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The present paper aims to provide a review of the relevance of quark degrees of

freedom in the description of the nucleon-nucleon and, in general, of the baryon-baryon

interaction. After a historical introduction, the second section of the paper will be

dedicated to the first attempts to describe the short-range part of the NN potential in the

so-called quark potential models. Here the importance of the symmetries of the 6-quark

system will be emphasized. Then, we will discuss the concept of the constituent quark

mass as originated by the breakdown of the chiral symmetry, in line with the articles

of Manohar and Georgi [1] and the Instanton Liquid Model of Diakonov [2], and its

consequences on the quark-quark interaction due to the presence of the Goldstone

boson exchanges. Once the full quark-quark interaction is established, the description

of the bound states (deuteron), the scattering states of the NN system, and nuclear

matter in constituent quark models will be addressed. In this section, a discussion of

the influence of N1, 11 or NN∗ components will be included. The rest of the paper

will be devoted to the extension of the model to another baryon-baryon system, namely

the triton, hyperon-hyperon, and nucleon-antinucleon systems and references to other

possible descriptions of the NN interaction in terms of quark degrees of freedom (bag

models). The chapter will end with a concluding remark, and the success and limitations

of the model described above will be summarized.

Keywords: nucleon-nucleon interaction, nucleon-nucleon interactions (including antinucleons, deuterons, etc.),

quark model, quark model baryon-baryon interaction, constituent quark cluster model

1. A HISTORICAL INTERLUDE

Upon the discovery of the compound nature of the nucleon it was suspected that the quark degrees
of freedom had to be responsible for the properties of nucleon-nucleon interaction, at least of their
short-range parts. However, due to the complexity of QCD (the underlying theory of the quark
model), the implementation of these ideas was not straightforward. Although the deep inelastic
scattering suggests that quarks are massless particles confined within the nucleons, the magnetic
moments of the protons and neutrons could be explained by assuming an effective mass around
300 MeV for the quarks.

The apparent duality of the properties of the quarks gave rise to two types of models: the bags
model (relativistic massless quarks confined within a cavity) and the potential model (no relativistic
massive quarks confined within a potential). In both models, attempts were made to explain the
properties of the short range of nuclear forces.

In 1975, Fairley and Squires [3, 4] tried to describe the deuteron using the MIT bag model. In
the same year, Neudatchin et al. [5] proposed an explanation for the short-range repulsion due to
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the Pauli Exclusion Principle. Two years later, Neudatchin et al.
[6] gave an algebraic reasoning to explain the hard core of nuclear
forces in terms of six quarks states, assuming that the quark-
quark interaction mixes the [6] and the [42] symmetries of the
six-quark system, producing the node of the [42] state phase
shifts and showing “hard-core like” behavior. More quantitative
attempts were made by Liberman [7] (in a potential model) and
[8] (in a bag model), though both calculations based on the Born-
Oppenheimer approach [9] do not appear to be useful at the
present time.

In 1980, three calculations appeared that used a more
sophisticated scheme, the Resonant Group Method (RGM) [10,
11], which has been widely used in the treatment of the
interaction between composite particles. The method allows you
to make non-relativistic multichannel calculations and obtain
phase shifts in a simple way. Within this framework, Oka and
Yazaki [12] calculated the phase shifts for the 3S1 and

1S0 states
of two nucleons, including the 11 channel, thereby showing
the presence of a strong repulsive force at short distance. This
feature is due to an interplay between the Pauli principle and a
spin-spin interaction between quarks. Similar calculations were
performed by Ribeiro [13] and Toki [14], using, for the quark-
quark interaction, a quadratic confinement plus a spin-spin
force more or less related to the one-gluon exchange interaction
derived by De Rújula [15]. They found a rather soft core (Toki)
or hard core (Ribeiro) depending on the functional form of the
spin-spin interaction and the election of the parameters, which,
in these first stages of the calculation, are not clearly established.

The hope of being able to describe the short-range part of
the nuclear forces in terms of the degrees of freedom of quarks
suffered a heavy blow with the publication of the article of Harvey
[16]. Harvey performed a similar calculation of the Liberman
paper but did so using a quark-quark interaction similar to
the one-gluon exchange, taking into account, besides the 11
states, hidden color states, namely two three-quark color states
coupled to color singlet’s, in the two-nucleon system as required
by completeness. The inclusion of these new states had dramatic
effects: the repulsive core was transformed into a weak attraction.
Although the use of the Born-oppenheimer approximation may
be questionable, the need to include the configuration mixing
remained very much in force. The situation was restored by the
papers of Faessler et al. [17], which returned to the previous
results that showed that obtaining a hard core, even if the hidden
color states were included in the calculation provided, meant that
the different parameters appearing in the calculation were chosen
in a consistent way, as we will see later.

Once the question of the origin of the hard core was settled,
the next objective was to achieve a description consistent with
the quark degrees of freedom of all pieces of the nuclear forces.
Two different ways have been used in the past to address this
problem. The first one introduced an effective meson exchange
potential (EMEP) into the Resonating Group Method equation
[18–20]. The second one coupled the pion directly to the qq̄
pairs [21, 22]. The difference between the two approaches is that
the last one allowed for the study of the influence of the quark
antisymmetrization on the one-pion exchange potential, which
seems to be relevant in certain cases [23].

Although these methods succeeded to describe the NN
and NY phase shift or the properties of the deuteron, its
phenomenological nature leaves too many free parameters
unconstrained by the theory, and the interplay between mesonic
and quark degrees of freedom is worked out in a rather
inconsistent way.

These problems have been partially solved by the introduction
of the chiral (or constituent) quark models. These models are
founded on the idea that the constituent (dynamical) quark
mass is a consequence of the spontaneous breaking of the chiral
symmetry of the QCD lagrangian. This SU(3)L × SU(3)R chiral
symmetry is spontaneously broken to an SU(3)V symmetry at the
scale 3χSB, which is different from the confinement scale 3QCD.
The Goldstone theorem implies that there must exist an octet of
Goldstone bosons coupled to the quark fields. There is no reason
for these two scales to be the same. In fact, Manohar and Georgi
[1] argued that 3χSB is in fact greater than 3QCD, which allows
them to develop a field theory effective in the intermediate region,
which includes quarks, gluons, and Goldstone boson fields.

A realistic mechanism for the chiral symmetry breaking is
provided by instantons. Diakonov [2] showed that the light
quarks in the liquid instanton vacuum acquired a momentum-
dependent effective mass that breaks down the chiral symmetry
of QCD spontaneously. This author ended up with an effective
chiral Lagrangian, within which QCD was reduced at low
energy, with quarks and Goldstone bosons fields. Based on
this approach to QCD at low energy, in Fernandez et al. [24],
the authors developed an improved quark-quark interaction
that was suggested by instanton models that included π and
σ exchanges as non-perturbative components and the one-
gluon exchange as a perturbative one. The nucleon-nucleon
potential derived from this model presents short-range repulsion
and medium-range attraction besides the usual pion tail. The
authors used this interaction to calculate the nucleon-nucleon
phase shifts within the resonating group method, and a large
number of observables were related to the N-N interaction.
The results agreed reasonably well with experimental values. A
similar approach has been pursued by the group of Beijing [25].
Further references of this period can be found in Myhrer and
Wroldsen [26].

From the end of the twentieth century, the progress in the
description of the nucleon-nucleon interaction based on quark
degrees of freedom slowed down, and this was mainly due to the
appearance of the effective field theories applied to the nucleon-
nucleon interaction.

These theories are based on the Weinberg idea [27] that one
has to write down the most general Lagrangian consistent with
the symmetries of QCD, particularly the (spontaneously broken)
chiral symmetry. Thus, in this formulation, which is seen as more
fundamental than constituent quark models, the effective degrees
of freedom, rather than quarks and gluons, are the Goldstone
bosons of the broken symmetry and the nucleons. A detailed
description of the progress of these theories in the last years
can be found in the section dedicated to the nucleon-nucleon
description in the framework of the effective field theories.

In these last years, there has nevertheless been progress
in the field of the constituent quark models, which deserves
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a mention. Thus, several calculations have been done within
the framework of the extended quark-delocalization color-
screening model (QDCSM) [28], addressing problems with
the intermediate range attraction (σ -exchange) [29] and the
spin-orbit interaction [30]. On the other hand, Huang and
Wang performed a calculation using the chiral SU(3) model
in which the parameters of the nucleon-nucleon interaction
are chosen consistently with the mass of octet and decuplet
baryon ground states [31]. An improvement in the description
of the nucleon-nucleon-meson vertices is achieved through the
so-called Oxford potential [32], which uses the 3P0 model to
calculate the form factors of these vertices, thus achieving a good
description of the nucleon-nucleon phenomenology. Finally,
during these years there has been impressive experimental
progress in the discovery of the heavy baryons. This fact has
produced a revival of the previous hyperon-nucleon calculations,
thus extending the field to charmed and bottom baryon-nucleon
interaction [33, 34].

2. THE QUARK ANTISYMMETRY AND THE
HARD CORE OF THE N-N INTERACTION

By analogy with the short-range repulsion between two α

particles, the short-range repulsion in the nucleon-nucleon
interaction was naively expected to originate from the Pauli
principle between quarks. In the case of the α − α scattering,
the Pauli principle forbids eight particles to be in the 0S state.
Therefore, one must put at least four particles in the 1P state, so
the relative wave function between two α particles in a state with
zero relative angular momentum must have a radial node inside
the range of the nuclear forces. This node plays a role that is
equivalent to a hard core.

However, the situation in the case of the nucleon-nucleon
interaction is slightly different. Due to of the color degree of
freedom, it is possible to have the six quarks in the lowest 0S so
that the relative wave function between the two nucleons does not
necessarily exhibit a node in the wave function.

Neudatchin et al. [6] was the first study to point out that
the hard-core behavior can be still recovered in the quark
model provided that the quark-quark interaction mixed the
lowest 6-quark state with the first excited state. The relative
wave function between the two nucleons would then be strongly
suppressed in the inner region due to the node of the excited state,
and the corresponding phase shifts would show ’hard-core like’
behavior. In this sense, the validty of the analogy with the Pauli
principle effects on the α − α system would be totally dependent
on the character of the quark-quar interaction.

An interaction that can perform this task is the color magnetic
part −g(r)(λiλj)(σiσj) of the one-gluon exchange interaction, as
shown by De Rújula [15]. The expectation values of the operators
σiσj and λiλj are positive (negative) for spatially symmetric
(antisymmetric) qq pair states [15]. Then, the color magnetic part
is attractive (due to the global minus sign of the interaction) for
qq pairs, which are symmetric in color-spin space, and repulsive
for qq pairs, which are antisymmetric.

The product wave function of two nucleons, each with a
spatially symmetric three-quark state, gives the following S3 ⊗
S3 −→ S6 representations of the S6 symmetry group:

[3]X ⊗ [3]X = [6]X + [51]X + [42]X + [33]X (1)

The [6]X and [42]X ([51]X , and [33]X) are symmetric
(antisymmetric) for the whole exchange of the two nucleons. For
the different spatial symmetries of the two nucleon states with
l = 0 and isospin T = 0 ([33]T) or T = 1 ([42]T), the Pauli
Principle requests the following color-space symmetries:

[6]X × [23]CS × [33]T = 0 = [16], (3s, 6a)

[42]X × [42]CS × [33]T = 0 = [16], (7s, 2a)

[42]X × [321]CS × [33]T = 0 = [16], (4s, 4a)

[42]X × [23]CS × [33]T = 0 = [16], (3s, 6a)

[42]X × [313]CS × [33]T = 0 = [16], (3s, 6a)

[42]X × [214]CS × [33]T = 0 = [16], (1s, 10a)

(2)

[6]X × [2212]CS × [42]T = 1 = [16], (2s, 6a)

[42]X × [33]CS × [42]T = 1 = [16], (6s, 3a)

[42]X × [412]CS × [42]T = 1 = [16], (6s, 3a)

[42]X × [2212]CS × [42]T = 1 = [16], (2s, 6a)

[42]X × [16]CS × [42]T = 1 = [16], (0s, 14a)

(3)

From these two equations one can see that, in both isospin
cases, the state with spatial symmetry [6] have, in the color
spin state, more antisymmetric than symmetric pairs, and they
are therefore pushed up by the quark-quark color-magnetic
interaction. However, the state with spatial symmetry [42]X has,
in the color spin space, components with more symmetric than
antisymmetric states, namely the [42]CS for the isospin T = 0
and the [33]CS and [412]CS for the isospin T = 1. These states
must be lowered by the color-magnetic interaction and can be
mixed with the [6]X spatial symmetry.

Three important conclusions can be made from this kind of
analysis. The first one is that the hard-core part of the nucleon-
nucleon interaction is related to the node of the spatial [42]X
component of the six-quark system. The second one is that
the mixing of the [42]X and [6]X components is controlled
by the strength parameter of the color-magnetic interaction.
Finally, colorless objects, like nucleons, cannot exchange colored
particles, like gluons, unless a quark is also exchanged. Therefore,
the mechanism described above only works when the two
nucleons overlap through a genuine short-range mechanism.

The effect of quark antisymmetrization also appears in other
processes, such as the one-pion exchange process. Let assume
for a moment that we can couple pions to qq pairs (we will
come back to this point later on). The typical (σ · σ )(τ · τ )
spin-isospin dependence of the one-pion exchange potential gets
modified by the quark antisymmetrization operator A = 1 −
∑3

i = 1

∑6
j = 4 Pij, where Pij is the quark exchange operator, which
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is the product of the orbital exchange P
(0)
ij , the spin-isospin

exchange P
(στ )
ij , and the color exchange P

(c)
ij . As a consequence

of the application of the antisymmetrization, it results in as a
spin-isopin independent term, a (σ · σ ), and a (τ · τ ) term,
besides the original (σ ·σ )(τ ·τ ) term [22]. In the latter reference,
following the model of Tegen andWeise [35], the author assumes
that each nucleon consists of three massless quarks confined in
a scalar potential M(r) = cr2. The NN potential was generated
from a Born-Oppenheimer approximation using the quark wave
functions obtained as a solution for the Dirac equation. The
pions have been included in the model as a consequence of quark
confinement that necessarily implies a breaking of the original
chiral symmetry of the QCD Lagrangian of a free quark with
zero mass. In this situation, the axial current of massless quarks
confined byM(r) is not conserved.

∂µ[ψ̄(x)γµγ5

→
τ

2
ψ(x)] = M(r)ψ̄(x)iγ5

→
τ ψ(x) (4)

To restore the chiral symmetry, one introduces a pseudoscalar,
isovector field πλ(x) so that the generalized axial current:

A
µ
λ (x) = ψ̄(x)γ µγ5

τ

2
ψ(x)− C∂µπλ(x) (5)

is a conserved quantity.
Imposing PCAC, the later equation implies a Klein-Gordon

equation for the pion field:

(∂µ∂µ +m2
π )πλ(x) = i

∑

M(r)f−1
π ψ̄(x)γ5τψ(x) (6)

where fπ is the pion decay constant, and the summation runs over
all quarks.

This last equation tells us that the πqq coupling is given by:

Hπqq = iM(r)f−1
π ψ̄(x)γ5τψ(x)πλ(x) (7)

By employing this πqq one can calculate the one-pion exchange
potential between nucleons using the Born-Oppenheimer
approximation. The results of Shimizu [22] show that the effect
of the quark antisymetrization on the one-pion is very large
at short distances, producing a spin-isospin independent short-
range repulsion that can be as important as the one generated
by the color-magnetic piece of the one-gluon exchange potential.
Besides the usual, part of the one-pion exchange potential with
(σ ·σ )(τ ·τ ) dependence becomes very weak. These results can be
obtained with other models of the quark-pion coupling [21, 36].

The quark antisymmetrization can have an effect on the one-
pion exchange interaction that is an observable consequence of
the pion-dominated processes. One example is the confusing
situation that arises with the interpretation of the p(n, p)n and
p(p,1++)n charge-exchange reactions at intermediate energies
in the forward direction using a meson-exchange model. A
thorough study of the p(p,1++)n and p(n, p)n reactions has been
done by Jain and Santra [37] from threshold to 5.5 GeV/c beam
momentum. These authors use a one-boson exchange model for
the transition potential in the framework of the distorted wave

Born approximation (DWBA). The p(p,1++)n experimental
data for the forward cross section in the considered energy region
agree remarkably well with the theoretical results when only
the one-pion exchange is included in the calculation. However
the results for the p(n, p)n reaction greatly underestimate the
experimental data.

The situation changes completely if the ρ-exchange is
included in the transition potential. In this case, the p(n, p)n
calculated cross section comes close to the experimental values.
On the other hand, the inclusion of the ρ-exchange destroyed the
former agreement in the p(p,1++)n independently of the choice
of parameters.

These results can be understood in the following way.
The p(p,1++)n reaction is dominated by the tensor terms of
the transition potential due to the spin flip involved in the
reaction, whereas the p(n, p)n process is dominated by the central
potential. The central part of the OPE Born amplitude behaves
like t/(t − m) (t = −q2), which gives a vanishing cross section
in the forward direction. The finite value of the p(n, p)n cross
section appears due to the modification of this behavior by
the distortions in the DWBA treatment. The inclusion of the
ρ-exchange in the transition potential contributes to enhancing
the cross section in the p(n, p)n reaction but also reduces the
tensor potential and destroy the agreement in the case of the
p(p,1++)n reaction.

The solution to this conundrum can be found in the
modification of the (σ · σ )(τ · τ ) dependence of the one-pion
exchange potential by the quark antisymmetrization [38]. As
showed by Shimizu [22], quark antisymmetrization produces a
sizable modification of the behavior of the central piece of the
OPE potential but keeps the tensor piece almost unchanged. This
fact explains simultaneously the p(p,1++)n reaction and the
non-vanishing forward p(n, p)n cross section task that obviously
cannot be done by the meson exchange models because the
required modification of the central part of the interaction has,
as a consequence, inconvenient changes in the tensor interaction.

The same mechanism provides a natural justification for the
OPE-δ or poor’s mans absorption procedure used to explain
the behavior of the double-spin-flip helicity amplitudes for
elastic nucleon-nucleon scattering. More details can be found in
Fernández and Oset [39].

3. THE NUCLEON-NUCLEON
INTERACTION IN THE RESONATING
GROUP METHOD

Two different approaches have been used in the literature to
study the nucleon-nucleon interaction in the framework of the
quark model. We have already referred to the first, namely,
the Born-Oppenheimer approximation. In this approach, the
distance between two nucleons is taken as a parameter, and
one calculates the energy of the six-quark system from different
distances. If the relative kinetic energy between the nucleons is
subtracted, the remaining energy is identified with the nucleon-
nucleon potential. However, as mentioned before, because of the
color nature of the one-gluon exchange interaction, only those
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terms that include an additional quark exchange contribute to the
nucleon-nucleon potential because it is not possible to exchange
a colored object between two colorless objects. Then, the gluon
exchange is only possible when the two nucleons overlap. This
fact makes the potential highly non-local. Since the potential
produced by the Born-Oppenheimer approximation is essentially
local, it is difficult to admit that this potential is suitable to
describe the short-range part of the N-N interaction.

The second approach, which has been widely used to describe
the scattering problem of two composite objects and therefore
seems to be the most appropriate method to incorporate the
non-local effects, is the Resonating Group Method (RGM). This
method was originally formulated byWheeler [10] and applied to
nuclear physics byWildermuth and Tang [11]. The phase shifts of
the two-nucleon interaction are usually calculated in the scheme
developed by Kamimura [40].

The RGM assumes the wave function for two-nucleon (six
quark) system can be written as:

ψ(ξA, ξB,RAB) = A
{

[φA(ξA)× φB(ξB)]STχN(RAB)
}

(8)

The coordinates ξA = (ξ1, ξ2) and ξB = (ξ3, ξ4) are internal
coordinates of the 19 three-quark clusters A and B in the Jacobi
coordinate system [11]. RAB is the relative coordinate between the
two nucleons. The internal nucleon wave function φN includes
the color, spin, isospin, and orbital degrees of freedom. Once the
quark-quark interaction is fixed, one should get φN as a solution
of the three-body system. However, it is usually assumed that the
internal orbital function is the 0S harmonic oscillator function
with oscillator length b. The spin and isospin of each nucleon are
coupled to total S and T.

The relative wave function χN(RAB), which is the only
unknown of the problem, is calculated by solving the
RGM equation:

∫

φ(ξA, )
+φ(ξB)+(H − E)ψ(ξA, ξB,RAB)dξAdξB = 0 (9)

where H is the total Hamiltonian of the six-quark system. It
is usual to introduce the RGM Hamiltonian and normalization
kernels in the following way:

L(R′,R) =
∫

φ(ξA, )
+φ(ξB)+δ(R′ − RAB)(H − E)A

×
{

[φA(ξA)× φB(ξB)δ(R− RAB)]STdξAdξBdRAB
}

= H(R′,R)− EN(R′,R) (10)

Using this expression, Equation (9) can be written as:

∫

L(R′,R)χ(R′)dR′ = 0 (11)

which is usually referred to as the RGM equation.
From the asymptotic behavior of the relative wave function,

one can easily calculate the corresponding phase shifts [40]. In the

case of an S-wave, the phase shift can convert into an equivalent
hard-core radius parameter r0 through the equation:

δ0(k) = −r0k (12)

Another advantage of this formulation is that one can
incorporate the modification of the nucleon wave function over
short distances through standard coupling channel techniques. In
this case, Equation (11) becomes a coupled-channel equation:

∑

β

∫

L(R′,R)αβχβ (R)dR

=
∑

β

∫

{

Hαβ (R
′,R)− ENαβ (R

′,R)
}

χβ (R)dR = 0 (13)

Ribeiro [13], Toki [14], Oka and Yazaki [12] and Faessler
et al. [17] have employed the previous RGM method to
describe the dispersion of N-N in terms of quark degrees of
freedom using a coupled-channel calculation. However, for the
sake of clarity, we will first discuss the short-range part of
the N-N interaction in the channel approximation following
[17], although the conclusion of the other calculation is
very similar.

At short distances, the interaction between quarks is mediated
by the exchange of gluons. However, gluons can interact with
each other, which make the quark-quark interaction rather
complicated to describe in an exact way. Usually, one assumes
that the quark-quark potential V consist of two terms: the
one-gluon exchange potential VOGEP, which describes the
interaction at high momentum transfer, and the confining
potential VCONF , which modelizes the multigluon interaction. In
the one-channel approximation, VCONF does not contribute to
the N-N interaction because nucleons are color singlets; however
the stabilization of each nucleon should be taken into account, as
we will see later.

Then, a typical Hamiltonian used in this kind of calculation is
given by:

H =
∑

i

p2i
2mq

− KG + V

V =
∑

i > j

(VCONF
ij + VOGEP

ij ) (14)

where m is the quark mass, pi is a momentum of the ith quark,
and KG is the center of mass kinetic energy.

A detailed reduction for the OGE amplitude can be found
in several textbooks, e.g., Berestetskii et al. [41], and we shall
therefore only give the final expressions. One can start with the
quark-gluon interaction Lagrangian:

L = 1

2
gψ̄(x)λiγ

µψ(x)Gi
µ(x) (15)

where ψ(x) is the quark field, Gi
µ(x) (i = 1, . . . 8) are the eight

gluon fields, λi the SU(3) generators, and g the quark gluon
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coupling constant. From this Lagrangian, one arrives, in the one-
gluon approximation and the static limit, at a potential between
quarks of the form:

VOGEP
ij = 1

4
(λi · λj)αs

(

1

rij
− 2

3
π
σi · σj
m2

q

δ(rij)−
π

m2
q

δ(rij)

)

(16)

where αs = g/4π and σi is the spin operator of the i-th quark.
There are no prescriptions to obtain an expression for the

confining potential. Usually, this VCONF is chosen as:

VCONF
ij = −ac(λiλj)rij (17)

where ac is the strength of the confining potential, λi the color
SU(3) generator for the i-th quark, and, as before, rij is the
distance between the i-th and the j-th quarks.

The orbital part of the quark wave function is assumed to be
of Gaussian form:

ψ(ri) =
1√
πb

er
2
i /2b

2
(18)

where b is the size parameter related to the root mean square

charge radius (rms-radius) of the proton through
√

< r2 >p =
b [17]. The model described above contains four parameters a,
αs, mq, and b. In Faessler et al. [17], the parameter values are
chosen so that they give reasonable values for the rms-radius of
the proton, the magnetic moment of the proton, and the mass
difference between the nucleon and the 1. Although the rms-
radius of the proton is around 0.8 fm, b is chosen as b = 0.5−0.6,
taking into account the possible effect of the pion cloud. The
quark mass is fixed in this calculation as mq = 336 MeV/c2 to
be consistent with the observed proton and neutron magnetic
moments. Once the quark mass and size parameter are fixed, the
coupling constant αs is determined so that the nucleon and 1
mass difference comes out to be 294 MeV. However, this way of
choosing the value of the parameters does not guarantee that we
are describing the nucleon. In fact, one must satisfy the stability
condition of the nucleon mass in terms of the size parameter:

∂

∂b
〈N|H|N〉 = 0 (19)

This condition is used to determine the value of the remaining
unfixed parameter, namely the strength of the confining potential
a, to be 61.6 MeV/fm.

Figure 1 shows the result for the triplet S and the singlet
S phase shifts for a value b = 0.6 fm. The behavior of the
phase shifts corresponds with a hard-core potential of 0.45 fm
for the triplet case and 0.52 fm for the singlet one. As b is
actually a free parameter, Figure 2 shows the behavior of the
hard-core radius calculated for several potentials available in the
literature with different values of the parameter b. The common
feature of all these potentials is that the coupling constant αs is
readjusted for each value of b to reproduce the experimental N1
mass difference.

FIGURE 1 | Singlet S and triplet S phase shifts as a function of the

two-nucleon center of mas energy for the NN channel. The parameters of the

quark-quark interaction are given in the text.

FIGURE 2 | Hard-core radius r0 as a function of the oscillator length b for

different quark-quark forces. The potentials are from ref OGEP I and OGEP

II [17], Bender [42], Isgur-Karl I [43], Isgur-Karl II [44] Ellwanger [45],

Ribeiro [13], Oka-Yazaki [12], and Gromes [46].

The general trend for all these calculations is an increasing of
the hard-core radius with the oscillator length b. This fact agrees
with the previous conclusions that the size of the hard core is
related to the node at r = b in the [42] orbital configuration of
the six-quark system.

So far, one has implicitly assumed that the nucleons remain
unchangeable in their mutual interaction. However, this may
not be the reality as different six-quark structures can come up
when the two nucleons overlap. A possible candidate that might
appear is the 1(1232) resonance, which belongs together with
the nucleon to the lowest orbital configuration of the three-
quark system. The inclusion of the 11 channel in a coupled-
channel RGM calculation was done in Oka and Yazaki [12] and
Faessler et al. [17]. They conclude that the 11 channel does not
appreciably modify the results.
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More important could be the contribution of the so-called
hidden color channels (CC). These channels are those in which
the three-quark color wave function belongs to the color octet,
rather than to the color singlet as the physical nucleon, even
though the full six-quark system remains colorless. These three-
quarks clusters are now sensitive to the confining force, and
their dynamics are therefore different from the colorless cluster
dynamics. The first calculation in which hidden color states were
taken into account was made by Harvey [16] in the framework
of the Born-Oppenheimer approximation. Harvey found that
the three channels NN, 11, and CC coupled with each other
rather strongly, and, as a result of the configuration mixing, the
hard-core behavior of the NN potential disappeared. However,
Faessler et al. [17, 47] showed, in an RGM coupled-channel
calculation, that the inclusion of the CC channels does not
produce a significant modification of the behavior of the S-wave
phase shifts, the repulsion being only slightly weaker than in the
case of only NN and11 were included.

The reason for this disagreement must be sought after in the
treatment of the confinement parameter ac. The CC channel is
the only channel sensible to the confining force; therefore, the
election of the confinement strength is crucial to determining
the final results. As we mentioned before in the Faessler’s
calculation, the confinement strength is adjusted to theminimum
of the nucleon mass at a given rms-radius. Otherwise, Harvey
chose the oscillator length b (fitted to the proton rms-radius)
and the confinement strength (fitted to the baryon spectrum)
independently. If we release the condition dM/db = 0 and
allow the parameter ac to vary freely for a fixed value of b, the
configuration mixing increases dramatically and the hard core
even disappears when the value of ac is far enough from that
which corresponds to the minimum condition (see Figure 3).
This result is very understandable if one thinks of releasing the
dM/db = 0 condition; we are not describing the physical nucleon
anymore but some excited state of that couples strongly with
the CC channels. Therefore, it is very important to choose the
quark-quark interaction and the quark wave function in a self-
consistent way in order to avoid unphysical coupling with the
hidden color states.

The RGM calculations based on quark degrees of freedom that
showed until now allowed for the understanding of the origin
of the hard core of the nucleon-nucleon interaction, though it
they are too naive to provide a quantitative description of the
experimental phase shifts.

To go forward in the description of the experimental data
one needs to include, in the RGM, Hamiltonian terms, which
take care of the medium range attraction as well as the one-
pion tail. Obviously, these terms should be related with a
meson cloud surrounding the quark core and without any
explicit assumption made about the coupling of mesons with
the quark core. The most direct way is the introduction of
effective meson exchange potentials (EMEP) in the renormalized
RGM equations [18, 48, 49]. In this way, the so-called hybrid
models appear.

The RGM equation can be symbolically written as:

(EN̂ − Ĥ)χ = 0 (20)

FIGURE 3 | Triplet S hard-core radius r0 as a function of the confinement

parameter a for one channel NN (dashed line) and three channels NN, 11,

and CC (solid line) calculation. In the one channel case the hard-core radius is

independent of a. The dependence with a in the three-channel calculation

appears through the coupling with de hidden color states. The arrow shows

the value of a which minimize the nucleon mass with respect to b.

This equation differs from the usual Schrödinger-type equation
due to the presence of the normalization kernel N̂. This term can
be eliminated by the renormalization of χ , i.e.,

χr = N̂1/2χ (21)

The equation for χr now can be written as:

(E− N̂−1/2ĤN̂−1/2)χr = 0 (22)

This equation is called the renormalization RGM equation
and is adequate to introduce the effective meson exchange
potential VEMEP:

(E− N̂−1/2ĤN̂−1/2 − VEMEP)χr = 0 (23)

The description of the NN phase shifts with this modified RGM
equation depends on the shape and the number of parameters
included in the different VEMEP. Examples can be seen in the
literature cited above.

4. THE CONSTITUENT QUARK MASS AND
THE CONSTITUENT QUARK MODEL

In the last paragraph we argued that the chiral symmetry of
the massless QCD Lagrangian is spontaneously broken by the
bag surface in the bag model, thereby providing a scheme to
couple quarks and pions. However, the spontaneous breaking
of the chiral symmetry is not a characteristic of the bag model
but a more general property of the QCD Lagrangian. In fact, if
this symmetry were exact, we would observe degeneracy between
states with opposite parity but with the same quantum numbers.
For example, the ρ (1−, 775) meson would be degenerated with
the axial a1 (1+, 1260) meson, the nucleon (1/2+, 940) would
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be degenerated with the (1/2−, 1535) resonance, etc. Since it is
not the case, we conclude that the SU(3)L × SU(3)R symmetry is
spontaneously broken. In a seminal article, Manohar and Georgi
[1] argued that the chiral symmetry, spontaneously broken to
an SU(3)v symmetry at same 3χSB scale, does not necessarily
have to match with the confinement scale 3CONF . Therefore,
one can develop an effective field theory in the intermediate
region whose Lagrangian includes quarks and gluons fields and
Goldstone bosons coupled to the quarks.

How the spontaneous breaking of the chiral symmetry comes
about is still a topic of discussion. Diakonov and Petrov [50]
suggested a theory of the light quarks in the instanton vacuum,
which explained the spontaneous breakdown of chiral symmetry
as being due to the delocalization of the would-be zero fermion
modes in the field of individual instantons and allows for
an effective chiral Lagrangian. The rationale of the model is
that the quark propagator in the instanton vacuum develops a
momentum-dependent dynamical mass (which we prefer to call
constituent mass) that is related to the instanton density, N/V ,
and the average instanton size, ρ̄, as:

M(p2) =
√

π2Nρ̄2

VNc
F(pρ̄) (24)

so that the quark propagator has the form of a massive
propagator:

S(p) = γ µpµ + iM(p2)

p2 +M2(p2)
(25)

where F(z) is a combination of the modified Bessel functions,
which is equal to 1 at z = 0 and decreases rapidly with
the momentum measured in units of the inverse of instanton
size. Diakonov [51] estimated that the value of the dynamical
mass at zero momentum is around 350 MeV/c2, which is in
concordance with the values used in the non-relativistic quark
model. Starting from these ideas, Diakonov [51] deduced an
effective partition function:

Z =
∫

DπA

∫

Dψ+
Dψ exp

{

∫

d4xψ+(x)
[

iγ µ∂µ

+iMeiγ5 Eτ · Eφ/fπ
]

ψ(x)

}

(26)

from which an effective Lagrangian, invariant under chiral
rotations (meaning, therefore, that it must contain chiral fields),
can be expressed as:

L = ψ(i /∂ −M(q2)Uγ5 )ψ (27)

where ψ is the quark spinor, Uγ5 = e
i λa
fπ
φaγ5 is the Goldstone

boson fields matrix, and M(q2) is the dynamical (constituent)
mass that vanishes at large momenta and is frozen at low
momenta for a value around 300 MeV.

The appearance of the constituent quark mass (or dynamical
quark mass) related to the chiral symmetry justified, at least
qualitatively, the non-relativistic quark model. Moreover, the
Goldstone boson fields provide a natural coupling for quarks
and pions.

5. CONSTITUENT QUARK MODEL
DESCRIPTION OF THE
NUCLEON-NUCLEON INTERACTION

The conclusions of the former section open the door to
a complete description of the N-N interaction. They not
only provide a justification for the constituent quark mass,
as claimed by the phenomenology, but also explain how to
include an important piece of the N-N interaction, namely the
pion exchange.

Based on these ideas, a constituent quark model of the
nucleon-nucleon interaction has been developed by the groups
of Tubingen [24] and Salamanca [52, 53].

The starting point of the model is a non-relativistic reduction
of the Lagrangian of Equation (27). Although the momentum
dependence of the dynamical mass can be provided by the
theory, it is more practical to simulate this behavior by
parameterizing the dynamical mass as M(q2) = mqF(q

2),
wheremq ≃ 300 MeV, and

F(q2) =
[

32
χ

32
χ + q2

]
1
2

. (28)

The cut-off3χ fixes the chiral symmetry breaking scale.
The Goldstone boson field matrix Uγ5 can be expanded in

terms of boson fields,

Uγ5 = 1+ i

fπ
γ 5λaπa − 1

2f 2π
πaπa + ... (29)

The first term of the expansion generates the constituent
quark mass while the second one gives rise to a one-pion
exchange interaction between quarks. The main contribution of
the third term comes from the two-pion exchange, which, in
Fernandez et al. [24], has been simulated by means of a scalar
σ−exchange potential.

Now it is straightforward to write the non-relativistic
potentials generated in the static approximation in the
following way,

VPS
ij (Eq) = − 1

(2π)3

g2
ch

4m2
q

32
χSB

32
χSB + q2

(Eσi · Eq)(Eσj · Eq)
m2

PS + q2
(Eτi · Eτj)

(30)

VS
ij(Eq) = − g2

ch

(2π)3

32
χSB

32
χSB + q2

1

m2
S + q2

(31)

where Eq is the three-momentum transfer, the σ ’s (τ ’s) are the spin
(isospin) Pauli matrices, and mq, mPS, and mS are the masses
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of the quark, pseudoscalar, and scalar bosons, respectively. The
momentum states are normalized to 1.

It is well known that the long-range piece of the NN
interaction is due to the one-pion exchange. Therefore, to
reproduce accurately the long-range tail of the NN interaction,
one need to identify the mass of the pseudoscalar field with
the physical pion mass. Once the mass of the pseudoscalar field
is fixed, the mass of the scalar field is obtained by the chiral
relation [54].

m2
PS = m2

π

m2
S = m2

PS + 4m2
q (32)

In an early version of the model [24], the chiral Langrangian was
linearized using the definitions

π = Eφfπ sin(φ/fπ ), (33)

σ = fπ
[

cos(φ/fπ )− 1
]

(34)

giving rise to the Hamiltonian:

H = gchF(q
2)ψ(σ + iγ5

→
τ · →

π )ψ (35)

The results of the two formulations are equivalent.
Below the chiral symmetry breaking scale, quarks still interact

through gluon exchanges described by the Lagrangian:

Lgqq = i
√

4παs ψγµG
µ
c λcψ , (36)

where λc are the SU(3) color generators and G
µ
c the gluon field.

The corresponding non-relativistic reduction produces the
one-gluon exchange potential:

VOGE
ij (Eq) = 1

(2π)3
1

4
(Eλi · Eλj) 4παs

{

1

q2
− 1

4m2
q

(

1+ 2

3
(Eσi · Eσj)

)

+

+ 1

4m2
q

1

q2

[

Eq⊗ Eq
]2 ·

[

Eσi ⊗ Eσj
]2

}

(37)

where the λ’s are the color Gell-Mann matrices and αs is the
strong coupling constant.

Finally, the other QCD non-perturbative effect corresponds
to confinement. This effect does not contribute to the N-N
interaction because, taking into account the conclusion of the
former sections, the model only includes color singlet three-
quarks states.

As we will see below, the formulation of a realistic interaction
of NN in terms of quark degrees of freedom has the advantage
that nucleons and their resonances can be described in a
unified way; only the wave function changes and the underlying
interaction stays the same.

The works described above presented solutions of the RGM
equations in coordinate space. However, it is more convenient
to work in momentum space because, in this way, one avoids
the problem of the rapid oscillations that the relative wave
function exhibits in coordinate space at high energy. Moreover,

the parametrization of the width of nucleon resonances is
more naturally introduced, which simplified the equations in
multichannel calculations.

With this approach, the usual ansatz for the quark radial wave
function is:

ψ(Epi) =
3
∏

i = 1

[

b2

π

]

3
4

e−
b2p2i
2 (38)

where b fixes the size of the nucleon.
One could argue that the wave function of the three-quark

clusters should be obtained consistently with the quark-quark
interaction as the solution of the Schrödinger equation for
the three-quark system. This calculation was carried out in
Valcarce et al. [55] showing that the NN potential obtained in
the Born-Oppenheimer approximation using the wave function
coming from the full calculation were very similar to the one
obtained with a Gaussian wave function for a certain value of
the parameter b. This result legitimizes the use of Gaussian
wave function to calculate RGM kernels The baryon total wave
function, including the spin, isospin, and color degrees of
freedom, can be written as,

ψB = φB(Epξ1 , Epξ2 )χBξc[13];

φB(Epξ1 , Epξ2 ) =
[

2b2

π

]

3
4

e
−b2p2ξ1

[

3b2

2π

]

3
4

e
−
3b2

4
p2ξ2 (39)

where φB(Epξ1 , Epξ2 ) takes into account the internal spatial baryon
degrees of freedom and is obtained from Equation (38) by
removing the center of the mass wave function. Also, χB labels
the totally symmetric spin-isospin wave function coupled to the
quantum numbers of the baryon B, and ξc[1

3] is the color-singlet
wave function. Built in this way, ψB is totally antisymmetric in
quark exchanges.

From this expression, it easily to write the two-baryon
wave function:

ψB1B2 = A

[

χ(EP)ψST
B1B2

]

= A

[

φB1 (EpξB1 )φB2 (EpξB2 )χ(EP)χ
ST
B1B2

ξc[2
3]
]

(40)

where,A is the antisymmetrizer of the six-quark system, φBi (EpξBi )
is the internal spatial wave function defined in Equation (39),
χST
B1B2

denotes the spin-isospin wave function of baryons B1 and

B2 coupled to a total spin-isospin ST, and ξc[2
3] is the product of

the two color singlets.
The dynamics of the system is governed by the

projection equation:

(H− ET) |ψ 〉 = 0 ⇒ 〈 δψ | (H− ET) |ψ 〉 = 0 (41)

where,

H =
N
∑

i = 1

Ep 2
i

2mq
+
∑

i<j

Vij − TCM (42)
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with TCM being the center of mass kinetic energy, Vij the
interaction described in the previous section, and mq the
constituent quark mass.

In Equation (41) the variations are performed on the relative

wave function χ(
→
P ). Then, integrating all the internal degrees of

freedom, the projected Schrödinger equation for the relative wave
function adopts the expression:

(

EP′ 2

2µ
− E

)

χ(EP′
)

+
∫

(

RGMVD(EP
′
, EPi)+RGMK(EP′

, EPi)
)

χ(EPi)dEPi = 0 (43)

where E = ET − EA − EB is the relative energy of the clusters,

and RGMVD(EP′
, EPi) and RGMK(EP′

, EPi) are the direct potential and
the exchange kernel, respectively given by,

RGMVD(EP
′
, EPi)

=
∑

i∈A, j∈B

∫

φ∗A(Epξ ′A )φ
∗
B(Epξ ′B )Vij(EP

′
, EPi)φA(EpξA )φB(EpξB )dEpξ ′AdEpξ ′BdEpξAdEpξB

(44)

and

RGMK(EP′
, EPi) = RGMHE(EP

′
, EPi)− ET

RGMNE(EP
′
, EPi) (45)

with

RGMHE(EP
′
, EPi)

= −9

∫

dEp
ξ
′
A
dEp
ξ
′
B
dEpξAdEpξBdEP

φ∗A(Epξ ′A )φ
∗
B(Epξ ′B )H P36

[

φA(EpξA )φB(EpξB ) δ3(EP − EPi)
]

(46)

A similar expression can be found for the normalization exchange
kernel, replacing H with the identity operator. Equation (43) is
readily generalized to a coupled-channel equation, starting from
a sum of wave functions of the type of Equation (40) for the
different baryon channels considered.

The solution of coupled-channel RGM equations is derived
from Equation (43), a set of coupled Lippmann-Schwinger
equations of the form:

Tα
′
α (z; p′, p)

= Vα
′

α (p′, p)+
∑

α′′

∫

dp′′ p′′2 Vα
′

α′′ (p
′, p′′)

1

z − Eα′′ (p′′)
Tα

′′
α (z; p′′, p)

(47)

where α labels the group of quantum numbers B1B2JLST, which

defines a certain partial wave, Vα
′

α (p,′ p) is the projected potential
that contains the direct potential and the RGM exchange kernels,
and Eα′′ (p

′′) is the energy corresponding to a momentum p′′,
written as (in the non-relativistic case):

Eα(p) =
p2

2µα
+1Mα (48)

Here, µα is the reduced mass of the B1B2 system corresponding
to the channel α, and 1Mα is the difference between the
threshold of the B1B2 system and the one used as a reference,
the NN system. The mass difference 1Mα is obtained from the
interaction terms for quarks belonging to the same baryon, which
relate to the total energy of the system ET and to the relative
energy between clusters E.

The coupled-channel Lippmann-Schwinger equation is solved
by a generalized version of the matrix inversion method of
Machleidt [56] in order to include channels with different
thresholds. Once the T matrix is calculated, the scattering
matrix S is obtained for non-relativistic kinematics from
the relationship:

Sα
′
α = 1− 2π i

√

µαµα′kαkα′ T
α′
α (E+ i0+; kα′ , kα) (49)

with kα defined by:

k2α = 2µα(E−1Mα) (50)

so that, for channels above the threshold, k2α > 0.
For bound states, the integral equations do not have poles, and

the problem is simplified. In this case, a discretized Schrödinger
equation can be written in the form:

∑

j

[

Ei(pi)δij + Vij − Eδij
]

ψj = 0 (51)

where i and j label the discretization of the integral and the
quantum numbers of the different channels included in the
calculation, andψj is the value of the wave function in the channel
and momentum corresponding to the index j.

Details of the calculation of the RGMKernels and the solution
of the equations for both bound and scattering states can be
found in Entem et al. [52].

If the pseudoscalar field is to be identified with the one-
pion exchange (OPE), a way to obtain the value of the coupling
constant gch is to require that the pseudoscalar interaction
should reproduce at long range the well-established OPE Yukawa
potential. If the two nucleons are well separated, the central part
of the pseudoscalar interaction between quarks given by Equation
(30) generates an interaction between nucleons of the form,

VPS
c (r) = 1

3

g2
ch

4π

m2
π

4m2
q

ρ̃(imπ )
2 e−mπ r

r

(

5

3

)2

(EσN · EσN)(EτN · EτN)

(52)

where ρ̃(q) is the quark density Fourier transform of each
nucleon normalized to ρ̃(q = 0) = 1. Compared with the
standard OPE Yukawa potential,

VOPE
c (r) = 1

3

f 2πNN
4π

e−mπ r

r
(EσN · EσN)(EτN · EτN) (53)

and using ρ̃(q) = e−
b2q2

6 , one finally obtains:

g2
ch

4π
=
(

3

5

)2 f 2πNN
4π

4m2
q

m2
π

e
−
b2m2

π

3 (54)
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This gives the chiral coupling constant gch in terms of the πNN

coupling constant, taken to be
f 2πNN
4π = 0.0749 [57].

As discussed above, the parameter b describe the radius of
the nucleon quark content, which is different from the nucleon
charge radius and therefore cannot be directly measured. A value
for this Gaussian parameter is determined by comparing the N-N
potential obtained in a Born-Oppenheimer approximation using
the nucleonwave function solution of Schrödinger equation, with
the full quark-quark interaction and the one calculated with a
single Gaussian of parameter b [55].
3χSB acts in the model as a cut-off for the pion interaction.

Therefore, its value controls theNN tensor force, which is mainly
due to the one-pion exchange. Then, the more clear way to
determine the 3χSB value is to resort to processes dominated by
the one-pion tensor term. As discussed above, one such processes
is the p(p,1++)n reaction. Fitting the missing mass spectrum of
this reaction [58] estimated a value close to 4.2 fm −1 for3χSB.

Finally, the value of αs is estimated by means of the
N1 mass difference. It is worth noticing that, in this
model, the pseudoscalar piece of the interaction contributes
to approximately half of the total mass difference. The rest is
attributed to the OGE, and the value of αs is adjusted to this value.

TABLE 1 | Model parameters from Entem et al. [52].

b(fm) 0.518

mq(MeV) 313

3χSB(fm
−1) 4.2997

mPS (fm
−1) 0.7

g2ch 6.6608

αs 0.4977

mS (fm
−1) 3.513

The values of the parameters determined, as explained above, are
given in Table 1.

Once the model is completely defined, one can solve the
scattering problem, obtaining the NN phase shifts and the bound
state problem, namely the deuteron. The phase shifts calculation
will include couplings to a11 channel for the isosinglet (T = 0)
partial waves and to11 and N1 channels for isotriplet (T = 1)
partial waves. One of the great advantages of the description in

FIGURE 5 | NN 1P1 phase-shift. Dashed and solid lines have the same

meanings as in Figure 4B. Dashed-dotted line shows the effect of

antisymmetry, corresponding to the result when all the exchange kernels are

removed. Reprinted figure with permission from Entem et al. [52] Copyright

(2000) by the American Physical Society.

FIGURE 4 | NN S wave phase-shifts for T = 1 (A) and T = 0 (B). Experimental points with and without error bars correspond to the energy independent and energy

dependent solutions of Arndt et al. [59], respectively. The phase shifts are shown and the analysis correspond to neutron-proton. (A) Dashed line represents the

calculation including NN channels only, dotted line includes also N1 components, and solid line is the full calculation with NN, N1, and 11 channels. (B) Dashed line

is the calculation with NN only, and the solid line is the full calculation including NN and 11 channels. Reprinted figure with permission from Entem et al. [52]

Copyright (2000) by the American Physical Society.
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FIGURE 6 | NN 3PJ phase-shifts. (A) Same meaning as in Figure 4A. (B,C) Dashed line corresponds to the result with NN channels only, and the solid line includes

NN and N1 channels. Reprinted figure with permission from Entem et al. [52] Copyright (2000) by the American Physical Society.

terms of quark degrees of freedom is that this scheme allows
us to treat the nucleon an its resonances 1, N∗ in a single
framework without having to increase the number of parameters.
In Figures 4–10, one can see the comparison between the results
of the model and the experimental data of Arndt et al. [59].

The first aspect that is interesting to remark upon is the result
for the 1SNN0 partial wave. This channel cannot be coupled to
other NN channels by angular momentum selection rules, and it
is therefore an ideal candidate to test the quark-quark interaction.
As seen in Figure 4, the one channel NN calculation does not
show enough attraction to reproduce the experimental data. A
possible solution is to increase the strength of the σ exchange.
However, in this model, the σ -quark coupling is related with
the π-quark coupling by chiral symmetry and, hence, there is
not freedom to fit the data. The required attraction is supplied
by the coupling to the 5DN1

0 channel (dotted line) [60]. A
complete agreement with the experimental data is obtained when
the coupling to 11 channels is included (solid line). For the
isotriplet 3SNN1 partial waves, the effect of the coupling to 11
channels is very small, as shown here and as will be also seen for
higher angular momentum partial waves.

The short-range repulsion of the potential is reproduced
very well and without introducing any additional parameters.
Although the presence of a pseudoscalar interaction reduces the

value of αs in the OGE (the interaction usually advocated an
explanation of the short-range repulsion of theNN potential), the
strong spin-isospin independent repulsion produced by the effect
of the quark antisymmetry on the one-pion exchange potential
compensates for the lack of the OGE repulsion.

Table 2 shows the result for the low-energy scattering
parameters. The agreement with the experimental results and
other theoretical calculations is good, with the exception of the
anp. One must be aware that the scattering length in the 1S0, due
to the existence of an almost bound state in this partial wave, is
extremely sensitive to small changes in the strength of the force.
Moreover, the results of Table 2 have been calculated with the
same set of parameters for the T = 0 and T = 1 channels. A
non-significant change of the scalar boson mass in the T = 1
channel will drive the results to the experimental value. Further
discussions of the scattering length problem in this model can be
found in Entem et al. [66].

The 1P1 wave is the only one that is not affected by the spin-
orbit term of the interaction. This partial wave provides another
example of the importance of the quark antisymmetrization
in the model. In Figure 5 one can see that, if one removes
the terms coming from the antisymmetrization, the interaction
is attractive and, consequently, the phase shifts are positive.
The one-gluon exchange interaction does not contribute due
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FIGURE 7 | NN 1D2 phase-shift. Solid, dashed, and dotted lines have the

same meanings as in Figure 4A. Dashed-dotted line represents the result

without exchange kernels. Reprinted figure with permission from Entem et al.

[52] Copyright (2000) by the American Physical Society.

to its δ-like character, and the direct pseudoscalar is attractive
for the 1P1 due to sign of the spin-isospin matrix elements.
Only the repulsion coming from the quark antisymmetrization
term of the one-pion exchange potential reproduces the correct
experimental behavior.

As a general trend, the agreement between theory and
experiment is reasonable for phase shifts with L > 1, although,
as explained in Entem et al. [52], the interaction shows a lack of
spin-orbit interaction.

The problem of the origin of the spin-orbit interaction in
the constituent quark model is a long-standing problem that is
rooted in the fact that the Galilei-invariant term of the spin-orbit
piece, which comes from the one-gluon exchange interaction and
is the best one founded for the description of the NN interaction,
severely disturbs the description of the negative parity baryon
spectrum [67].

Besides the one-gluon exchange, they are several possible
sources of the spin-orbit term of the quark-quark interaction.
Valcarce et al. [68] studied the spin-orbit terms generated by the
one sigma exchange together with the Galilei-invariant spin-orbit
terms coming from the one-gluon exchange. They found that
the combination of scalar-meson-exchange interaction between
quarks and the one-gluon exchange leads to a satisfactory
description of the P-wave NN phase shifts and the baryon
spectrum. A similar conclusion can be found in Takeuchi [69].
Another source of spin-orbit interaction is one arising as a
relativistic effect from the confinement potential (the so-called
Thomas term). In Koike [70], this interaction is studied using a
particular model of confinement (flip-flopmodel). The spin-orbit
force generated by one-gluon exchange and by a flip-flop model

for confinement gives results that are qualitatively similar to those
reported by Valcarce et al. [68].

Recent attempts to overcome this problem have been made
by Chen et al. using an extension of the quark delocalization
color screening model (QDCSM) [71], which includes a one-
pion exchange with a short-range cutoff in the QDCSM
Hamiltonian [28]. The quark delocalization is achieved by
writing the wave function of each nucleon as a linear combination
of left and right Gaussians in a two-center cluster model
approximation where the mixing parameter ǫ is determined
by the six quark dynamics. They obtain similar results as the
Salamanca version of the constituent quark model [52] but
replacing the σ -meson exchange by the quark delocalization and
color-screening mechanism [29]. However, this new mechanism
does not contribute to solving the spin-orbit problem [30].

One must conclude, therefore, that the situation of the spin-
orbit force in quark potential models is still quite controversial.
To remove the remaining uncertainties, a better understanding of
the quark confinement is clearly needed (see also the discussion
of this issue in Myhrer and Wroldsen [26]).

Besides the problem of the spin-orbit interaction, the
constituent quark model description of the nucleon-nucleon
interaction still has room for improvement. Although the
Gaussian ansatz for the wave function is a reasonable and
useful approximation, one may wonder what the result would
be if a more accurate wave function was used. This has been
done by Huang and Wang [31] in the framework of the
SU(3) chiral model [72]. The authors constrained the adjustable
parameters of the model by minimizing the masses of the
octet and decuplet baryon ground states. These masses were
calculated by using Gaussian trial wave functions where the
size parameters are determined by a variational method, which
guarantees that all baryons correspond to minimum states of
the Hamiltonian model. The NN scattering phase shifts are in
satisfactory agreement with the experimental data describing in
a consistently unified way the single baryon properties and the
baryon-baryon dynamics.

A still controversial and challenging problem is the inclusion
of the vector-meson exchanges into the model. In a schematic
model, Yazaki showed that the pseudo-scalar (π , η) and scalar
(σ ) meson exchange terms can be simply added to the quark
exchange term without the risk of double counting, but the
vector-meson (ρ,ω) exchange needs some care because it plays a
role similar to the one-gluon exchange [48]. The same conclusion
is obtained in Huang and Zhang [73]. These authors show, in
a kaon-nucleon interaction in the extended chiral SU(3) quark
model that includes vector-meson exchanges, that the role of
the gluon is now nearly replaced by the vector-meson exchange.
For heavy quarks, meson exchanges are questionable Because,
in this sector, the chiral symmetry is explicitly broken by the
quark masses. Hence, it seems that the one-gluon exchange
should be a piece of the quark-quark interaction. However, which
mechanism is the right one for describing the short-range quark-
quark interactions is still an open question.

The quark scheme is also very suited to describing the
nucleon-nucleon bound states and their possible baryon-baryon
components. The deuteron has been traditionally described as an
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FIGURE 8 | NN 3DJ phase-shifts. (A) Lines are labeled as in Figure 4B. (B,C) Solid line corresponds to the result with NN channels only. Reprinted figure with

permission from Entem et al. [52] Copyright (2000) by the American Physical Society.

isospin singlet Jπ = 1+ two-nucleon system in even partial waves
(i.e., 3S1 and

3D1). However, its structure could also be explained
as a linear combination of pairs of baryonic resonances, provided
they have the adequate total quantum numbers.

The usual way to treat the contribution of these resonances
is to include them explicitly in a coupled-channel calculation.
When this is done at the baryonic level, two problems
immediately arise. If one uses for the nucleon-nucleon channel
an effective potential that is fitted to the nucleon-nucleon
scattering, it will already include contributions from the
resonance intermediates N∗ or 1. Therefore, one has to modify
the normal nucleon-nucleon potential in order to account for
the additional attraction coming from the channel coupling. Such
procedures usually introduce an unwantedmodel dependence on
the results obtained and are sometimes not fully consistent.

Examples of these concerns are the calculation of Haapakoski
and Saarela [74] (11 components) and Rost [75] (NN∗

components). Both used a Reid Soft core potential for the
NN channel and one-pion exchange potential for the NN∗ or
11 channel. Rost realized that when NN∗ configurations are
included, the NN potential must be modified because part of
the attraction is produced by NN∗ components. It implicitly
appears in the fit to the experimental data, and, now that the
NN∗ are explicitly included in the coupled-channels calculation,

it must be subtracted out to avoid double counting. This is done
by modifying the values of the parameters responsible for the
intermediate range attraction in the Reid potential. A similar
problem appears in Haapakoski and Saarela [74] in their 11
calculation. A second problem is that there is no guidance to
construct the specific transition potential to the N∗ resonances,
and one thus resorts to scaling some pieces (for example the one-
pion exchange) of the nucleon-nucleon interaction, As shown
by Juliá-Díaz et al. [76], however, the NN∗ interaction, due
to quark antisymetrization, shows significant differences with
respect to those obtained by a direct scaling of the nucleon-
nucleon interaction.

These two difficulties are overcome in calculations based on
quark degrees of freedom as the one performed in Entem et al.
[52]. These authors assume that the deuteron can be described
as a combination of different configurations, with two clusters of
three quarks being the most important, in order of increasing
mass, N(939)N(939), N(939)N∗(1440), and 1(1232)1(1232).
Table 3 displays the different configurations and partial waves
included in the calculation. The results of the calculation are
shown in Table 4. In all cases, the deuteron binding energy is
correctly reproduced, being Ed = –2.2246 MeV. There are a
number of conclusions that can be drawn from this table. The
first one is that the probability of the NN∗(1440) components are
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FIGURE 9 | NN F phase-shifts. In the T = 0 sector (A), the solid line includes NN channels only. In the T = 1 sector (B,C,D), the dashed line corresponds to including

NN channels only, and the solid line considers also N1 channels. Reprinted figure with permission from Entem et al. [52] Copyright (2000) by the American

Physical Society.

significantly smaller than the 11 ones, which is in agreement
with the indirect estimations of Dorodnykh et al. [78]. As a
consequence, the influence of these components on the value
of the observables, such as the root mean square radius or AS,
is negligible. Finally, the probability of the 11 components
(around 0.25%) agree with the upper limit established by
Allasia et al. [79].

6. OTHER BARYONIC SYSTEMS

The nucleon-nucleon interaction described above can be applied
to other systems, in the same way that they do other nucleon-
nucleon potentials likes the ones based in boson exchanges. The
most obvious system to extend the application of the quark
model-based nucleon-nucleon interaction is the triton.

The interest of this calculation lies in the fact that the NN
potential derived from the quark-quark interaction is non-local.
This potential is generated using the Resonating Group Method
so that the non-localities resulting from the internal structure of
nucleons is persevered. These non-localities can produce off-shell
behavior different to the quark model-based potential.

In Juliá-Díaz et al. [76], the triton binding energy was obtained
from a Fadeev calculation, including only 1S0 and 3S1 − 3D1

NN partial waves, used for the NN interaction of the direct
and exchange potential obtained in a fully RGM-based nucleon-
nucleon calculation. The results for the triton observables are
shown in Table 5 together with those obtained for conventional

NN potentials. One can see that they are no significant differences

between the three calculations, and so the quarkmodel-based NN
interaction can provide a realistic description of triton. A more

complete calculation, which includes up to 50 channels in the

Fadeev calculation and uses a different scheme for the quark-
quark interaction, was developed by Fujiwara et al. [83], and it
obtained a binding energy of Eb = −8.52 MeV.

Particularly attractive are those processes in which the quark
model description involves completely different physics from
the conventional one. One of these systems is the hyperon
production process pp̄ → 33̄.

The experimental data shows two characteristic features of this
production process. The first one is that the pp̄ → 33̄ process
that occurs predominately in a spin-triplet state. The second
feature refers to the energy dependence of the cross section
immediately after the threshold, which needs the inclusion of the
calculation of partial waves higher than L = 0.

In the quark level description, the 33̄ pair is produced from
the pp̄ state via the annihilation of a uū pair and the subsequent
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FIGURE 10 | NN G phase shifts in the T = 0 (B,C,D) and T = 1 (A) sectors. Lines have the same meanings as in Figure 9. Reprinted figure with permission from

Entem et al. [52] Copyright (2000) by the American Physical Society.

creation of an ss̄ pair by s-channel exchanges. In a conventional
description, meanwhile, this production relies on the t-channel
meson exchanges, where at least kaon exchanges are needed.
Examples of this different point of view can be found in Ortega
et al. [84], Haidenbauer et al. [85] and references therein.

The two types of models involve completely different
physics. Thus, the triplet-state dominance can easily be
understood in quark models because the ss̄ pair, which carry
the 33̄ spin, is produced by effective vector exchanges
(gluons and Goldstone bosons), which gives rise to a spin
1 for the 33̄ state. In meson exchange models, the tensor
pieces of the K and K∗ mesons must be combined to
produce the spin-triplet dominance, which may introduce a
model dependence.

For the real part of the pp̄ (33̄) interaction, both type

of models use a G-parity transformation of some nucleon-

nucleon (hyperon-nucleon) potential. Themodel of Haidenbauer

et al. [85] is based in the OBEPF version of the one-boson
exchange potential of Haidenbauer et al. [86] for the pp̄, whereas
the corresponding interaction for the 33̄ channel is derived
from the hyperon-nucleon potential of Holzenkamp et al. [87].
The transition potential pp̄ → 33̄ includes K and K∗

meson exchanges.

TABLE 2 | Low-energy scattering parameters from Entem et al. [52].

Quark OBEP Paris Exp.

anp (fm) –27.010 –23.750 –17.612 –23.748(10)

rnp (fm) 2.64 2.71 2.88 2.75(5)

at (fm) 5.437 5.424 5.427 5.419(7)

rt (fm) 1.779 1.761 1.766 1.754(8)

The result of the OBEP and Paris potential are from [61] and [62], respectively.

Experimental data are from [63–65].

TABLE 3 | Different channels and partial waves considered in the calculation of

the deuteron properties from Juliá-Díaz et al. [77].

NN 3S1 - 3D1

NN∗ 3S1 - 3D1

11 3S1 - 3D1 - 7D1 - 7G1

The quark-quark interaction used by Ortega et al. [84] is a
generalization of the quark-quark interaction of Entem et al. [52].
It includes the exchange of π ,K, η, σ , κ , and gluons in the t-
channel and π , κ , η, and gluons in the annihilation s-channel.

Frontiers in Physics | www.frontiersin.org 16 January 2020 | Volume 7 | Article 233

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Fernández et al. Quark Models of the Nucleon-Nucleon Interaction

TABLE 4 | Different components in (%) of the deuteron wave function.

NN NN∗ 11

3S1
3D1

3S1
3D1

3S1
3D1

7D1
7G1 rm(fm) AS(fm

−1/2) η

95.38 4.62 – – – – – – 1.976 0.8895 0.0251

95.20 4.56 – – 0.11 0.0035 0.12 0.0063 1.985 0.8941 0.0250

95.17 4.53 0.0027 0.024 0.13 0.0036 0.12 0.0062 1.986 0.8944 0.0250

95.19 4.54 0.0022 0.015 0.12 0.0036 0.12 0.0063 1.985 0.8941 0.0250

TABLE 5 | Comparison of triton properties from Juliá-Díaz et al. [80].

Quark NijmII Bonn B

EB (MeV ) −7.72 −7.65 −8.17

PS (%) 91.49 90.33 91.35

PS′ (%) 1.430 1.339 1.368

PP (%) 0.044 0.064 0.049

PP (%) 7.033 8.267 7.235

The results of NijmII are from Stoks et al. [81], whereas the results of Bonn B are from

Schadow et al. [82].

Initial and final state interactions are automatically included by
the diagonal channel interactions.

Besides the interaction described above, both the pp̄ and 33̄
annihilate into mesons. These processes are very difficult to
describe, and they are usually parameterized in both models by a
complex potential, including spin- and isospin-dependent terms.
The parameters of this potential are fitted to the pp̄ → pp̄ cross
sections (total, elastic, and charge exchange) and pp̄ → 33̄

total cross section. Although bothmodels reproduce the total and
differential cross section with reasonable accuracy, completely
different patters appear in the description of polarization
observables, such as the depolarization observable Dnn, the
Knn spin transfer, and the Ci,j spin correlation coefficients.
The calculation of Haidenbauer et al. [85] concluded that the
quark model seemed to be in better agreement with the Ci,j

spin correlation coefficients data. There was no comparison
with experimental data of Dnn, and the Knn spin transfer was
performed, but the results show significant differences between
the prediction of the twomodels. In Ortega et al. [84], the authors
compared the results of the quark model calculation with a set of
data on a different energy, concluding that the model seemed to
show a reasonable agreement with the data. However, the scarcity
and inaccuracy of existing data prevents us from forming any
definitive conclusion.

The same scheme used to describe the nucleon-nucleon
interaction in terms of degrees of quark freedom can be used to
study the hyperon-nucleon interaction and the hyperon-hyperon
interaction. Technically, this means extending the SU(2) flavor
model to the SU(3) flavor model (or SU(6) spin flavor). Most
of the parameters of the extended model are obtained from the
nucleon-nucleon interaction and the rest from the low-energy
cross section data of the hyperon-nucleon interaction.

Among the different works done in this line [88], we will
refer to two of them, which use different approaches: the one

develop by the Beijing group [89] and the one developed by the
Kyoto group [49].

The model of Zhang et al. was an extension of the low-
momentum effective Lagrangian coming from the instanton
liquid picture of the QCD vacuum Equation (27) of Fernandez
et al. [24] to a SU(3) model by the inclusion of an s-quark in
the system. As a consequence, aside from the usual π and σ
exchanges, K, η, and η′ exchanges appeared in a natural way.
The 12 parameters of the model were fixed in the same way
of Fernandez et al. [24], but the oscillator parameter bs was
obtained by scaling the parameter bu as bs = √

mu/msbu, were
mu and ms are the constituent masses of the light and strange
quark, respectively. The one-gluon exchange coupling constant
for the light and strange quark were determined from the mass
splitting of 1N and 3N, respectively. Finally, the strength of
the confinements were obtained from the stability condition of
nucleon3 and4.

Using this interaction, Zhang et al. [72, 89] studied the binding
energy of the deuteron, the NN scattering phase shifts, and the
hyperon-nucleon cross section in the framework of the RGM,
obtaining results reasonably consistent with experiment.

The model of the Kyoto group follows the philosophy of the
hybrids models. The effective qq interaction of the model consist
of the one-gluon exchange Fermi-Breit interaction, a quark-
confining potential, and other terms generated effective meson-
exchange potentials (EMEP) from various meson-exchange
mechanisms. They are various version of the model depending
of the mesons included in the (EMEP). All of these versions can
be found in the extensive review of Fujiwara et al. [88]. We will
only mention the most recent version named fss2 [49], which,
besides the scalar and pseudo-scalar meson exchanges, includes
the vector meson exchanges as well. This potential reproduces
the existing data of the NN and YN interactions quite well and,
therefore, can predict all the interactions in the strangeness S =
–2, –3, and –4 sectors without adding any extra parameters.

In the last years, the experimental progress in the
phenomenology of heavy hadrons has increased the interest in
the hadron-hadron interaction involving heavy flavors as well
as the bound nuclear systems with heavy mesons. Due to the
lack of experimental results, most works are devoted to looking
for bound states or resonances or comparing phase shifts with
lattice calculations, e.g., Miyamoto et al. [90, 91]. Thus, Huang
et al. [33] the N3c, N3b, N6c, and N6b are investigated in the
quark delocalization color screening model. The authors have
shown that, although the interaction N3c is attractive, it is not
strong enough to form bound states. That is not the case of the

Frontiers in Physics | www.frontiersin.org 17 January 2020 | Volume 7 | Article 233

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Fernández et al. Quark Models of the Nucleon-Nucleon Interaction

N6c interaction, which is able to form bound sates that become
resonances with the coupling with the N3c. The corresponding
bottom states have similar properties.

A comparative study of charmed baryon-nucleon interaction
is performed in Garcilazo et al. [34] based on different
theoretical approaches and comparing them with a lattice
calculation, forming a general qualitative agreement among
the different approaches. However, more experimental
efforts are necessary in this field to be able to drawn
quantitative conclusions.

Finally, a NN interaction based on quark degrees of freedom
has been applied to the description of the nuclear matter
saturation point in Fukukawa et al. [92]. These authors derive
the equation of states (EOS) of nuclear matter in the framework
of the Bethe-Brueckner-Goldstone approach using the fss2
interaction of Fujiwara et al. [49]. The results showed that
the nuclear matter saturation curves can be reproduced at the
same level of the best NN interactions but without the need
of the introduction of three-body forces or parameters different
from the one used to reproduce the NN phase shifts and the
deuteron properties. These results may be an indication that
the effects of the three-body forces used in more traditional
interactions are, to a large extend, automatically included when
the quark degrees of freedom are explicitly introduced in
the calculation.

7. OTHER QUARK APPROACHES TO THE
NUCLEON-NUCLEON INTERACTION

Although the constituent quarks model, in its different versions,
has been the most popular model to use to study the nucleon-
nucleon interaction, there have been attempts to use othermodels
for the same purpose, as the bag model is the most important.
As we said in the introduction, the first attempts to describe this
interaction using degrees of freedom from quarks were made
by Fairley using the MIT bag model [93]. The ingredients of
the model are very simple: relativistic quarks of three colors
and two, three, or four flavors interacting through an octet
of colored vector gluons. Quarks and gluons are confined to
a finite volume by a uniform pressure. Non-strange quarks
are massless, satisfying all quarks the Dirac equation inside
the cavity.

The first serious effort to use the MIT bag model to describe
the nucleon-nucleon interaction was carried out by DeTar [8].
In this model, the nucleon-nucleon interaction is obtained from
the adiabatic deformation of a bag containing six quarks into
two color singlet bags containing three each. The energy of
the two three-quark bags is minimized with respect to two
collective variables: a parameter that measures the separation of
the three-quark subsystems and a second parameter related to
the baryonic quadrupole moment that, in certain ways, takes
into account the deformation of the three-quark bags in their
mutual interaction. The obtained potential shows a soft core
of about 300 MeV at short distances and it is attractive in the
intermediate range. The soft core can be easily understood, as
explained below.

In the MIT bag model, the color magnetic energy of n-quarks
coupled to a color singlet and located in the same orbit is
DeGrand et al. [94]:

En = 1

2
M00

[

n(n− 6)+ J(J + 1)+ 3I(I + 1)
]

(55)

where J is the angular momentum of the state and I the isospin.
M00 is a model parameter that take the value 50 MeV in order to
reproduce the 1(1230)-nucleon mass difference. In the case J =
1 and I = 0 (calculated by DeTar), the color magnetic interaction
when the two nucleons completely overlap was only 50 MeV,
whereas each nucleon had a color magnetic energy of 150 MeV.
This 250 MeV difference between the energy of two separated
and merged nucleons accounted for the repulsion found by
DeTar. The intermediate-range attraction obtained by DeTar
could not have been predicted without a quantitative calculation
and should be related with the strong color electrostatic attraction
within the quark triplets [8].

The calculations in this model are sufficiently complex not
to be able to advance much more in the calculation of the NN
interaction. Moreover, the center of mass energy of the two
bags is difficult to subtract, which can lead to double counting
problems when calculating the nucleon-nucleon phase shifts. In
order to solve the scattering problem of two bags, Jaffe and Low
proposed the use of the P-matrix formalism [95]. These authors
suggested that the energy of multiquarks states appears as poles
of the P matrix, that is the logarithmic derivative of the hadronic
wave function:

P(k, b) =
∣

∣

∣

∣

u′(k, r)
u(k, r)

∣

∣

∣

∣

r = b

(56)

provided that the matching radius b is chosen to be consistent
with that of the multiquark state. In this way, P-matrix poles are
obtained from the experimental phase sifts and compared with
the predictions of the bag model to form the multiquark states.

The Jaffe-Low hypothesis was tested for the NN system [96,
97], finding a qualitative explanation for the origin of the
repulsive core and an overall agreement with the experimental
data with an accuracy up to 10 − 15%. Possible improvements
to the model include a better determination of the relationship
between the bags parameter and the matching radius and
the possibility of allowing for deformed bag shapes. This last
point is technically complicated, although some advances have
been made by expanding the wave function in an harmonic
oscillator basis [98].

Bags models have also been used to generate boson-exchange
interactions through a Fierz transformation of the gluon
exchange between two bags, being that the form factors appearing
in the OBE are defined as matrix elements of the vertex invariants
with quark wave functions taken from the MIT bag model [99].

8. CONCLUDING REMARKS

Throughout this chapter we have presented the achievements of
the description of the nucleon-nucleon interaction in terms of
quark degrees of freedom. At the scale of nuclear phenomena or

Frontiers in Physics | www.frontiersin.org 18 January 2020 | Volume 7 | Article 233

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Fernández et al. Quark Models of the Nucleon-Nucleon Interaction

low-energy hadron physics, the QCD running coupling constant
is large, and, in this strong-coupling regime, non-perturbative
methods are indispensable. But, so far, not much success has
been achieved in this respect. Then, if one wants to explicitly
keep the fundamental constituents in QCD, i.e., quarks and
gluons, one is then led to the model non-perturbative QCD using
‘QCD-inspired’ models. One of these models, the constituent
quark model, is experiencing a resurgence because of the recent
studies of the NN interaction from first-principles lattice-QCD
simulations near the physical quark masses that indicate that
their behavior at short distances are qualitatively consistent with
the constituent quark model [100, 101]. In particular, when a
compact six-quark state is Pauli blocked, the baryon interaction
is highly repulsive. However, when the channel is Pauli allowed,
the interaction can be either attractive or repulsive, as predicted
by the constituent quark model [102].

Leaving aside the fact that these models are not derived from
the fundamental theory, the use of quark and gluon degrees of
freedom allows us to better understand the physics underlying
some phenomena, such as the hard core of the nuclear force or
the role played by the quark antisymmetry, which in othermodels
can be hidden in the parameters used. On the other hand, these
models represent a complexity added to the calculations that
make them less flexible in reproducing certain phenomenology.

The main advantages of these models is that they can
describe a huge variety of phenomena, baryon and meson
spectrum, baryon-baryon interactions, and few nucleons
system (deuteron, triton,. . . ), within an unified (and sometimes
reduced) set of parameters with a quality comparable with the
other models.

However, these models present the same caveats, such as
their non-relativistic character; the way to set the values of the
model parameters make it difficult to determine errors of the
calculated observables and impossible to improving the model
order by order.
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