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Wemodel the flow of bi-viscous non-Newtonian fluids in porous media by a square lattice

where the links obey a piece-wise linear constitutive equation. We find numerically that

the flow regime, where the network transitions from all links behaving according to the first

linear part of the constitutive equation to all links behaving according to the second linear

part of the constitutive equation, is characterized by a critical point. We measure two

critical exponents associated with this critical point, one of them being the correlation

length exponent. We find that both critical exponents depend on the parameters of

the model.

Keywords: porous media, non-newtonian fluid, percolation, critical system, non-linear Darcy law

1. INTRODUCTION

The behavior of complex fluids when being inside a porous medium may be very different from
that when they are not. This is a problem encountered in many biological or industrial applications
ranging from impregnation of fibrous materials to immiscible multi-phase flow in porous media.
Among the different types of non-Newtonian fluids, many undergo behavioral changes depending
on the stress or strain applied. One can mention the Carreau rheology which is Newtonian at low
shear rate but behaves as a power law fluid above a certain shear rate [1]. Other examples are yield
stress fluid that responds as a solid below a critical yield threshold. Above, they behave as a power
law fluid [2]. At the mesoscopic level, this rheological approach can also be extended to other
situations. For example, inertial effects can be described as a rheological change from a Newtonian
fluid to a power law (quadratic or cubic) for a given large Reynolds number [3]. Another possible
extension is the displacement of immiscible fluids in porous media. In this case, the fluids may each
be Newtonian. However, the interfacial tension between them makes them effectively behave in a
non-Newtonian way inside the porous medium [4]. Indeed, a non-zero amount of stress is then
required for a non-wetting phase to invade the smaller pore throats.

Non-Newtonian fluids are notoriously difficult to treat analytically and computationally. When
in addition the flow is constrained by the very complex boundary conditions of a porous medium,
the effective rheology of the fluid flow is not well understood. This might for example be seen in the
fact that the leading theory for describing immiscible multi-phase flow in porous media is still the
relative permeability theory dating from 1936 [5] a theory which has evident weaknesses.

The purpose of this manuscript is to investigate the coupling between the heterogeneity of the
medium and a rheology with a change of behavior. We study a very simple model, namely a bi-
viscous fluid, where the fluid is Newtonian but with a change of viscosity at one particular shear
rate (or shear stress) [6, 7]. The second viscosity might be lower (shear thinning) or higher (shear
thickening). As we shall see, the coupling between the disorder and such a simple rheological model
is enough to generate a rich problem.
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FIGURE 1 | Diamond lattice used in this work. At each node, a pressure Pi is

defined. In each link, the flow rate is a function of the pressure difference

δP = Pi − Pj according to a bi-viscous model.

We also choose a simple porous medium; a square lattice
oriented at 45◦ with respect to the average flow direction, see
Figure 1, consisting ofNx links in the flow direction andNy links
in the direction orthogonal to the flow direction.

The constitutive equation for the fluid in a link in the lattice is
given by

q(∇p) =

{

−α∇p : |q| ≤ qc ,

−β∇p+ sgn(q)
[

1− β
α

]

qc : qc ≤ |q| ,
(1)

where q is the volumetric flow rate in the link, and ∇p is the
pressure drop across the link. There are three parameters, α,
β and qc. The two first parameters, α and β are the mobilities
when the fluid is either in the “α-mode" or in the “β-mode." The
third parameter, qc is the flow rate at which the fluid changes
from being in α-mode to β-mode. We illustrate the constitutive
equation in Figure 2. To simplify the problem as much as
possible, we let the two the α-mobilities and the β-mobilities be
the same for all links in the lattice. However, each link has its own
flow rate threshold qc drawn from a distribution p(qc).

We will in the following study this system for different values
of α and β and for two threshold distributions p(qc); a uniform
distribution and an exponential distribution.

In section 2, we consider the symmetries inherent in the
system. There are two types of symmetries. The first type is
related to what happens to the volumetric flow rate through the
system, Q when we scale the system parameters. Using the Euler
theorem for homogeneous functions, we are able to write down
the most general form of the volumetric flow rate. If we define
〈q〉 as Q/Ny, where Ny is the width of the lattice in terms of
nodes, we find that 〈q〉 = α q(∇p,β/α, {qc}/α), where {qc} refers
to the set of thresholds, one for each link. The second type of
symmetry is the self-duality of the square lattice leading to a
mapping between the behavior of the system for a given ratio β/α

FIGURE 2 | Bi-viscous flow curve. If the absolute value of the flow rate is

below a local threshold qc, the flow is linear with a mobility α. Once the

absolute value of the flow rate has reached the threshold the evolution is still

linear but with different mobility β.

and its inverse, α/β . Hence, we only need to discuss parameters
for which β/α ≥ 1, see Figure 3.

We study in section 3 the lattice with Nx = 1, i.e., there is
only one layer. Themodel then becomes the capillary fiber bundle
modelwhich is analytically tractable.We find that for the uniform
threshold distribution, the flow rate behaves as 〈q〉−〈qc〉 ∼ (∇p−
∇pc)

2 where (〈qc〉,∇pc) is a point only dependent on the value of
the ratio β/α and the limits of the uniform distribution qmin and
qmax. This is reminiscent of a critical point. However, it is not a
critical point. There are no correlations developing in the system
as ∇p approaches ∇pc. Furthermore, the power law behavior is
not seen when the threshold distribution is exponential.

Section 4 is devoted to the numerical algorithm we use to
solve the flow patterns. Our algorithm is based on the augmented
Lagrangian algorithm, which we describe in this section.

We present our results in section 5. First we note that the
two limits β/α → 1 and β/α → ∞, or equivalently, β/α →

0 correspond to the directed percolation [8] and the directed
polymer problems respectively [9]. This points us in the direction
of there being a critical point in the problem in spite of the
conclusion drawn for the capillary fiber bundle model in section
3. Indeed, this is what we find, i.e., that 〈q〉−〈qc〉 ∼ (∇p−∇pc)

µ

where µ depends on the ratio β/α for the same type of threshold
distribution that gave a power law dependence in the capillary
fiber bundle model studied in section 3. We define and measure a
correlation length Lmax ∼ (∇p− ∇pc)

−ν . The correlation length
exponent ν also depends on the ratio β/α. In the limit β/α → 1,
the longitudinal directed percolation correlation length exponent
ν‖ = 1.733847(6) [10] is expected and our numerical results are
consistent with this. In the directed polymer limit β/α → ∞,
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FIGURE 3 | Example of the mean flow rate 〈q〉 as function of the mean

gradient ∇p for two different bi-viscous model (α,β) = (1, 10) (blue) and

(α,β) = (1, 0.1) (green). As described in the text, the two cases are

symmetrical through a duality mapping.

however, the corresponding correlation length exponent is not
the usual one, ν‖ = 3/2 [11], but rather one that describes a
correlated directed percolation problem.

The last section 6 contains our summary and conclusions.

2. SYMMETRIES

In this section, we discuss the symmetries that lie hidden in
the system we study, a diamond lattice of links obeying the
constitutive (Equation 1). We consider two types of symmetry:
one is based on scaling of the size and parameters of the model.
Through the Euler theorem for homogeneous functions, we
are able to write down the most general functional form the
volumetric flow rate through the network takes. We then go on
to exploring the geometrical symmetry inherent in the diamond
lattice due to self-duality in the same way as first done by Straley
[12]. This symmetry demonstrates that we only need to explore
the part of parameter space for which β/α ≥ 1.

2.1. Scaling Symmetry
The volumetric flow rate Q shows a number of scaling
symmetries. We combine these with the Euler theorem for
homogeneous functions to deduce the functional form of Q =

Q(1P,α,β , {qc},Nx,Ny) [13]. Here {qc} is the set of thresholds,
one for each link in the network. The volumetric flow rate is
extensive in the width of the network, Ny. Hence,

Q(1P,α,β , {qc},Nx, λyNy)

= λyQ(1P,α,β , {qc},Nx,Ny) . (2)

With respect to the length of the system, we find the symmetry

Q(1P,α,β , {qc},Nx,Ny)

= Q(λx1P,α,β , {qc}, λxNx,Ny) . (3)

A more subtle scaling symmetry is

Q(1P, λqα, λqβ , {λqqc},Nx,Ny)

= λqQ(1P,α,β , {qc},Nx,Ny) . (4)

We also have the scaling symmetry

Q
(

1P,α,β , {qc},Nx,Ny

)

= Q

(

λP1P,
α

λP
,

β

λP
, {qc},Nx,Ny

)

. (5)

The lengthNx and widthNy of the network are discrete variables.
By setting λy = 1/Ny we find from Equation (2) that

Q(1P,α,β , {qc},Nx,Ny)

= NyQ(1P,α,β , {qc},Nx, 1) . (6)

The second scaling relation, Equation (3) gives when
setting λx = 1/Nx,

Q(1P,α,β , {qc},Nx,Ny)

= Q(∇p,α,β , {qc}, 1,Ny) , (7)

where we have used the definition ∇p = 1P/Nx. We now
combine (Equations 6 and 7) to get

Q(1P,α,β , {qc},Nx,Ny)

= NyQ(∇p,α,β , {qc}, 1, 1) = 〈q〉 . (8)

Hence, we define the average flow rate in the links as

〈q〉(∇p,α,β , {qc}) = Q(∇p,α,β , {qc}, 1, 1) . (9)

This is thus an intensive variable with respect to the width and
the length of the network.

The two remaining scaling relations (4) and (5) involve
continuous variables and we may thus make use of Euler’s
theorem for homogeneous functions. The Euler theorem is easy
to implement for each of these four scaling symmetries: we take
the derivative with respect to the scaling variable λ in each
expression and set the variable equal to one.

The scaling relation (4) gives

Q(1P,α,β , {qc},Nx,Ny)

=

(

∂Q

∂α

)

α +

(

∂Q

∂β

)

β +
∑

links

(

∂Q

∂qc

)

qc , (10)

or in terms of the intensive variable

〈q〉(∇P,α,β , {qc})

=

(

∂〈q〉

∂α

)

α +

(

∂〈q〉

∂β

)

β +
∑

links

(

∂〈q〉

∂qc

)

qc . (11)

We define the functions

A = −

(

∂〈q〉

∂α

)

, (12)
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B = −

(

∂〈q〉

∂β

)

, (13)

and,

{c} =

{(

∂〈q〉

∂qc

)}

. (14)

There is one function c for each link in the network.
Whereas 〈q〉 is homogeneous of order one1 in the variables α,

β and {qc}, the functions A, B and {c} are homogeneous of order
zero in these variables. This means that the parameters α, β and
{qc} only appear as ratios in these functions,

A = A

(

∇p,
β

α
,
{qc}

α

)

, (15)

B = B

(

∇p,
β

α
,
{qc}

α

)

, (16)

and

{c} =

{

c

(

∇p,
β

α
,
{qc}

α

)}

. (17)

Equation (10) may thus be written

〈q〉(∇P,α,β , {qc}) =

−A

(

∇p,
β

α
,
{qc}

α

)

α − B

(

∇p,
β

α
,
{qc}

α

)

β

+
∑

links

c

(

∇p,
β

α
,
{qc}

α

)

qc .

(18)

Scaling Equation (5) combined with the Euler theorem gives

(

∂Q

∂1P

)

1P =

(

∂Q

∂α

)

α +

(

∂Q

∂β

)

β , (19)

In terms of 〈q〉 and Equation (17), we may rewrite this Equation

m

(

∇p,
β

α
,
{qc}

α

)

∇p

= A

(

∇p,
β

α
,
{qc}

α

)

α

+ B

(

∇p,
β

α
,
{qc}

α

)

β , (20)

where we have defined the mobility

m = −

(

∂〈q〉

∂∇p

)

. (21)

From Equations (10) and (19), we deduce that

〈q〉 =

(

∂〈q〉

∂∇p

)

∇p+
∑

links

c qc = −m∇p+
∑

links

c qc , (22)

1A homogeneous function f (x, y) of order n in variables x and y fulfills the scaling

relation λnf (x, y) = f (λx, λy).

and with the help of Equation (20) we find

〈q〉 = − a

(

∇p,
β

α
,
{qc}

α

)

α∇p

− b

(

∇p,
β

α
,
{qc}

α

)

β∇p

+
∑

links

c

(

∇p,
β

α
,
{qc}

α

)

qc , (23)

where we have defined

a

(

∇p,
β

α
,
{qc}

α

)

∇p = A

(

∇p,
β

α
,
{qc}

α

)

, (24)

and,

b

(

∇p,
β

α
,
{qc}

α

)

∇p = B

(

∇p,
β

α
,
{qc}

α

)

. (25)

We may take Equation (23) one step further by dividing out the
parameter α,

〈q〉

α
= q

(

∇p,
β

α
,
{qc}

α

)

, (26)

where,

q

(

∇p,
β

α
,
{qc}

α

)

=

− a

(

∇p,
β

α
,
{qc}

α

)

∇p

− b

(

∇p,
β

α
,
{qc}

α

)

β

α
∇p

+
∑

links

c

(

∇p,
β

α
,
{qc}

α

)

qc

α
.

(27)

We may as a check, compare Equation (23)—our main result in
this section—with the constitutive Equation (1) in the case when
there is no disorder, i.e., when all qc are equal. In this case, 〈q〉
should be equal to the constitutive equation. Hence, in this case
we find,

a

(

∇p,
β

α

)

= 2(qc − |q|) , (28)

b

(

∇p,
β

α

)

= 2(|q| − qc) , (29)

and

c

(

∇p,
β

α

)

= 2(|q| − qc) sign(q)

(

1−
β

α

)

. (30)

Here 2 is the Heaviside step function which is one for positive
arguments and zero for negative arguments. We note that if
|q| < qmin, then Equations (28–30) are correct as the disorder
is not “noticeable" in this flow regime.
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FIGURE 4 | Sketch of the dual network construction. From the original

network (black), one can construct a dual one (red), where the nodes are

located at the center of the original cells. At each link of the dual network we

associate a “dual" flow rate obtained from the pressure difference of the

original network. At each node we associate a “dual" pressure based on the

original flow rate. See the text for details.

2.2. Self-Duality of the Square Lattice
We define a dual network as sketched in Figure 4. A node is
located at the center of each cell and there is a link connecting
each adjacent cell. On each link, a “dual" current is defined
from the pressure difference between pressure by the crossed link
(from the original network),

jA→B = P1 − P4 ,

jA→D = P2 − P1 ,

jF→A = P3 − P4 ,

jE→A = P2 − P3 . (31)

The current in the dual lattice satisfies the conservation of mass
at each node (e.g., the Kirchhoff condition) since jA→B+ jA→D−

jF→A − jE→A = 0.
Moreover, one can define a pressure fieldW on the dual lattice

defined from this gradient,

WA −WB = q1→4 ,

WB −WC = q1→5 ,

WC −WD = q1→6 ,

WD −WA = q1→2 . (32)

The definition is consistent once W is defined at a single point
since the sum over a closed loop (and thus any) is equal to zero,
(WA − WB) + (WB − WC) + (WC − WD) + (WD − WA) =

q1→4 + q1→5 + q1→6 + q1→2 = 0.

Hence, the “dual” pressure gradient and current follow the
constitutive equation,

WA −WB = q1→4 = q(PA − PB) = q(jA→B) , (33)

so that,

jA→B = q−1(WA −WB) . (34)

Hence, the dual pressure and flow rate field satisfy the same kind
of equation but with a local law which is inverted. It is important
to note that the mean flow in the dual lattice is perpendicular to
the original one.

3. CAPILLARY FIBER BUNDLE MODEL

We now consider an analytically solvable model for the flow.
Let us assume that the network consists of a set of parallel links
placed between two fluid reservoirs kept at pressure p = 0 and
p = ∇p < 0, i.e., we are describing the capillary fiber bundle
model [14–16]. The constitutive equation for the fiber bundle is
then given by

Q =

Ny
∑

i=1

[

−2(qi − α|∇p|)α∇p

− 2(α|∇p| − qi)β∇p

+ 2(α|∇p| − qi)

(

1−
β

α

)

qi

]

, (35)

where we have labeled the links according to their position, i =
1, · · · ,Ny and qi is the threshold of the ith link.

Let us now relabel the links in ascending order with respect
to their thresholds: q(1) ≤ q(2) ≤ · · · ≤ q(Ny). Equation (35)
then becomes

Q =

Ny
∑

k=1

[

−2(q(k) − α|∇p|)α∇p

− 2(α|∇p| − q(k))β∇p

+ 2(α|∇p| − q(k))

(

1−
β

α

)

q(k)

]

. (36)

The thresholds are distributed according to the probability
distribution p(qc), with a corresponding cumulative probability
given by

P(qc) =

∫ qc

0
p(q)dq . (37)

According to order statistics, the mean value of kth largest
threshold—mean value in the sense of averaging over an
ensemble of networks—is given by

P(q(k)) =
k

Ny + 1
≈

k

Ny
. (38)
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Thus, the ensemble averages of the three types of sums in
Equation (36) are then

Ny
∑

k=1

2(q(k) − α|∇p|) = Ny[1− P(α|∇p|)] , (39)

Ny
∑

k=1

2(α|∇p| − q(k)) = NyP(α|∇p|) , (40)

and

Ny
∑

k=1

2(α|∇p| − q(k))q(k) = Ny

∫ α∇p

0
p(q)q dq . (41)

Inserted into Equation (36), these averages give

〈q〉 = −[1− P(α|∇p|)]α∇p− P(α|∇p|)β∇p

+

[

1−
β

α

] ∫ α|∇p|

0
p(q)q dq , (42)

where 〈q〉 = Q/Ny.

3.1. Uniform Threshold Distribution
We now consider the concrete threshold distribution we will
also employ in our numerical simulations on the square lattice:
a uniform distribution on the interval (qmin, qmax). Hence,

p(qc) =







0 : qc ≤ qmin ,
(qmax − qmin)

−1
: qmin < qc < qmax ,

0 : qmax ≤ qc .
(43)

We define

∇pmin = −
qmin

α
, (44)

and

∇pmax = −
qmax

α
. (45)

We also define

∇p0 =
1

2

[

∇pmin + ∇pmax

]

. (46)

Inserting these expressions into Equation (42) gives

〈q〉 =



























−α∇p : |∇p| ≤ |∇pmin| ,
(α−β)(∇p−∇pc)

2

2(∇pmax−∇pmin)

−
α(α∇p0−β∇pmin)

α−β
: |∇pmin| < |∇p|

: |∇p| < |∇pmax| ,
−β∇p− (α − β)∇p0 : |∇pmax| ≤ |∇p| .

(47)

We have here defined

∇pc =
α∇pmax − β∇pmin

α − β
. (48)

If we now define

〈qc〉 =
α(β∇pmin − α∇p0)

α − β
, (49)

we may cast the middle regime where |∇pmin| < |∇p| < |∇pmax|

in the form

〈q〉 = 〈qc〉 +
(α − β)

2(∇pmin − ∇pmax)
(∇p− ∇pc)

2 . (50)

It straight forward but somewhat tedious to rewrite the average
flow rate 〈q〉, Equation (47) in the general form (26) and (27)
resulting from the scaling relations (2) to (5).

3.2. Exponential Threshold Distribution
Let us now consider the exponential threshold distribution

p(qc) =
e−qc/q0

q0
, (51)

for 0 ≤ qc < ∞. The corresponding cumulative distribution is

P(qc) = 1− e−qc/q0 . (52)

Inserted into Equation (42), this gives

〈q〉 = −eα∇p/q0α∇p

−
(

1− eα∇p/q0
)

β∇p

+

[

1−
β

α

]

[

q0 − eα∇p/q0
(

q0 − α∇p
)

]

, (53)

where we are still assuming ∇p < 0. Let us set q0 = −α∇p. We
then have the limits

〈q〉 =

{

−α∇p : |∇p| ≪ q0/α ,
−β∇p+ (α − β/)∇p0 : q0/α ≪ |∇p| .

(54)

In contrast to the uniform distribution discussed in section 3.1,
there is not a transitional regime between the two limits of
Equation (54) which is on the form (50).

Hence, the uniform distribution on an interval, (43) results in
〈q〉 following a power law in 〈q〉 − 〈qc〉 vs. ∇p − ∇pc, Equation
(50), whereas the exponential distribution (51) does not. From
the simple capillary fiber bundle model we may conclude that the
power law behavior seen in Equation (50) is incidental and due to
the uniform threshold distribution, which in itself is a power law
(with exponent zero).

We study a two-dimensional network mode in section 5.
Surprisingly, we find that also in this case, only the uniform
distribution leads to a flow dependency on the pressure drop of
the form

〈q〉 − 〈qc〉 ∼ (∇p− ∇pc)
µ . (55)

In this case, however, the exponent µ depends on the parameter
ratio β/α.
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4. NUMERICAL METHOD: AUGMENTED
LAGRANGIAN

For completeness, this section describes the numerical method
used to solve the non-linear Kirchhoff equations. This section is
not required to understand the results that follow.

The method used is based on the Augmented Lagrangian
method commonly used to solve the Stokes Equation for yield
stress fluids [17, 18]. It is based on a variational approach. We
start by rewriting the local Equation (1), introducing the function
f (q) as

δp(q) = −f (q) =

{

− 1
α
q : |q| < qc

− 1
β

[

q−
q
|q| (1−

β
α
)
]

: |q| > qc .
(56)

We define a function φ(q) =
∫ q
0 f (q′)dq′. The flow field {ql}

solution of Equation (1), with the constraints of imposed inlet
and outlet pressures at the boundaries pin and pout , can be written
as the saddle point of the functional

max
{λn}

min
{ql}

8[{ql}, {λn}]

=
∑

l∈L

[

φ(qn)− δl,inpinql + δl,outpoutql
]

+
∑

n∈N

λn

∑

l′∈V(n)

ql′ , (57)

where L represents the ensemble of links, N the ensemble of
nodes and V(n) the ensemble of links connected to node n. The
symbol δl,in (resp. δl,out) is equal to 1 if the link is connected to
the inlet (resp. outlet) node and to 0 otherwise. The {λn} field is
a set of Lagrangian multipliers which imposes the conservation
of mass at each node (and it may thus be associated to a
pressure field).

The main idea of the Augmented Lagrangian method is to
introduce a secondary set of velocities {jl} to decouple the non-
linear rheology from the Kirchhoff Equation. Another constraint
is then added {jl} = {ql} via the Lagrangian method.

Hence, the velocity field is the solution of the equation

max
{λn},{µn}

min
{ql},{jl}

9[{ql}, {jl}, {λn}, {µl}]

=
∑

l∈L

[

φ(qn)− δl,inpinjl + δl,outpoutjl

+ µ(jl − ql)+
ǫ

2
|ql − jl|

2
]

+
∑

n∈N

λn

∑

l′∈V(n)

jl′ , (58)

where {µl} is a set of Lagrangian multipliers. The quadratic term
is an additional penalty term which characterizes the augmented
Lagrangian approach. Here ǫ is a parameter determining
its strength.

The methods consists now in implementing an iterative
algorithm to reach the saddle point starting from an initial guess
{q0

l
}, {j0

l
}, {λ0n} and {µ0

l
}.

Knowing {qn
l
}, {jn

l
}, {λnn} and {µn

n}, the algorithm is
decomposed in the following steps.

Determination of {jn+1
l } and {λn+1

n }:

For this step we solve

∀l ∈ L,
∂

∂ jl
9[{qnl }, {jl}, {λn}, {µ

n
l }] = 0 ,

∀n ∈ N ,
∂

∂λn
9[{qnl }, {jl}, {λn}, {µ

n
l }] = 0 , (59)

which reads

∀l ∈ L, jn+1 = −
1

ǫ
(λn+1

l+
− λn+1

l−
+ µn

l − ǫqnl ) (60)

∀n ∈ N ,
∑

l′∈V(n)

jn+1
l′

= 0, (61)

where λn+1
l+

and λn+1
l−

are the Lagrangian multipliers of the two
nodes adjacent to link l. For nodes adjacent to the outlet (resp.
inlet), λ+ (resp. λ−) has to be replaced with pout (resp. pin).

The most important point of this set of equations is that it is
equivalent to solving the standard linear Kirchhoff equations with
a constant permeability 1/ǫ but with an additional source term
µn
l
− ǫqn

l
. Hence, it may be solved by standard linear methods

(uch as Cholesky, LU decomposition, etc.).

Determination of qn+1
l :

We solve

∀l ∈ L,
∂

∂ql
9[{ql}, {j

n+1
l

}, {λn+1
n }, {µn

l }] = 0, (62)

which the local, but implicit equation

∀l ∈ L,φ′(qn+1
l

)+ ǫqn+1
l

= µ + ǫjn+1
l

; . (63)

Noting that y = µ + ǫjn+1
l

, the solution is given by

qn+1
l

=

{

1
1/α+ǫ

y : |y| < ǫic +
ic
α
,

1
1/β+ǫ

[

|y| + (1/β − 1/α)ic
]

sign(y) : |y| > ǫic +
ic
α
.

(64)

Determination of µn+1
l :

For this step, we update in the direction of the gradient
(Newton method)

µn+1
l

= µn+1
l

+ γ (jn+1
l

− qn+1
l

) , (65)

where γ is a parameter set to γ = ǫ for simplicity.
In practice, this algorithm is iterated until the relative

variation of the total flow rate between two step is below 10−5%.
The computational time and the number of steps are strongly
varying depending on β but also on the applied pressure.

5. RESULTS

We now our numerical model based on the network show in
Figure 1 and the algorithm described in section 4. We use the
link threshold distribution (43) with qmin = 7.5 and qmax = 12.5
in the following.
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5.1. Criticality
As noted above, due to the distribution of thresholds, the links
will reach their thresholds at different macroscopic pressures. A
link l will be defined as being in β-mode if ql > qc and in α-mode
otherwise. Similar to the percolation problem, a macroscopic
change in flow regime is expected once there are percolation
pathways of β-mode links. However, it is important to note
a major difference with the percolation problem: the mode of
a link influences the neighboring links. Indeed, in the case of
β > α, once a link switches to β-mode, the flow will be easier
through it. This will tend to concentrate the flow toward it. It
will therefore increase the flow in the upstream and downstream
neighboring links and as a consequence push these links toward
the β-mode. In the opposite case, for β < α, the β-mode has
a lower conductivity once entering this mode compared to what
it would have in α-mode. Flow will therefore tend to go around
it, increasing the flow in the other lateral links. Consequently β-
mode links will tend to correlate in the stream-wise (or lateral)
direction for β > α and orthogonally to the stream-wise
direction for β < α [19].

The intermediate case β = α is interesting as the mode of
a link has no influence on its neighbors. Since the mobility are
the same for every link, the flow rate and the pressure gradient
become homogeneous and equal to the mean flow rate and
mean gradient. The problem is therefore identical to the directed
percolation problem [8].

The other limit β/α≫1, the problem becomes identical to that
of a yield stress fluid in a porous medium [9, 20, 21]. The critical
path is then related to the directed polymer problem [9, 22–24],
as it corresponds to the path that minimizes the sum of local
pressure threshold 1Pc = min

∑

(qc/α).

5.2. Pathscape Method
To quantify this phenomenon and to determine the percolation
pressure, we determine the longest directed path of the β-mode
links. This quantity is essentially the longitudinal correlation
length in directed percolation [10].Wemap the length of all paths
by invoking a pathscape approach as described in Talon et al. [24]
for yield-stress fluids.

We introduce the node field Ln representing the longest
upstream directed path ending at n. Ln can be determined from a
transfer matrix algorithm propagating from left to right (stream
direction). If we note, at a given node n, l1 and l2 the two
upstream neighbor links and n1 and n2 the corresponding nodes.
We associate binary variablesm1 andm2 with the two links l1 and
l2. If link l1 is in β-mode, thenm1 = 1, otherwisem1 = 0 — and
likewise for the link l2. We then have that

Ln = max
[

(Ln1 + 1)m1, (Ln2 + 1)m2

]

. (66)

We proceed by constructing the node field Rn containing
the longest directed path ending at n but propagating in the
downstream direction. This algorithm is identical to the previous
one but it propagates in the upstream direction from the
rightmost column.

Once both fields have been determined, we sum the two to
obtain the pathscape Tn = Ln + Rn, which contains the length of
longest directed percolating path passing by the node n. From

this pathscape, we can then identify the longest directed path
Lmax = max(Tn). In Figure 5, we present two examples of such
a pathscape at two different imposed pressure. We see here the
longest cluster path in dark blue. At low applied pressure, the
longest cluster is quite low Lmax = 7, whereas at higher pressure,
Lmax is closer to the system size.

It is important to note that the pathscape we have defined
here is not the landscape of minimal paths [24]. In the limit
β → α the pathscape reflects the clusters in directed percolation
as noted in section 5.1. However, when β 6= α, the paths we
identify correspond to directed percolation clusters. However, the
directed percolation is now correlated.

5.3. Evolution of the Correlation Length
Lmax
In Figure 6, we investigate the evolution of Lmax as function of
the applied pressure. As it can be seen, the correlation length
increases with pressure until it reaches the system length Nx.
Similarly to percolation, one can see in Figure 6B that the
correlation length diverges as a power law close to a critical
pressure gradient ∇pc,

Lmax ∝ (∇pc − ∇p)−ν . (67)

We note in this figure that the exponent ν seems to vary with β .
In Figure 7, we display the evolution of ν and the critical pressure
gradient ∇pc against the parameter β . As we can see, ν and ∇pc
decrease significantly with β .Where the limit β → 1 is consistent
with the results found in the literature on directed percolation,
ν = ν‖ = 1.733847(6) [10]. Our best estimate of the threshold
pressure is ∇pc ≈ 10.72.

At the end of section 5.2 we noted that the pathscape we have
identified is not related to the pathscape spanned by minimal
paths in the limit β/α → ∞. If that were the case, we would
have expected ν to approach the value ν‖ = 3/2 [11]. Rather,
we are identifying directed percolation clusters in a correlated
landscape, and this directed percolation ν is approaching the
value 1 in this limit.

5.4. Flow Curve
We now investigate the flow curve. Figure 8 displays the
evolution of the mean flow rate as function of the pressure
gradient and for different β . In the lower figure, we show that,
close to the critical pressure, the flow rate also follows a power-
law which can be written on the form

〈q〉 − 〈q〉c ∝ (∇p− ∇pc)
µ , (68)

where qc is a constant obtained by interpolating the data at the
critical pressure. We note here that the exponent µ varies with
the coefficient β . In Figure 9, we report the evolution of this
exponent as a function of 1/ log(β). For β = α = 1 we have the
obvious limiting value µ = 1. As β increases, so does the value of
µ. By plotting µ against 1/ log(β) we estimate the limiting value
for β → ∞, which is consistent with the value µ = 2; the value
suggested by Roux and Herrmann in 1987 [25].

We note that the functional form 〈q〉, Equation (68), based on
the uniform threshold distribution (43), gives a behavior closely

Frontiers in Physics | www.frontiersin.org 8 January 2020 | Volume 7 | Article 225

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Talon and Hansen Effective Rheology of Bi-viscous Fluids

FIGURE 5 | Pathscapes in the network at pressure differences ∇p = 8 (Left) and ∇p = 8.6 (Right). The links in α-mode are not shown. Each link in β-mode have

been assigned a color. The color reflects the length of the path to which the link in β-mode belongs, according to the bar to the right of each network. The shortest

paths are light blue, the longest are dark blue.

FIGURE 6 | Correlation length Lmax as function of the gradient of pressure ∇p (A) or of the distance to the critical pressure |∇p−∇pc| (B) for different value of β. The

solid line correspond to the power law fit given by Equation (67). The system size is 256× 256.

FIGURE 7 | (Left) ν as function of β for system sizes 128× 128, 256× 256 and 1, 024× 1, 024. The data set for L = 128, 256, and 1, 024 are respectively based on

200, 200 and 10 realizations for each value of β. The horizontal line corresponds to the directed percolation exponent ν ≈ 1.72. (Right) Critical gradient of pressure

∇Pc(β) as function of β for the system size 256× 256. The upper line corresponds to directed percolation (pc = 0.644700185(5) [10]). The line below (dashed)

corresponds to the average of the directed polymer algorithm.
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FIGURE 8 | Mean flow rate 〈q〉 as function of the mean pressure gradient (Left) and of the distance to the critical pressure gradient ∇p− ∇pc (Right) for different β.

The solid lines correspond the power law fit given by Equation (68). The system size is 256× 256.

FIGURE 9 | Flow exponent µ as function of 1/ log(β) for a system sizes

L = 128× 128, 256× 256, and 1, 024× 1, 024. The dependence of the

exponent with system size is smaller than the error bars.

related to the one found for the capillary fiber bundle model with
the same type of threshold distribution, see Equation (50), but
with µ = 2. The correlation length exponent ν cannot be defined
in the capillary fiber bundle model.

In section 3.2, we studied the capillary fiber bundle model
with an exponential threshold distribution (51). We have used
the same distribution for the network model considered here. As
in the capillary fiber bundle model, we do not find a power law
of the type (68) in this case, nor do we find a power law for the
correlation length (67).

6. SUMMARY AND CONCLUSIONS

We have explored the behavior of a bi-viscous fluid moving in
a diamond lattice subject to the constitutive Equation (1) for
each link. This system contains a critical point which leads to
the behavior 〈q〉 − 〈qc〉 ∼ (∇p − ∇pc)

µ for the volumetric flow
rate and Lmax ∼ (∇p−∇pc)

−ν for the correlation length when a

uniform threshold distribution is used. However, the two limits of
the ratio between the two parameters representing the mobilities,
β/α → 1 and β/α → ∞, or equivalently, β/α → 0 correspond
to the percolation and the directed polymer problems respectively.
These are problems containing critical points.

There are still a number of open questions concerning this
system. We list them as follows:

• We have only considered ∇p ≥ ∇pc. What happens on the
other side of the critical point?

• The critical exponents µ and ν are functions of the parameter
ratio β/α. Is this a crossover or are we dealing with non-
universal exponents?

• We have only dealt with β ≥ 0. What happens for β < 0? The
limit β → −∞ turns the model into the fuse model. What
happens when β is barely negative? Our numerical algorithm
is not capable of handling this problem.

• It would be more realistic, but also more challenging to
consider a power-law type characteristic for the constitutive
Equation for q ≥ qc. How will this change our conclusions?

• Why do we not see critical behavior for the exponential
threshold distribution in the network model?
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