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Lepton flavor violating processes are optimal observables to test new physics, since

they are forbidden in the Standard Model while they may be generated in new

theories. The usual approach to these processes is to perform the computations in

the physical basis; nevertheless this may lose track of the dependence on some of

the fundamental parameters, in particular on those at the origin of the flavor violation.

Consequently, in order to obtain analytical expressions directly in terms of these

parameters, flavor techniques are often preferred. In this work, we focus on the mass

insertion approximation technique, which works with the interaction states instead of

the physical ones, and provides diagrammatic expansions of the observables. After

reviewing the basics of this technique with two simple examples, we apply it to the lepton

flavor violating Higgs decays in the framework of a general type-I seesaw model with an

arbitrary number of right-handed neutrinos.We derive an effective vertex valid to compute

these observables when the right-handed neutrino masses are above the electroweak

scale and show that we recover previous results obtained for low scale seesaws. Finally,

we apply current constraints on the model to conclude on maximum Higgs decay rates,

which unfortunately are far from current experimental sensitivities.

Keywords: lepton-flavor-violation, Higgs physics, neutrino physics, beyond the Standard Model, seesaw model

1. INTRODUCTION

Lepton flavor violating (LFV) processes are optimal observables to test new physics hypotheses.
This is particularly true for LFV transitions in the charged sector, as they are forbidden in the
Standard Model (SM), and extremely suppressed if one minimally introduces the observed light
neutrino masses. Consequently, any observation of charged LFV transition would be a clear
evidence of new physics beyond the SM (BSM).Moreover, since in several BSM theories this kind of
processes are induced via quantum corrections with new particles running in the loops, exploring
LFV transitions in the intensity frontier allows us to probe the existence of these new particles even
if they are too heavy to be directly produced in any other experiment.

Many BSM theories are constructed following the same steps that succeed in the case of the SM.
First, we write the most general Lagrangian with the chosen symmetries and field content, which
includes some parameters that we may consider as the fundamental parameters of the theory. The
easiest way of doing this is by choosing a field basis in which the conservation of the symmetries,
in particular the gauge symmetries, is explicit, implying in most of the cases that gauge interaction
are diagonal in this basis and that some particles are massless. Therefore, we refer to this basis as
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the interaction basis in general, and also as gauge or flavor basis
for the particular cases of gauge or fermionic fields, respectively.
As a second step, we assume that some of these gauge symmetries
are spontaneously broken to a smaller gauge symmetry group,
as in the case of the electroweak symmetry breaking (EWSB),
providing masses to some of the fields. Nevertheless, these new
mass terms do not need to be diagonal in the interaction basis,
and some non-diagonal terms may appear, mixing different
interaction fields. The basis in which the mass terms are diagonal
is called the mass or physical basis, since it is in this basis
where the parameters could be directly related to observables.
The relation between the two basis is given by a series of unitary
rotation matrices. In some simple cases, we may be able to find
analytical expressions for these rotation matrices in terms of the
original parameters in the interaction basis, however this is not
always possible and we often need to use numerical methods.

The physical basis is the natural choice to compute any
transition in quantum field theory (QFT), since we can properly
define a loop expansion for any observable, such as the LFV
processes we mentioned before. The reason is that, in this basis,
particles have well-defined propagators, meaning that they will
keep their identity unless they interact with other two– or
more– particles. The resulting expressions will be given in terms
of the physical parameters, i.e., physical masses and rotation
matrices. Nevertheless, in many cases it is desirable to have
expressions that, albeit approximate, are given directly in terms
of the fundamental parameters of the interaction basis. Indeed,
this is particularly interesting in the case of flavor transitions,
since we can often track its origin back to few parameters in the
original Lagrangian, e.g., the non-diagonal Yukawa couplings in
many models.

One possibility in order to obtain expressions in terms of
the fundamental parameters is to compute the amplitudes first
in the physical basis, and then expand them using the relations
between the two basis. An interesting possibility in this direction
is given by the Flavor Expansion Theorem [1, 2], which provides
a recipe to translate analytically the expression in the mass
basis to the flavor basis. Unfortunately, this technique may
suffer from limitations when the external momenta and the
masses within the loops are such that the involved loop integrals
suffer from branch cuts [1]. As this will be the case for the
observable we will be interested in, we will not consider this
technique any further. We refer to the original references for
more details.

Alternatively, we will use another technique, the so-called
mass insertion approximation (MIA), which is very powerful
when computing flavor transitions. The main idea behind this
technique is to perform a new computation, independent to
that in the physical basis, working directly in the interaction
basis. In general, the mass matrices will not be diagonal in
this basis and the non-diagonal terms will provide two-point
interactions, the so-called mass insertions, which will allow a
particle to transform into another one along its propagation.
Then, the propagator of a particle is understood as successive
insertions of this kind and, therefore, this technique provides a
diagrammatic expansion of any observable. Although computing
the full series of mass insertions would reproduce the complete

result in the physical basis, in general this is not possible to
do. Nevertheless, in the case where the mass insertions are
small—smaller than the diagonal mass terms—, we can treat
these insertions perturbatively and compute the diagrams in
the interaction basis to a given order in the MIA expansion.
For this reason, the MIA technique is very useful to compute
LFV processes, since the strong experimental bounds suggest
that any kind of parameter leading to LFV transitions should
be small.

In order to show the applicability of the MIA for computing
flavor transitions, we apply it here to the case of LFV Higgs
decays (LFVHD). The motivation to choose these observables
is the strong experimental effort that both ATLAS and CMS
are doing in the search for this kind of decays, which
we summarize in Table 1 with the current upper bounds.
Furthermore, the LHCb collaboration has also performed similar
searches [6]. From the theoretical side, these observables have
also been studied very actively, exploring their potential to probe
BSM theories such as neutrino mass models [7–15], minimal
flavor violation [16–19], supersymmetric models [20–38], two
Higgs doublet models [39–43], composite Higgs models [44],
models with extra dimensions [45–48], effective Lagrangians
[49–54] and many others [55–68]. Indeed, some of these
works used the MIA technique for computing the LFVHD
rates [13, 33].

The particular model we will choose to perform the MIA
computations will be a general type-I seesaw model [69–73],
where an arbitrary number of right-handed (RH) neutrinos are
added to the SM. This kind of models are very well motivated
from the observation of neutrino oscillations [74–77], and it
is well-known that they may lead to sizable LFV transitions,
see for instance the recent review [78] and references therein.
Furthermore, it has been shown that the MIA works very well
in this context [13, 79].

The paper is organized as follows. We start by describing
the basics for a MIA computation in section 2, providing two
simple examples with the explicit computations in the case of
small and large mass insertions. Then, in section 3 we apply this
technique to the case of the LFV Higgs decays in a general seesaw
model. We use it to derive an effective vertex in the case of heavy
RH neutrinos, which helps to compare the results with current
experimental bounds from other observables and to conclude
on maximum allowed LFVHD rates. Finally, we conclude in
section 4. Further details on the computation and heavy mass
expansions are provided in the Appendices.

TABLE 1 | Present experimental upper bounds on lepton flavor violating Higgs

boson decays.

LFV Obs. Present upper bounds (95% C.L.)

BR(H → µe) – 3.5× 10−4 CMS (2016) [3]

BR(H → τe) 4.7× 10−3 ATLAS (2019) [4] 6.1× 10−3 CMS (2018) [5]

BR(H → τµ) 2.8× 10−3 ATLAS (2019) [4] 2.5× 10−3 CMS (2018) [5]

Here BR(H → ℓkℓm ) ≡BR(H → ℓk ℓ̄m )+BR(H → ℓ̄kℓm ).
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2. BASICS FOR A MASS INSERTION
APPROXIMATION COMPUTATION

In many models, spontaneous symmetry breaking is behind
particle masses. It leads to quadratic terms in the Lagrangian,
which implies a mass matrix in the interaction basis. In general,
this matrix is non-diagonal and when it is diagonalized the
physical basis is derived. This latter basis is in general the chosen
basis to perform QFT computations, as it is possible to properly
define a loop expansion for a given observable. Nevertheless,
when doing this one usually loses track of the parameters
in the interaction basis. On the other hand, having analytical
expressions for a given observable in terms of the fundamental
parameters of the theory, it is possible to extract information
about them from the experimental measurements directly.

In order to work with the fundamental parameters in
the computation of a given observable, the mass insertion
approximation provides a powerful tool. This method is
a diagrammatic diagonalization of the mass matrix in the
interaction basis: in this approach the diagonal entries are
considered as the mass parameters, while the non-diagonal
ones are interpreted as two-point interactions (the so-called
mass insertions) of the corresponding states. In this context,
the propagator of a given state is constructed from the
successive mass insertions connecting two different fields
and the interaction states are dressed with these consecutive
interactions. The exact diagonalization corresponds to a
complete resummation of the infinite mass insertions that can
occur in the propagation. In general, it is not possible to do this
exact resummation, and therefore an approximation is used: as in
a Taylor expansion, a dimensionless parameter is defined as the
ratio of the non-diagonal mass insertion over the diagonal mass
parameter, and its magnitude defines how many mass insertions
must be taken into account to achieve a given precision in
the expansion. In a general model, the hierarchy between the
different mass scales defines different dimensionless parameters.

In this section, we present two examples as an illustration
of the application of this technique. The first one corresponds
to a situation in which the non-diagonal terms are smaller that
the diagonal ones. Then we show that the first two terms in the
MIA expansion reproduce the computation in the physical mass
basis to that order. The second example represents the opposite
situation: the non-diagonal parameters are larger than the
diagonal ones, and we need to perform a complete resummation
of the infinite mass insertions.

2.1. First Example: Small Mass Insertions
As a first example of the MIA application, we consider a toy-
model composed of three real scalar fields ρ, 81 and 82 in the
interaction basis, with the following the Lagrangian:

Lgauge =
1

2
(∂µρ)

2 −
1

2
µ2
ρ ρ

2 +
1

2
(∂µ8I)

2

−
1

2
M2

IJ8I8J − λIJ 8I8J ρ , (1)

with an implicit sum over I, J is understood.

For simplicity, we assume a real and symmetric squared mass
matrix but not aligned in the interaction space:

M2 =
(
M2 m2

m2 M2

)
, (2)

and a cubic interaction between the scalar ρ with the8 fields that
is diagonal in interaction space:

λ =
(
λ 0
0 λ

)
. (3)

The mass matrix M2 can be diagonalized by an orthogonal
matrixO:

φi = OIi8I H⇒ OTM2O = diag(M2
+,M

2
−) , (4)

defining a physical basis φ±, with physical masses given by

M2
± = M2 ±m2 . (5)

Therefore, the Lagrangian in the physical basis is:

Lphys =
1

2
(∂µρ)

2 −
1

2
µ2
ρ ρ

2 +
1

2
(∂µφ+)

2 −
1

2
M2

+φ
2
+

+
1

2
(∂µφ−)

2 −
1

2
M2

−φ
2
− − λ

(
φ2+ρ + φ2−ρ

)
. (6)

Let us consider the one-loop contributions to the self-energy
of the ρ scalar field: in the physical basis, they come from
the Lagrangian of Equation (6) and correspond to the sunset
topology of Figure 1, with φ± running in the loop. They are
expressed as function of the one-loop integrals defined in
Appendix 1:

− i5(q) =
∫

dDk

(2π)D
(−iλ)

i

k2 −M2
+
(−iλ)

i

(k+ q)2 −M2
+

+
(
M+ → M−

)

=
i

16π2
λ2
(
B0(q,M+,M+)+ B0(q,M−,M−)

)
. (7)

Notice that, in this example, the matrix O is not involved in the
computation in the physical basis. This is due to the simplicity
of our model, where we assumed λ = λ1 and therefore O is not
present in Equation (6). In a more general case, the expressions
in the physical basis are given terms of the physical masses and
the rotation matrices.

In order to illustrate how the MIA works, we assume that
the non-diagonal entry in the mass matrix M2 of Equation (2)
is much smaller than the diagonal one. Then the dimensionless
parameterm2/M2≪1 is defined and it controls the diagrammatic
expansion in the interaction basis. Now, considering the
interaction fields 81,2 of Equation (1) running in the loop with
an associated mass parameter M and the two-point interaction
∼ m28182 as the mass insertion, the systematic procedure
is to add successive mass insertions up to a given order. In
Figure 2, the first two contributions in the MIA are shown: they
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FIGURE 1 | One-loop contributions to the self-energy of the scalar ρ in the physical basis, corresponding to the Lagrangian of Equation (6).

correspond, respectively, to the leading order (LO) with no mass
insertions, and to the next to leading order (NLO) with two
insertions. In this example we cannot close the loop with an odd
number of mass insertions in the sunset topology, since the cubic
interactions are diagonal. Notice that all these MIA diagrams are
at the same loop level, that of the corresponding diagrams in the
physical basis, however they are of different order in the MIA
expansion. Therefore, in this approach we have an expansion for
the self-energy at the one-loop level as

− i5MIA(q) = −i5MIA
LO (q)− i5MIA

NLO(q) + ... (8)

where the dots are contributions with more mass insertions
and, thus, suppressed by higher powers of the dimensionless
parameterm2/M2.

The LO contribution in the MIA has the same type of
diagrams than in the physical mass basis, but the interaction
states81,2 are running in the loop now. Then,

− i5MIA
LO (q) =

i

16π2
2λ2B0(q,M,M) . (9)

On the other hand, there are six diagrams contributing to the
NLO order in the MIA. Each one has two mass insertion, so they
are proportional to m4. Explicitly, the one-loop integral for the
middle-left diagram in Figure 2 is given by,

∫
dDk
(2π)D

(−iλ) i
k2−M2

(
−im2

)
i

k2−M2

(−iλ) i
(k+q)2−M2

(
−im2

)
i

(k+q)2−M2

= i
16π2 λ

2m4D0(0, q, 0,M,M,M,M) . (10)

Then, the NLO contribution in the MIA is:

− i5MIA
NLO(q) =

i2λ2m4

16π2

[
D0(0, q, 0,M,M,M,M)

+ D0(0, 0, q,M,M,M,M)+ D0(q, 0, 0,M,M,M,M)
]

= −
i

16π2

4λ2m4

q2 − 4M2




1

M2
+ 2

log

(
2M2−q2+

√
q2(q2−4M2)

2M2

)

√
q2(q2 − 4M2)


 .

(11)

The analytical comparison between the MIA and the physical
basis results is obtained when the physical masses (and thematrix

rotations if any) are expressed in terms of the gauge parameters
and the physical basis expressions are expanded up to a given
order. In this example, since we have used the MIA up to two
insertions, we need to expand the expression in the physical basis
up to O(m4/M4). From Equations (5) and (7), the physical basis
computation of the scalar ρ self-energy in terms of the gauge
interaction parameters is

− i5(q) =
i

16π2
λ2
(
B0

(
q,
√
M2 +m2,

√
M2 +m2

)

+B0

(
q,
√
M2 −m2,

√
M2 −m2

))
. (12)

This two-point B0 one-loop function, participating also in the LO
contribution of the MIA in Equation (9), is given by

B0
(
q,w,w

)
=

2

4− D
− γE + log

(4πµ2

w2

)
+ 2

+

√
q2(q2 − 4w2) log

(
2w2−q2+

√
q2(q2−4w2)

2w2

)

q2
, (13)

where γE is the Euler-Mascheroni constant and µ is the usual
scale for dimensional regularization.

We can now expand the expression obtained in the physical
basis, Equation (12), under the assumption of m2 ≪ M2. At
zero order, m = 0, this equation trivially leads to the LO MIA
contribution in Equation (9). The next terms in the expansion
are of order m4/M4, and lead to the NLO MIA expression in
Equation (11). Similarly, one could check that higher order terms
m8/M8,m12/M12, . . . will correspond to higher order terms in
the MIA expansion with 4, 6, . . . insertions.

We remark again that the simplicity of the present toy-
model allows us to compare explicitly the MIA results with the
expansion of the physical basis results, due to the analytical
diagonalization of the 2 × 2 mass matrix. In a more complex
situation, this diagonalization is only performed numerically,
and thus the dependence on the interaction parameters is
missed. Moreover, the computational effort could be huge for
higher dimension mass matrices. In that context, the MIA
diagrammatic computation is a powerful tool in order to
work with the interaction parameters explicitly. As we said,
the MIA results correspond to a perturbative calculation in a
dimensionless parameter.
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FIGURE 2 | One-loop contributions to the self-energy of the scalar ρ in the interaction basis. The first row corresponds to the LO in the MIA calculation (there is no

mass insertion), while the second and third rows define the NLO (there are two mass insertions denoted by crosses).

2.2. Second Example: Large Mass
Insertions
Now we analyze a situation in which a non-diagonal entry of the
mass matrix is larger than a diagonal one, i.e., the corresponding
dimensionless parameter results larger than 1. In that case, an
exact resummation of this large mass insertion is needed. In
particular, we consider a Dirac spinor ψ = PLψ + PRψ =
ψL + ψR with mass M and momentum p. The corresponding
quadratic terms of the free Dirac Lagrangian are

LD = ψ̄/pψ −Mψ̄ψ

= ψL/pPLψL + ψR/pPRψR − ψLMPLψL − ψRMPRψR

=
(
ψL ψR

) ( /pPL −MPR
−MPL /pPR

)(
ψL

ψR

)
, (14)

where we have a matrix of dimension 2 in chiral space (PL,R =
(I ∓ γ5)/2). This approach is equivalent to having two massless
fermions ψL and ψR interacting through the mass insertion M.
The corresponding massless propagators are the inverse of the
kinetic terms:

PropψL
=

i/p

p2
PR and PropψR

=
i/p

p2
PL . (15)

As before, the dimensionless parameter of the MIA expansion
should be the ratio between the mass insertionM and the mass of
the fermions. However, the latter is zero in this example, implying
an infinitely large expansion parameter. This fact can be solved by
defining a dressed propagator that accounts for a resummation
of all the insertions of this kind. In the chiral basis, there are
four types of propagators depending on the chiralities of the
connected fermions (LL, LR, RL, and RR), as showed in Figure 3.
Here, the thin lines represent the massless propagators, the blacks
dots are the mass insertions and the thick lines correspond to the

dressed propagators (after the resummation of the successive two
point interactions). The dressed propagators that connect two
fermions with the same chirality contain an even number of mass
insertions, while the ones connecting two opposite chiralities
have an odd number of mass insertions.

Explicitly, the propagator connecting two left-handed
fermions (LL) corresponds to the geometric series:

Prop L→L =
i/p

p2
PR +

i/p

p2
PR(−iMPR)

i/p

p2
PL(−iMPL)

i/p

p2
PR + · · ·

=
i/p

p2

∑

n≥0

(
M2

p2

)n

PR =
i/p

p2 −M2
PR , (16)

and the propagator connecting two right-handed fermions (RR)
is obtained with the interchange PL ↔ PR:

PropR→R =
i/p

p2 −M2
PL . (17)

In the same way, the propagator connecting opposite chiralities
(LR) comes from the geometric series:

Prop L→R =
i/p

p2
PL(−iMPL)

i/p

p2
PR +

i/p

p2
PL(−iMPL)

i/p

p2
PR(−iMPR)

i/p

p2
PL(−iMPL)

i/p

p2
PR + · · · =

iM

p2

∑

n≥0

(
M2

p2

)n

PR

=
iM

p2 −M2
PR , (18)

and the propagator RL results from the LR after interchanging
PL ↔ PR:

PropR→L =
iM

p2 −M2
PL . (19)
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FIGURE 3 | Diagrammatic interpretation of the dressed propagators (thick lines) for the same and opposite chiralities as an infinite series of successive mass

insertions (black dots) between two massless propagators (thin lines).

From the previous relations, we can interpret that the successive
non-diagonal two-point interactions dress the propagator
providing the corresponding masses. It is important to connect
this approach with four types of propagators with the standard

one of the Dirac propagator
i(/p+M)
p2−M2 : in a generic process

with a Dirac propagator, the MIA approach produces four
diagrams with the LL, LR, RL and RR propagators. Adding
these contributions from Equations (16–19), the complete Dirac
propagator is restored. This procedure works in a generic context
of two interacting states, as we will see in the next Section for the
type-I seesaw model.

3. MIA IN PRACTICE: LFV HIGGS DECAYS
IN A GENERAL SEESAW MODEL

In order to better illustrate the discussion in the previous
Section, we apply next the MIA technique to the particular
example of LFV Higgs decays in a general type-I seesaw
model (GSS), where N right-handed neutrinos are added to
the SM. The full computation in the neutrino mass basis1

was done in Arganda et al. [9]—see also Pilaftsis [7]—, and
the final expressions after correcting some typos can be found
in Marcano [80]. The MIA technique was applied to the
particular case of the inverse seesaw model with three pairs
of degenerate sterile fermions [13]. Here, we generalize these
results to a GSS and discuss how to apply them to the
particular case of low scale seesaw models, recovering the
results of Arganda et al. [13] in the proper limit. Finally, we
apply the constraints from the global fit analysis in Fernandez-
Martinez et al. [81] to conclude on the maximum allowed H →
ℓkℓm rates.

3.1. Model Setup for the MIA
We consider a general type-I seesaw model where the SM is
extended with N right-handed neutrinos. The corresponding
Lagrangian is given by

LGSS = −Y ia
ν Li8̃νRa −

1

2
Mab ν c

Ra
νRb + h.c. (20)

1Notice that, in these references, particular realizations of the type-I seesaw model
were considered. Nevertheless, since the expressions are given in the physical basis,
the generalization to a GSS is trivially obtained by just changing the range of
neutrino indices.

where L is the SM left-handed lepton doublet and 8̃ = iσ28
∗

with 8 the SM Higgs doublet. The fundamental parameters of
the model are then the neutrino Yukawa coupling Yν , which is a
3 × N complex matrix, and the Majorana mass matrix M which
is a N × N symmetric matrix that violates lepton number in two
units. The C-conjugate is defined as usual as ψ c = Cψ̄T , where
we can choose C = iγ2γ0. After the EWSB, this Lagrangian leads
to a neutrino mass matrix that, in the flavor basis (ν c

L , νR), reads

MGSS =
(

0 mD

mT
D M

)
, (21)

with the Dirac mass matrix defined as mD = vYν and v ≃
174 GeV. In the seesaw limit, the non-diagonal entries mD are
smaller than the diagonalM and, therefore we can perform aMIA
computation, which will be defined as a perturbative expansion in
powers ofmD/M.

Moreover, and despite the fact we will be interested in
expressing our results in terms of the EW parameters mD and
M, we recall that in this seesaw limit the physical masses of the
heavy neutrino will be approximately given by theMajoranamass
matrixM, and that the active-sterile mixings in the physical basis
will be of the order mD/M. Thus, our MIA computation will be
in this sense an expansion in terms of active-sterile mixings.

As discussed in the previous Section, the first step in a MIA
computation is choosing the proper basis. Despite the fact that
the MIA works in the flavor basis, it is not mandatory to work
with the full model in this basis, and it is actually convenient to
choose the basis for each sector independently. For the present
exercise of computing the LFV Higgs decays at one-loop, we will
choose a hybrid basis: we will work with the flavor basis for the
neutrino sector, while the rest of the fields will be taken in their
mass basis. The latter will apply to the external fields, Higgs boson
and charged leptons, as well as to the gauge andGoldstone bosons
in the loops, which we will treat in the Feynman-’t Hooft gauge2.
By doing this, we will obtain a useful expression for the LFVHD
rates in terms of the new flavor parameters in Equation (20) and
those already known SM parameters in the physical basis.

Moreover, in the following we will choose the νR basis such
that the Majorana mass matrix is real and diagonal. Notice that
we can do this without any loss of generality, and it will only
imply that, for models whereM is not diagonal at the beginning,

2A full computation in a general Rξ gauge and proof of gauge invariance can be
found in Arganda et al. [13].
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we will need to diagonalize it first, as we will do explicitly
when discussing low scale seesaw models in section 3.3. If M is
diagonal, then the only lepton flavor changing mass insertion will
be the Dirac mass term and, consequently, our MIA computation
will be defined as an expansion of successive mass insertions of
mD. Nevertheless, in the computation of our observable there
is another source of LFV coming from the Yν of the cubic
interactions between the νR with the L doublet and the H and
Goldstone bosons, see the first term of Equation (20). Since the
actual source of LFV is the same in both interaction and mass
insertion, it will be convenient to consider the Yukawa coupling
as the relevant LFV parameter for the expansion and organize our
contributions in powers of the Yν , as we will see later.

Once we have chosen to work in the flavor basis for
the neutrino sector, the Majorana mass matrix MGSS can be
understood as the collection of all the relevant mass insertions.
From the one side, the already mentioned mD will mix the νL
and νR fields and we will denote it with a cross, as in Figure 4.
Since every insertion of this kind will introduce a new νR field,
each new insertion is expected to be suppressed by inverse powers
of the heavy mass M and, therefore, we can treat the mD mass
insertions perturbatively. On the other hand, the mass term
M can be understood as a – lepton number violating – mass
insertion between the νR and ν c

R fields. This mass insertion,
however, is not small and, thus, we need to resum all possible
insertions of this kind. Following the discussion in the previous
section 2.2, we can define two kinds of dressed propagators, a
lepton number conserving (LNC) one with any even number of
insertions, and a lepton number violating (LNV) one with an odd
number of insertions:

Prop νRa→νRa
= PR

i

/p

∑

n≥0

(
M2

a

p2

)n

PL = PR
i/p

p2 −M2
a

PL ,

(22)

Prop νRa→ν cRa
= PL

iMa

p2

∑

n≥0

(
M2

a

p2

)n

PL = PL
iMa

p2 −M2
a

PL ,

(23)

where Ma is the corresponding element of the diagonal mass
matrix M. Notice that we are interested in computing a lepton
number conserving process; hence, it will be enough to consider
the first of these dressed propagators.

With this setup, the computation is basically the same
than that performed in Arganda et al. [13], with the dressed
propagator in Equation (22) playing the role of the fat-propagator
in Arganda et al. [13]. All the other Feynman rules relevant for the
computation of the LFVHD are the same, so we refer to Arganda
et al. [13] for further details and conventions.

3.2. The MIA Computation and the Heavy
Mass Expansions
We are interested in computing the LFV process H(p1) →
ℓk(−p2)ℓ̄m(p3), whose decay amplitude can be generically
decomposed in terms of two form factors FL and FR [9],

iM = −igūℓk (−p2)(FLPL + FRPR)vℓm (p3) , (24)

In order to further simplify our expressions, one could neglect
the masses of the charged leptons with respect to the Higgs boson
mass. Nevertheless, the form factor FL(R) is proportional tomℓk(m) ,
so we cannot fully neglect lepton masses and we need to keep
the leading term. Using the fact that charged lepton masses are
hierarchical, we work under the hypothesis mℓm ≪ mℓk . Then,
it is enough to consider the FL form factor for the H → ℓkℓ̄m
decay, keeping the leading contribution in mℓk and neglecting
any additional contribution from charged lepton masses3. Then,
the partial decay width can be written as:

Ŵ(H → ℓkℓ̄m) =
g2

16π
mH |FL|2 . (25)

Equivalently, in this case where mℓm ≪ mℓk , FR dominates in
the CP-conjugated process H → ℓmℓ̄k. In the Feynman-’t Hooft
gauge and in the neutrino mass basis, these form factors receive
contributions from the diagrams in Figure 5,

FL,R =
10∑

i=1

F
(i)
L,R . (26)

We remark that the definition of mass basis depends on
the perturbation order considered, as loop corrections will
generically modified the mass matrix adding non-diagonal terms,
which need to be rotated away. We chose to work with the
tree-level mass basis and, consequently, we need to include the
self-energy corrections to the external legs, last line in Figure 5.
Alternatively, one can work with the one-loop level mass basis,
which would rotate away those diagrams. Nevertheless, both
techniques are equivalent at the one-loop level.

The full analytical expressions for these form factors can be
found in Marcano [80]. These expressions are given in terms of
the physical neutrino masses and the unitary matrix that relates
the flavor and physical basis, so the analytical dependence on the
initial parameters in Equation (20) is lost. Morover, evaluating
numerically these expression could be time consuming, in
particular when the amount of right-handed neutrinos is large.
Therefore, it would be useful to have expressions which are given
directly in terms of the flavor parameters in Equation (20), even
if they are approximations.

As we already know the full result in the physical basis, we
could in principle apply the Flavor Expansion Theorem proposed
in Dedes et al. [1]. Nevertheless, this technique requires that the
external momenta are smaller than the masses running in the
loops, and this is not the case in the decay process H → ℓkℓ̄m
due to the fact that the external momentum of the on-shell Higgs
is larger than the νL andW masses. Therefore, we do not consider
this technique for this computation. We perform instead a MIA
expansion, since it can be applied even when light masses are
running in the loops.

In the MIA, this process can be computed as an expansion of
the relevant LFV mass insertions, which in our case are the Dirac

3For complete results, we refer to Arganda et al. [13] and Marcano [80].
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FIGURE 4 | Relevant (dressed) propagators and LFV mass insertion for a general seesaw. All the other Feynman rules needed for the computation of H → ℓk ℓ̄m at

one-loop can be found in Arganda et al. [13].

FIGURE 5 | One-loop diagrams in the Feynman-’t Hooft gauge for the process H → ℓk ℓ̄m in the neutrino mass basis.

mass terms, or equivalently the Yukawa couplings. Thus, each of
the diagrams in Figure 5 can be computed in the MIA as,

F
MIA (i)
L,R = F

MIA (i)
L,R

∣∣
Y2
ν
+ F

MIA (i)
L,R

∣∣
Y4
ν
+ . . . (27)

The fact of having only even powers of Yν is related to the right-
handed neutrinos, whose presence is needed to induce the LFV
transition. Since they only interact via the Yukawa couplings,
each (dressed) RH propagator will introduce two Yν , one at each
edge of the propagator. This means that the LO termsO(Y2

ν ) will
come fromMIA diagrams with only one RH propagator, the NLO
corrections O(Y4

ν ) from diagrams with two, and so on. Being the
Yukawa coupling perturbative, it should be enough to compute
the first contributions to this expansion. Moreover, the addition
of RH propagators will introduce inverse powers ofM and ensure
the convergence of Equation (27) as a perturbative expansion in
terms ofO(m2

D/M
2).

We collect the MIA results in Appendix 1, as well as
the relevant Feynman diagrams entering the computation.
We include the complete O(Y2

ν ) terms, which give a good
description of the observable when the Yukawa couplings are
small. Nevertheless, for large Yukawa couplings, we need to

compute also some of the O(Y4
ν ) terms [13], which are not as

suppressed as we may naively expect from the above discussion.
These dominantO(Y4

ν ) terms are also given in Appendix 1.
In order to better understand this point, it is useful to

analyze our results when the Majorana scale is heavier than the
electroweak scale. Indeed, the O(Y4

ν ) terms may become relevant
when the Yukawa couplings are large and, since we are working
under the hypothesismD≪M, it implies heavyMajorana masses.
Under this hypothesis of heavyM, the loop integrals contributing
to the form factors in Apendix 1 can be expanded in inverse
powers of M, as shown in Appendix 2. The obtained result for
the form factor can be interpreted as a low-energy effective vertex
induced from heavy Majorana neutrinos, FL ≡ Veff

Hℓkℓ̄m
.

In this heavy Majorana mass limit, the O(Y2
ν ) terms in the

MIA expansion contribute dominantly to the order O(m2
D/M

2),
as expected. Similarly, we might naively expect that the O(Y4

ν )
will contribute as O(m4

D/M
4) and will be, therefore, negligible.

Nevertheless, it turns out that some diagrams lead to O(Y4
ν )

terms that are suppressed only by two inverse powers of M, and
thus they are important to take into account for a good MIA
prediction. Indeed, for very large couplings O(Yν) ∼ 1, these
terms may become the dominant ones. In the particular process
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we are considering, they come from diagrams of type (1), (8),
and (10) in Figure 5, whose dominant MIA O(Y4

ν ) diagrams are
shown in Figure A2.

It is interesting to discuss a bit more the presence of this
kind of unsuppressed O(Y4

ν ) terms in different LFV observables
induced from heavy neutrinos. Besides in the LFV Higgs decays,
similar contributions were found in the context of LFV Z boson
decays [79], which at the same time suggests that they are also
present in LFV 3-body decays, such as ℓk → 3ℓm, due to the
strong correlation between these two latter observables [82, 83].
On the contrary, these terms are not present in the case of LFV
radiative decays ℓk → ℓmγ [10]. The difference could be tracked
to the fact that neutrinos do not couple to the photon, but they do
couple to theH and Z bosons, leading for example to diagram (1)
in Figure 5 for the LFVHD, which is not present in the ℓk → ℓmγ

process4. The fact that the radiative decays are different for these
other LFV processes is very interesting, as the former are usually
the most constraining LFV processes, however this may not be
true at very large Yukawa couplings due to these additional terms.

Now, collecting all the relevant terms ofO(M−2), we arrive to
the following effective vertex for the LFV H → ℓkℓ̄m decay,

Veff
Hℓk ℓ̄m

=
1

64π2

mℓk
mW

[
m2

H

M2
a

(
r
(m2

W

m2
H

)
+ log

(
m2

W

M2
a

))(
Yka
ν Y†am

ν

)

−2v2G(Ma,Mb)
(
Yka
ν (Y†

νYν )
abY†bm

ν

)]
, (28)

where we have defined:

r(λ) = −
1

2
− λ− 8λ2

+ 2(1− 2λ+ 8λ2)
√
4λ− 1 arctan

(
1

√
4λ− 1

)

+ 16λ2(1− 2λ) arctan2
(

1
√
4λ− 1

)
,

G(x, y) =
x2 − y2 + (x2 − 2y2) log

(
x2

y2

)

(x2 − y2)2
, G(x, x) =

3

2x2
. (29)

For the physical values of mH = 125 GeV and mW = 80.4 GeV
we have r(m2

W/m
2
H) ∼ 0.31. We recall again that this expression

is valid under the assumption of heavy Majorana masses M ≫
v and in the seesaw limit mD ≪ M, since we only kept the
O(M−2) terms and we performed the computation at NLO in
the MIA expansion. As we will see later, these terms are enough
to reproduce the full results to a good accuracy in the parameter
space that is still allowed by current constraints.

In Equation (28), we have to sum over the indices a and b,
which run over the RH neutrinos. In general, all of them will
contribute and the indices will run from 1 to N. Nevertheless,
in some interesting cases some of the RH neutrinos might
be very heavy and they will completely decouple from the
observable. Since the contribution to any very heavy neutrino to

4In the neutrino mass basis, this can be understood as the additional contribution
due to the neutrino neutral current, as discussed in e.g., Pilaftsis et al. [7] andAbada
et al. [84].

Equation (28) is negligible, decoupling a RH neutrino is indeed
equivalent to restricting the range of a and b to those (non-
decoupled) right-handed neutrinos, which are still light enough
to contribute.

Another interesting limit corresponds to the case with
complete degenerate RH neutrinos, i.e., M1 = ... = MN ≡ M.
In this case, the effective vertex corresponds to

Veff
Hℓkℓ̄m

=
1

64π2

mℓk
mW

[m2
H

M2

(
r
(m2

W

m2
H

)
+ log

(
m2

W

M2

))
YνY

†
ν

−
3v2

M2
YνY

†
νYνY

†
ν

]km
.(30)

Notice that, even if have focused on the H → ℓkℓ̄m channel, the
effective vertex Veff

Hℓmℓ̄k
of the CP-conjugated process H → ℓmℓ̄k

can be easily obtained by conjugating (Equation 28):

Veff
Hℓmℓ̄k

=
(
Veff
Hℓkℓ̄m

)∗
, (31)

which is equivalent to interchanging the flavor index of the
charged leptons k andm in the Yukawa couplings.

Finally, the branching ratio for the process Veff
Hℓkℓ̄m

can be

computed by just plugging the corresponding effective vertex in
Equation (25),

BR(H → ℓkℓ̄m) =
g2

16π

mH

Ŵtot
H

|Veff
Hℓkℓ̄m

|2 , (32)

where Ŵtot
H is the total width of the Higgs boson.

In order to illustrate the accuracy of the effective vertex, we
show in Figure 6 the predictions for H → τ ē computed using
the full expressions in the mass basis (solid lines) as well as
using the approximated expression in Equation (32). Moreover,
we quantify the agreement by means of the ratio R, defined
as the approximated prediction over the full one. We choose
here a particular realization of the seesaw model that we will
introduce in Equation (50), although we found similar results for
other examples. The differences between the two panels are the
heavy neutrino masses, chosen to be degenerated in the left and
hierarchical in the right. The overall conclusion from this figure is
that the effective vertex in Equation (28) works very well in both
cases, as long as the conditionmD ≪M is fulfilled.

3.3. Connection to Low Scale Seesaw
Models
As a particular but interesting application of the effective vertex
in Equation (28), we apply it to the so-called low scale seesaw
models (LSS), such as the inverse [85–87] or linear [88] seesaw
models. These models are of great phenomenological interest
since they can introduce relatively light heavy neutrinos with
large Yukawa couplings, and still accommodate naturally the
observed light neutrino masses. Moreover, this will also allow us
to compare with existing results in the inverse seesawmodel [13].

The common feature in all these models is the imposition of
an approximate conservation of lepton number [89], which is
only violated by some small parameter related to light neutrino
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FIGURE 6 | Prediction for BR(H → τ ē) using the exact computation (solid lines) and the effective vertex in Equation (28) (dashed lines). The ratio R = BRVeff /BRFull

quantifies the agreement between both predictions. The particular seesaw scenario is defined in Equation (50), with Y0 controlling the global strength of the Yukawa

coupling. We consider degenerated heavy neutrinos in the left (MR2
= MR1

) and hierarchical in the right (MR2
= 10MR1

).

masses. The difference between each particular low scale seesaw
realization is precisely the nature or origin of this small LNV
parameter. However all of them share the same lepton number
conserving limit. In our case of study, the LFVHD are LNC
processes, and thus the small LNV parameters will not play any
important role and we can be neglected. This means that we
can expect to have the same LFVHD rates for all these low scale
seesaw models.

The LNC low scale seesaws could be realized by adding nν
pairs of new fermionic singlets with opposite lepton number,
which we denote νaR and νaS , respectively, with a = 1, . . . , nν .
For the purpose of this discussion, we are just interested in the
neutrino mass matrix5, which in the (ν c

L , νR, νS) basis reads as

MLSS =




0 vYLSS 0
vYT

LSS 0 MR

0 MT
R 0


 , (33)

where YLSS andMR are, respectively, 3×nν and nν×nν matrices,
and the zeros have the proper dimensions so the total MLSS

matrix is a (3+ 2nν) symmetric matrix.
In order to apply our results from the previous Section,

the first step is to rotate the heavy neutrino sector to its
diagonal form,

UTMLSS U =
(

0 mD

mT
D Mdiag

)
(34)

where now the dimensions of the new Dirac mD and Majorana
massMdiag matrices are 3× 2nν and 2nν × 2nν , respectively, and
U is a unitary matrix rotating the neutrino sector. Without any

5For more details on LSS, see for instance [90].

loss of generality, we can assume thatMR is already diagonal and,
therefore, the diagonalization becomes trivial,

U =
(
13 0
0 V

)
,

withMdiag = VT

(
0 MR

MR 0

)
V =

(
MR 0
0 MR

)
, (35)

where the unitary matrix V just contains rotations of π/4 and
i factors to make the entries of Mdiag possitive. In general, this
unitary rotation is defined by four blocks of nν × nν

V = 1/
√
2

(
1nν −i1nν
1nν i1nν

)
. (36)

Finally, the new Dirac mass matrix is given by

mD =
(
vYLSS 0

)
V =

v
√
2

(
YLSS − i YLSS

)
. (37)

We have now all the pieces needed to compute the H → ℓkℓ̄m
process, we just need to plug the Dirac matrix mD = vYν of
Equation (37) and the Mdiag of Equation (35), in the effective
vertex of Equation (28). For instance, we can consider the same
setup as in Arganda et al. [13], where all the entries of MR are
degenerate. In that case, we can use the Equation (30), with

mDm†
D =

v2

2

(
YLSS − i YLSS)

(
Y†
LSS

i Y†
LSS

)
= v2 YLSS Y

†
LSS , (38)

resulting in the effective vertex

Veff
Hℓkℓ̄m

=
1

64π2

mℓk
mW

[m2
H

M2
R

(
r
(m2

W

m2
H

)

Frontiers in Physics | www.frontiersin.org 10 January 2020 | Volume 7 | Article 228

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Marcano and Morales Flavor Techniques for LFV Processes

+ log

(
m2

W

M2
R

))
YLSSY

†
LSS −

3v2

M2
R

YLSSY
†
LSSYLSSY

†
LSS

]km
,(39)

which is agreement with the result in Arganda et al. [13], obtained
for the particular case of the inverse seesaw model. Notice that,
even that this equation seems to be the same as Equation (30), it is
now expressed in terms of the parameters of the low scale seesaw
parameters in Equation (33), whose physical interpretation is
different from the parameters in Equation (21).

3.4. Numerical Analysis of the LFV Higgs
Decays
We conclude this section by applying the derived effective vertex
to study how large the LFVHD rates could be in a GSSmodel after
having considered possible constraints from other observables.
For that purpose, we will follow the global fit analysis done
in Fernandez-Martinez et al. [81], where two different scenarios
were considered: a model with only 3 heavy RH neutrinos (3N-
SS), and a general seesaw with an arbitrary number of them,
as in Equation (20). In both case, the Authors obtained upper
bounds on the η matrix, a small Hermitian matrix encoding the
deviations from unitarity in the light neutrino mixing. In our
case, this matrix can be expressed as6,

η =
1

2
mDM

−2m†
D =

1

2
v2YνM

−2Y†
ν , (40)

and, at the 2σ level, it is bounded to be below7

∣∣2ηkm
∣∣ ≤ 10−3 ·




2.5 0.024 2.7
0.024 0.4 1.2
2.7 1.2 5.6


 . (41)

It is interesting to analyze first the 3N-SS case, as it is simpler. If
we assume again the LNC limit, then it can be implemented by

Y3N-SS
ν =




Ye 0 0
Yµ 0 0
Yτ 0 0


 , M3N-SS =




0 3 0
3 0 0
0 0 3′


 . (42)

Notice that in this LNC limit light neutrinos are strictly
massless, but they can be accommodated by introducing small
LNV parameters in these matrices [81]. Nevertheless, since
the LFVHD do not violate lepton number, these small LNV
parameters will not be relevant for our observable and, therefore,
we neglect them in the following.

In this scenario, the effective vertex in Equation (28) becomes,

V3N-SS

Hℓkℓ̄m
=

1

64π2

mℓk
mW

YkY
∗
m

{
m2

H

32

(
r
(m2

W

m2
H

)
+ log

(m2
W

32

))

−
3v2

32

(
|Ye|2 + |Yµ|2 + |Yτ |2

)}
, (43)

6Notice that our definition of Yν corresponds to Y†
ν in Fernandez-Martinez

et al. [81].
7These bounds correspond actually to the GSS, although very similar bounds are
obtained for the 3N-SS scenario.

where we have used that YνY
†
νYνY

†
ν =(

|Ye|2 + |Yµ|2 + |Yτ |2
)
YνY

†
ν . Alternatively, it can be also

written in terms of η as,

V3N-SS

Hℓkℓ̄m
=

1

64π2

mℓk
mW

(2ηkm)

{
m2

H

v2

(
r
(m2

W

m2
H

)
+ log

(m2
W

32

))

−
332

v2

(
|2ηee| + |2ηµµ| + |2ηττ |

)}
. (44)

Notice that the observable vanishes in the 3 → ∞ limit, as it is
manifest in Equation (43). This decoupling behavior is hidden
when we express it in terms of η, but this form is useful to
conclude on maximum allowed LFVHD rates in this model. Due
to the O(Y4

ν ) terms, the maximum rates will be obtained at the
largest value of 3 that allows to saturate Equation (41) without
spoiling the perturbativity of the Yukawa couplings. Assuming
a perturbativity bound of |(YνY†

ν )
km| < 4π , a rough estimation

points to3 ≈ 10 TeV and consequently,

BR(H → µe) . 10−14 , (45)

BR(H → τe) . 10−8 , (46)

BR(H → τµ) . 10−9 , (47)

where we have defined BR(H → ℓkℓm) ≡ BR(H →
ℓkℓ̄m)+BR(H → ℓmℓ̄k). The differences between the three
channels have a double origin. From the one side, the fact
that these decays are proportional to charged lepton masses
suppressed the H → µe with respect to the other two by a factor
of m2

µ/m
2
τ . On the other hand, current bounds in Equation (41)

are a bit stronger for ητµ, and much more stringent for ηµe
due to the strong constraints coming from µ → eγ [91]. This
double suppression makes of H → µe an even more challenging
observable for experiments.

The effective vertex in Equation (28) has the advantage of
being more general than previously computed ones. In particular,
it allows to explore scenarios where the heavy neutrinos have
different Majorana masses, as we show in Figure 7. In order not
to generate too large masses for light neutrinos, we consider an
scenario such as the one in Equation (33), but with only two pairs
of Majorana neutrinos (nν = 2) contributing to the Higgs decays,
assuming that any possible additional neutrino has decoupled
from this observable. Moreover, and in order to avoid the strong
bounds in theµ-e sector, we have considered a simplified case for
the Yukawa couplings where none of the heavy neutrinos couple
to muons (left panel) or to electrons (right panel). The rest of
the entries of the Yukawa coupling matrix are set to one, again
for simplicity. This figure has been done using Equation (28),
although we have checked that the full computation leads to the
same results in the relevant area allowed by the constraints of
Equation (41).

In this Figure 8 we find again the decoupling behavior
with each of the individual heavy masses, as we discussed
before. We can also see that the predictions for H →
τe and H → τµ are the same in both panels, as we
have assumed a simplified scenario with equal size Yukawa
couplings to the relevant flavors. Nevertheless, the bounds of
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FIGURE 7 | Predictions for LFV Higgs boson decays using Equation (28) in a seesaw model with two pairs of Majorana neutrinos with masses MR1
and MR2

, as

defined in Equation (33). In the left, both neutrinos have Yukawa couplings equal to 1 with electron and tau leptons, and 0 with muons. In the right, we exchange the

roles of electrons and muons. Purple shadowed area is disallowed by global fit constraints in Equation (41).

Equation (41) are stronger in the muon sector than in the
electron one, which again implies that the allowed rates are
larger for H → τe than for H → τµ. Finally, we notice
that the results are symmetric with respect to MR1 and MR2 ,
although this is again a consequence of our simplified hypothesis
of equal Yukawa couplings, and in general this will not be
the case.

In a more general scenario, the η matrix will constrain a
combination of all the heavy neutrino mixing to the active state,
each of these contributions being of order ξℓa = mℓaD /Ma,
where ξ = mDM

−1 is the usual seesaw parameter. Generalizing
the description of Arganda et al. [13] to the case of having
N RH neutrinos, we can think of this parameter as made of
three N-vectors:

ξ =



ξe
ξµ
ξτ


 =



ξe1 ξe2 · · · ξeN
ξµ1 ξµ2 · · · ξµN
ξτ1 ξτ2 · · · ξτN


 , (48)

which leads to

2η = ξξ† =




|ξe|2 ξe · ξ∗µ ξe · ξ∗τ
ξµ · ξ∗e |ξµ|2 ξµ · ξ∗τ
ξτ · ξ∗e ξτ · ξ∗µ |ξτ |2


 . (49)

This implies that the diagonal entries of the η matrix constrain
the modulus of these N-vectors, while the diagonal ones set
upper bounds on the complex scalar products between them.
Moreover, this geometrical picture is also useful to find solutions
that accommodate the current bounds given in Equation (41), as

we only need to set themodulus and angles between these vectors,
and to explore the implications on our LFV observable.

Let us consider a final example to illustrate this latter point.
In order to avoid issues generating too large contributions
to light neutrino masses, an elegant solution is to consider a
low scale seesaw realization of the model, as we introduced
in Equation (33). If we assume, for example, that there are
two pairs of sterile fermions (nν = 2) contributing to
our observable and that they have the same mass, MR1 =
MR2 ≡ MR, an interesting value for the Yukawa matrix is
the following:

YLSS = Y0




1 0
0.008 0.42
1 1.1


 . (50)

This example is useful as it leads to a ηmatrix with a very similar
pattern than that in Equation (41). Then, depending on the value
of the global strength factor Y0 and the mass MR, we can define
which part of the parameter space is allowed.

We show in Figure 8 the predictions for the three LFVHD
channels in this particular example, although we expect similar
results for other models with more RH neutrinos as long
as they lead to the similar η matrices. The first thing we
see from this figure is that the effective vertex (dashed lines)
matches very well the full prediction (solid lines), as we
already saw before. Nevertheless, the simple expression of
Equation (28) allows us to easily understand the dependence
on the different parameters of the model. Finally, we can also
use this figure to deduce how large LFVHD rates can we
expect after having considered the bounds in Equation (41)
as well as perturbativity bounds. As we discussed above, the
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FIGURE 8 | Predictions for the Higgs boson decays into µe (top), τe (left) and τµ (right) computed with the effective vertex in the MIA (dashed lines) and the full results

in the physical basis (solid lines) in the context of a low scale seesaw model with Yukawa coupling YLSS given by Equation (50). Shadowed areas are disallowed by

global fits constraints (purple) and the non-perturbative regime for the Yukawa couplings (yellow), which we define as |(YνY†
ν )
km| > 4π for any element.

largest possible values are obtained for heavy masses at around
10 TeV, when the bounds from the global fit analysis and
perturbativity cross. Unfortunately, the branching ratios in
the allowed white area are too small and far from current
experimental sensitivities.

4. CONCLUSIONS

In this work, we have discussed the importance of having
expressions for lepton flavor violating transitions which
are expressed directly in terms of the fundamental
parameters of the model. These expressions are helpful
to better understand the observable, as well as to
compare it with experimental observations in order
to constrain the interaction parameter space. In this
context, the mass insertion approximation technique
is a powerful tool, which we have reviewed with two
simple examples.

We have then studied the LFV Higgs decays in the context
of a general type-I seesaw model with an arbitrary number
of right-handed neutrinos. We applied the MIA technique to
this model, which allowed us to derived an effective vertex for
Hℓkℓm after integrating out the heavy right-handed neutrinos.
This analytical expression is useful to understand the behavior of

the observables with the fundamental parameters of the neutrino
sector, i.e., the Yukawa couplings and the heavyMajoranamasses.
Moreover, it also provides an alternative way to quickly evaluate
these observables to a very good approximation, without the
need of long numerical evaluations of the full result in the
physical basis.

Finally, we have made the connection to the
phenomenologically interesting case of low scale seesaw
models. After explicitly checking that we recover existing
results for the inverse seesaw case, we have evaluated the
LFVHD rates taking into account current bounds from
global analysis, as well as perturbativity bounds for the
Yukawa couplings. Unfortunately, the predicted rates
for the LFVHD in the allowed area are far from current
experimental sensitivities and, consequently, they do not provide
a competitive way of probing the existence of these heavy
Majorana neutrinos.
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