Im (93)

Qm+1
= D−1Im (94)

Vm+1
= G−1Im (95)

If we consider that Sm > 0, Em > 0, Im > 0,Qm > 0, and
Vm > 0, then the M-matrix along with (60) implies that the
values of all of the state variables, i.e., Sm+1, Em+1, Im+1,Qm+10,
and Vm+1 are positive. Hence, the theorem is done by using the
principle of mathematical induction.

This theorem is applied for drawing the conclusion that the
proposed scheme, which is implicit in nature, guarantees the
positive solution unconditionally.

7. NUMERICAL EXPERIMENT AND
SIMULATIONS

A numerical test is performed on both the points of
equilibrium for all the schemes under consideration.

Frontiers in Physics | www.frontiersin.org 7 January 2020 | Volume 7 | Article 220

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Ahmed et al. Numerical Analysis of SEIQV Model

The set of parametric values considered for the
test problem at disease-free equilibrium point [7] is
given as:

b = 0.7,µ = 0.06, σ = 0.7,β = 0.35, γ = 0.15,ω =

0.3, q1 = 0.2, q2 = 0.2, q3 = 0.1,φ = 0.4, ǫ = 0.05,α = 2, d1 =

0.05, d2 = 0.01, d3 = 0.001, d4 = 0.01, d5 = 0.01.

For the endemic equilibrium point, the following parametric
values are used:

b = 0.7,µ = 0.06, σ = 0.7,β = 0.35, γ = 0.15,ω =

0.06, q1 = 0.2, q2 = 0.2,
q3 = 0.1,φ = 0.4, ǫ = 0.05,α = 2, d1 = 0.05, d2 = 0.01, d3 =

0.001, d4 = 0.01, d5 = 0.01.

FIGURE 1 | The explicit operator splitting NSFD scheme is used to simulate the graphs (A–E). (A) Mesh graph of S; (B) Mesh graph of E; (C) Mesh graph of I; (D)

Mesh graph of Q; (E) Mesh graph of V.
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The initial condition for the model (6)–(10) is:

S(x, 0) =

{

0.7x if x ∈ [0, 0.5)

0.7 (10− x) if x ∈ [0.5, 1]
(96)

E(x, 0) =

{

0.5x if x ∈ [0, 0.5)

0.5 (10− x) if x ∈ [0.5, 1]
(97)

I(x, 0) =

{

0.3x if x ∈ [0, 0.5)

0.3 (10− x) if x ∈ [0.5, 1]
(98)

FIGURE 2 | The implicit operator splitting NSFD scheme is used to simulate graphs (A–E). (A) Mesh graph of S; (B) Mesh graph of E; (C) Mesh graph of I; (D) Mesh

graph of Q; (E) Mesh graph of V.
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FIGURE 3 | (A) The forward Euler FD operator splitting method is used to simulate the graph of exposed persons for the DFE point at h = 0.5, λ1 = 0.3. (B) The

backward Euler FD operator splitting method is used to simulate the graph of susceptible persons for the DFE point at h = 0.5, λ1 = 0.3. (C) The forward Euler FD

operator splitting method is used to simulate the graph of susceptible persons for the DFE point at h = 0.5, λ1 = 0.4. (D) The backward Euler FD operator splitting

method is used to simulate the graph of susceptible persons for the DFE point at h = 0.5, λ1 = 0.4.

FIGURE 4 | (A) The explicit operator splitting NSFD method is used to simulate the graph of susceptible persons for the DFE point at h = 0.5, λ1 = 0.3. (B) The

implicit operator splitting NSFD method is used to simulate the graph of susceptible persons for the DFE point at h = 0.5, λ1 = 0.4.
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FIGURE 5 | (A) The explicit operator splitting NSFD scheme is used to simulate graphs (A–E). (A) Mesh graph of S; (B) Mesh graph of E; (C) Mesh graph of I; (D)

Mesh graph of Q; (E) Mesh graph of V.

Q(x, 0) =

{

0.1x if x ∈ [0, 0.5)

0.1 (10− x) if x ∈ [0.5, 1]
(99)

V(x, 0) =

{

0.1x if x ∈ [0, 0.5)

0.1 (10− x) if x ∈ [0.5, 1]
(100)
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FIGURE 6 | The implicit operator splitting NSFD scheme is used to simulate graphs (A–E). (A) Mesh graph of S; (B) Mesh graph of E; (C) Mesh graph of I; (D) Mesh

graph of Q; (E) Mesh graph of V.

7.1. Disease-Free Equilibrium Point
In this section, graphs of all the state variables against
time are presented (for DFE) to illustrate the behavior of
the schemes. In Figures 1, 2, we consider h = 0.5,

λ1 = 0.3, λ2 = 0.06, λ3 = 0.006, λ4 = 0.06,
and λ5 = 0.06.

Figures 1, 2 validate the preservation of the positivity property
in both of the proposed operator splitting NSFD schemes. Also,
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FIGURE 7 | (A) The forward Euler FD operator splitting method is used to simulate the graph of exposed persons for the DFE point at h = 0.5, λ1 = 0.3. (B) The

backward Euler FD operator splitting method is used to simulate the graph of exposed persons for the DFE point at h = 0.5, λ1 = 0.3. (C) The forward Euler FD

operator splitting method is used to simulate the graph of susceptible persons for the DFE point at h = 0.5, λ1 = 0.4. (D) The backward Euler FD operator splitting

method is used to simulate the graph of susceptible persons for the DFE point at h = 0.5, λ1 = 0.4.

FIGURE 8 | (A) The explicit operator splitting NSFD method is used to simulate the graph of susceptible persons for the DFE point at h = 0.5, λ1 = 0.4. (B) The

implicit operator splitting NSFD method is used to simulate the graph of susceptible persons for the DFE point at h = 0.5, λ1 = 0.4.
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all the graphs in Figures 1, 2 show that both proposed NSFD
schemes achieve convergence to the DFE point. Next, we examine
the behavior of forward Euler and backward Euler splitting
schemes at different values of h and τ .

In parts (a) and (b) of Figure 3, we take the same
values of h and τ as in Figures 1, 2 for the graphs of
forward Euler operator splitting scheme and backward Euler
operator splitting scheme. The graphs clearly show the failure
of the positivity property of both classic schemes. In parts
(c) and (d) of Figure 3, both existing splitting schemes
converge to the false DFE equilibrium point for susceptible
individuals.

In parts (a) and (b) of Figure 4, we take the same
values of h and τ as given in parts (c) and (d) of
Figure 3 for the explicit and implicit NSFD operator splitting
schemes, respectively. The graphs clearly show that both
of the proposed NSFD schemes not only preserve the
positivity property but also achieve convergence to the true
equilibrium point.

7.2. Endemic Equilibrium Point
In this section, we present simulations of the SEIQV epidemic
model at the EE point using all of the operator splitting
FD schemes. In Figures 5, 6, we consider h = 0.5,
λ1 = 0.3, λ2 = 0.06, λ3 = 0.006, λ4 = 0.06,
and λ5 = 0.06.

Figures 5, 6 depict the graphs of susceptible, exposed,
infected, quarantined, and vaccinated individuals for
the EE point using the explicit operator splitting NSFD
scheme and implicit operator splitting NSFD scheme,
respectively. All the graphs in Figures 5, 6 demonstrate
that both of the proposed operator splitting NSFD
schemes preserve the property of positivity. These graphs
also show that both proposed schemes converge to the
EE point.

Again, both the forward and backward Euler FD schemes fail
to preserve the positivity property and converge to the false EE
point, as shown in Figure 7.

Figure 8 shows that the proposed NSFD
operator splitting methods are consistent with the
continuous reaction-diffusion system as they not
only preserve the positivity property but converge to
the EE point.

8. CONCLUSION

In this work, we consider the SEIQV reaction-diffusion epidemic
model. The stability of the SEIQV model is guaranteed
numerically by using criteria defined by Routh-Hurwitz. We
also find the bifurcation value of the important vaccination
parameter ω of SEIQV epidemic systems with diffusion and
without diffusion. We design two novel and efficient operator
splitting NSFD schemes for the SEIQV reaction-diffusion system.
The NSFD schemes put forth, which are technically operator
splitting schemes, possess the same behavior as is possessed
by the SEIQV epidemic system. To conclude regarding the
designed methods, we present two novel numerical schemes,
one of which is explicit and the other of which is implicit in
nature. The explicit scheme is more computationally efficient
than the implicit scheme, but it has conditional stability while the
implicit scheme is stable unconditionally. Both schemes employ
structural splitting, due to which they deal adroitly with the
nonlinearity of the reaction-diffusion system. These schemes
avoid the false chaos that is a part of many existing methods.
The positive solution of the SEIQV model is sustained by both
schemes. Also, the nature of the stability of equilibria is preserved
effectively by the proposed NSFD schemes. It is also shown that
classical schemes, in parallel to our proposed schemes, produce
chaos, leading to inconsistencies and instabilities numerically.
The currently designed schemes are a valuable contribution for
finding the solutions of nonlinear dynamical systems comprising
differential equations. These NSFD schemes will become very
efficient for the solution of one- and multi-dimensional reaction-
diffusion population models, auto-catalytic chemical reaction
models, and many more.
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