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Dowsons are ±2π point singularities of the unitary complex order parameter eiϕ

characterizing the so-called dowser texture in a thin nematic layer with homeotropic

boundary conditions. Dowsons are therefore similar to disclinations in freely-standing

smectic C films or to vortices in two-dimensional superfluids or superconductors. Using

especially tailored setups called dowsons’ colliders, pairs of dowsons of opposite signs

are generated and set into motion on counter-rotating trajectories leading to collisions.

In a first approximation, the velocity of dowsons is orthogonal and proportional to the

local phase gradient
−→
∇ ϕ. The outcome of collisions, i.e., either annihilation or bypass,

depends on the distance of trajectories 1ϕ in terms of the phase: for 1ϕ < π a collision

of a pair of dowsons leads to their annihilation, while for1ϕ > π the dowsons are passing

by. This rule is valid only for quasi-static stationary wound up textures and can be easily

broken by application of a Poiseuille flow in an appropriate direction.
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1. DOWSONS: DEFECTS OF THE DOWSER TEXTURE

1.1. The Dowser Texture
As stressed by de Gennes in his pioneering paper on classification of topological defects [1],
superfluids (or superconductors) (Figure 1A) and smectics A (Figure 1B) are characterized by
complex order parameters |9|eiϕ . Later, smectics C (Figure 1C) have been added to this list. Beside
phases in the thermodynamic sense, the complex order parameter characterizes also textures of a
homeotropic nematic layer above the Freedericks transition (Figure 1D) as well as the so called
dowser texture in a nematic layer with homeotropic boundary conditions (Figure 1E).

The dowser texture, known as the quasi-planar texture for decades [3], was believed unduly to
be unstable, with respect to the homogeneous homeotropic texture, so that it has been scarcely
studied in past. Recent work [4] proved that in practice the quasi-planar texture is only metastable
and can be preserved indefinitely in certain conditions. Experiments with this persistent version
of the quasi-planar texture have unveiled its remarkable qualities such as its sensitivity to magnetic
[5], mechanical [6], or electric [7] perturbations. For this reason, as well because of the resemblance
with the wooden dowser tool, the persistent version of the quasi-planar texture was dubbed “the
dowser texture.”

1.2. Dowsons d+ and d−: the +2π and −2π Singularities of the
Phase Field ϕ(x, y, t) of the Dowser Texture
The dowser texture is fully characterized by the azimuthal angle ϕ of the unitary two-dimensional
dowser field d = (cosϕ, sinϕ) (Figure 1E) which is equivalent to the phase ϕ of the complex order
parameter eiϕ .
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FIGURE 1 | Topological defects in systems characterized by complex order parameters: (A) vortices in a superconductor [2], (B) dislocation in a BPI crystal, (C)

disclination in a smectic C free-standing film, (D) umbilic in a homeotropic nematic layer above the Freedericks transition, (E) dowson in the dowser texture.

Thanks to the birefringence of nematics, the phase ϕ(x, y, t)
of the dowser field d(x, y, t) is directly observable in polarized
light so that its +2π and −2π topological singularities are
easily identifiable [5]. Let us note that when considered in three
dimensions of the nematic layer, these singularities of the 2D
dowser field d(x, y) appear as nematic monopoles [8], that is to
say, point singularities of the 3D director field n(x, y, z, t).

In the present work, devoted to motions and collisions of
topological singularities of the dowser field we will call them
shortly “dowsons.” Moreover, for the sake of concision, we will
use notations “d+” and “d−” corresponding to the+2π and−2π
versions of dowsons.

Let us stress that in contradistinction with the dowser
texture, the phase ϕ(x, y) of the complex order parameter in
superconductors is not an observable quantity and only its +2π
and −2π singularities, that is to say vortices, can be imaged, for
example, with a squid-tip AFMbecause they carry in their normal
core the quanta of the magnetic flux h/(2e) [2].

1.3. Trajectories and Collisions of Dowsons
Previous experiments with dowsons [4, 5] have shown that
pairs of dowsons “d+” and “d−” can be easily generated, set
into motion and brought into collisions. In certain conditions
collision of pairs of dowsons (d+,d−) can result in their
annihilation. Here, we will explore these processes by means of
especially tailored setups called “dowsons’ colliders” (see section
2.1 and Figure 4).

The principal role of dowsons’ colliders consists in driving
motions of dowsons which is achieved by a controlled winding
of the phase of the dowser field. Indeed, like vortices in
superconductors which are set in motion by phase gradients (the

Lorentz force is exerted on a flux quantum by a transport current
proportional to the phase gradient), themotion of dowsons is also
driven by phase gradients.

1.4. Single Dowsons Inserted in a Wound
Up Dowser Field
This is explained on the first example shown in Figure 2 where
one dowson d+ is imbedded in a wound up dowser texture.
Before considering forces involved in the motion of this dowson
d+, let us emphasize that its structure depends on the phase
ϕi = ϕ(xi, yi) at the insertion point (xi, yi). Figures 2A–C show
that for ϕi = 0 the structure of the dowson d+ is radial with the
field d directed outward. For ϕi = π/2 the structure becomes
circular anticlockwise (see Figures 2D–F) and for ϕi = π it is
radial directed inward (see Figures 2G–I).

In Figure 2 the dowser field is wound up in the y direction

(
−→
∇ ϕ//

−→y ) so that the phase ϕi = ϕ(xi, yi) does not depend
on the coordinate xi of the insertion point. Therefore, lines
defined by yi = const are isophasic and can be considered as
isophasic trajectories of the dowson. In the general case of an
arbitrarily wound up dowser field, one can still define isophasic
lines by equation

ϕ(xi, yi, t) = const (1)

When the dowson d+ is moving on such isophasic trajectories, its
structure (radial, circular, or spiral) remains the same. Therefore,
the isophasic trajectories can be alternatively called isoform. This
second denomination is more convenient in practice: when the
orientation of the cross-shaped isogyres of a dowson remains the
same, its trajectory is isophasic.
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FIGURE 2 | (A–I) Dowson +2π imbedded in a wound up dowser texture. (A,D,G) Radial, orthoradial, and antiradial configurations of the dowson d+ alone. The

orthoradial configuration has the lowest elastic energy [5]. (B,E,H) Phase field of the dowser texture wound up in y direction: ϕ = 2πy/λ. (C,F,I) The wound up phase

field with the dowson d+ imbedded respectively at y = 0 (C), y = λ/4 (F), and y=λ/2 (I). (J–O) Dowson -2π imbedded in a wound up dowser texture. (J,M)

Configurations of the dowson d− depend on the phase ϕi = ϕ(xi , yi ) at the insertion point (xi , yi ). They result from rotation by the angle ϕi . (K,N) Phase field of the

dowser texture wound up in y direction: ϕ = 2πy/λ. (L,O) The wound up phase field with the dowson d− imbedded respectively at y = 0 (L) and y=λ/4 (O).

Similar consideration on the insertion of one dowson d−
into a wound up dowser field (illustrated by Figures 2J–O)
leads to the conclusion that the “hyperbolic” structure of
the dowson d− rotates as a whole when ϕi varies. Such a
transformation of the dowson d− does not change its elastic
energy so that trajectories of the dowson d− are not submitted to
elastic constraints.

On the contrary, as stated above, the structure of the dowson
d+ varies with ϕi. Therefore, due to the elastic anisotropy, the
elastic energy of the dowson d+ depends on ϕi so that its
trajectories are submitted to an elastic constraint. As we will point
out below, dowsons d+ tend to follow isophasic trajectories.

In Figure 2C, the dowson d+ is located at the left extremity of
a 2π wall. The elastic energy stored in this wall is relaxed when
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the dowson d+ moves to the right because the wall is shortened
by this means.

Qualitatively, a wall of width λ exerts on the dowson d+ the
force which is of the order of the elastic energy per unit length
stored in it:

τel =
1

2
Keff h

∫ λ

0

(

∂ϕ

∂ξ

)2

dξ ≈ Keff
2π2h

λ
(2)

During the motion of the dowson with velocity v, the driving
force τel is opposed by another one τvisc resulting from the
viscous dissipation:

τvisc ≈ πγ1hv (3)

Therefore, the velocity of the dowson is given by:

v ≈ 2π
Keff

γ1

1

λ
(4)

In conclusion, the velocity of the dowson should be independent
of the local thickness but should decrease as 1/λ with the local
width λ of the wall.

When instead of the dowson d+, the dowson d− is imbedded
in the same wound un dowser field (see Figure 2J), it is
positioned at a right extremity of the 2π wall and therefore will
move to the left.

1.5. Pair of Dowsons (d+,d−) Inserted in a
Wound Up Dowser Field
Figure 3 represents the case of a pair of dowsons d+ and d−
inserted in the same wound up dowser field. Analytically, the
phase field of the wound up dowser texture with the pair of d+
and d− dowsons inserted respectively at points (x±, y±) can be
expressed as

ϕ(x, y) =
2π

λ
y+ arctan

(

y− y+

x− x+

)

+ arctan

(

−
y− y−

x− x−

)

(5)

When the two dowsons are far enough, i.e., when |x+ − x−| > λ,
they move on trajectories defined by y(t) = y+ and y(t) = y−.
We can thus define the distance of trajectories as

δ = y+ − y− (6)

in terms of the length or as

1ϕ = 2π
y+ − y−

λ
(7)

in terms of the phase. The set of seven pictures in Figures 3A–G

illustrates graphically this concept of the distance of trajectories
leading to collisions.

1.6. Aims of Experiments With Dowsons’
Colliders
One of aims of our experiments performed with dowsons’
colliders is to find conditions which determine the outcome of
collisions [9, 10]. When 1ϕ = 0 (see Figure 3A), the two
dowsons are located at extremities of the same 2π wall. It
seems therefore that annihilation of the (d+,d−) pair must occur.
Inversely, when 1ϕ > π (see Figure 3G), the two dowsons
are located at extremities of two distinct 2π walls so that the
annihilation of such a pair will be avoided. We will thus generate
experimentally numerous pair collisions with the aim to find the
annihilation cross section of dowsons.

Before that, we will focus on the primary aim of our
experiments which consists in observingmotions of dowsons and
measuring their velocities. Knowing that the elastic force driving
their motion is inversely proportional to the wave length λ of the
wound up texture, we have to wind up the dowser texturemore or
less expecting that the velocity of dowsons should increase when
the phase gradient grows.

2. DOWSONS’ COLLIDERS

2.1. Experimental Setups
2.1.1. The Double Dowsons’ Collider
The first setup shown in Figure 4A, called here “Double Dowson
Collider” or DDC, was developed during the study of the
rheotropism of the dower texture [6]. It consists mainly of a
convex lens (50 mm in diameter) and of a glass slide (25 × 75 ×
1mm) supported at one end by a translation stage as shown in
Figure 4A. The radius of curvature of the convex lens is 140
mm. A droplet of a nematic (5CB) is held by capillarity in the
gap between the lens and the slide. Typically the diameter of
the squeezed droplet is 10 mm and its thickness in the center
(regulated by means of the translation stage) is of the order of a
few µm. The glass slide is set into vibrations by the force exerted
on small magnets by the magnetic field of the coil. Due to the
mirror symmetry [with respect to the (x,z) plane] of this device,
only the flexural modes of vibration ζ = ζ (x, t) are excited in it.

As explained in Pieranski et al. [6], vibration of the slide
(in its flexural modes) results in two harmonic motions at the
drop center: 1—modulation of the gap thickness and 2—rotation
around the y axis. By this means, two Poiseuille flows, radial and
dipolar, shifted in phase by π /2, are driven simultaneously. The
resulting effective flows are elliptical: clockwise and anticlockwise
in the two halves of the droplet symmetrical with respect to the
mirror plane (x,z).

The rheotropic (weathercock-like) behavior of the dowser
field results in rotation of the dowser field d with the angular
velocity ω(x, y, t) = dϕ/dt depending on the (x,y) position
in the droplet. In the DDC, the torque Ŵ(x,y,t) exerted by the
elliptical Poiseuille flow on the dowser field can be approximated,
heuristically, by the function fDDC(r) cos(θ), with fDDC(r) =

re−r2 , r =
√

x2 + y2 and θ = arctan(y/x), plotted in Figure 4C.
A typical pattern of a wound up dowser texture observed in
experiments between crossed polarisers is shown in Figure 4E.
It is symmetrical with respect to the (x,z) plane.
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FIGURE 3 | Collision of a pair of dowsons d+ and d− imbedded in a wound up dowser texture. The distance of their trajectories in terms of the phase difference 1ϕ

varies between 0 to 3π from (A–G). The color code for the phase is given in (H).

2.1.2. The Circular Dowsons’ Collider
For the purpose of the present study of collisions of dowsons, we
developed a second setup (see Figure 4B) tailored for production
of a circularly wound up pattern. As we will see below, trajectories
of dowsons in this Circular Dowsons’ Collider are circular
and respectively clockwise and anticlockwise for the d+ and
d− defects.

In this second setup, the mirror symmetry is broken by its
structure. The magnet is now located at one extremity of an
additional glass slide (10 × 75 × 1mm) which is attached at its
second extremity to the principal glass slide. The force fexc exerted
by the coil on the magnet produces now also a torque fexc1y
which drives the torsional mode of the principal glass slide. As the
flexural and torsional modes have different eigenfrequencies, the
π/2 phase shift between them can be obtained by an appropriate
choice of the excitation frequency, which typically is of the order
of 360–440 Hz. In such a case, the motion of the principal glass
slide at the center of the drop is conical: the normal to it Eν
precesses on a cone centered on the z axis. The Poiseuille flow
in the droplet is now circular (orthonormal) with the amplitude
(and sense) depending on the distance r from the drop center.

In the first approximation, the torque Ŵ(x,y,t) exerted by the
elliptical Poiseuille flow on the dowser field can be represented,
heuristically, by the function fCDC(r) = d(fDDC/dr) which plotted
in Figure 4D.

2.2. Experiments With the Double
Dowsons’ Collider
2.2.1. Velocity of Single Dowsons on Straight

Trajectories
As shown in Figure 5E the isogyres’ pattern of the dowser
field wound up in the double dowsons’ collider is (almost)
symmetrical with respect to the mirror plane (x,z). Therefore,
when a single dowson is imbedded in the wound up dowser
field in the vicinity of this plane, the 2π wall to which it is
attached is parallel to the x axis as discussed in the Introduction
(see Figure 2). This is the case in the series of five pictures

in Figures 5A–E showing the motion of a single dowson d+
“pulled” by a 2π wall along the x axis.

These pictures are extracted from a video containing 55
pictures recorded at intervals of 20 s. Using all of them, we
measured the velocity v of the dowson and the width λ of the
2π wall to which it is attached. The result, v(λ), is plotted in
Figure 5F. Arrows labeled from a to e indicate measurement
points corresponding to the five picture above.

From the Equation (4) in the section 1.4 we expect that the
velocity of the dowson should grow as v ∼ λ−1 with the local
wave length λ of the wound up phase field. The dashed line in the
diagram of Figure 5F represents the best fit to this law. Clearly,
the slope of the measured variation v(λ) is slightly steeper. We
have therefore tempted to fit experimental results with a more
general power law v ∼ λα . The continuous line represents the fit
with α = −1.24 which clearly is better than the one with α = −1.

2.2.2. Dowsons’ Sprint
In the search for reasons of this discrepancy, we performed
another experiment which could be called “the dowsons sprint.”
It starts with a simultaneous generation of a row of (d+,d−) pairs
in a wound up dowser texture by means of a shear flow applied
in the y direction (see Figures 6A,B). (We postpone the detailed
discussion of this issue to another paper.) At t = 0 s, the dowsons
d+ “in statu nascendi” are aligned on a slightly curved line AB
while the dowsons d− are aligned on another line CD parallel to
AB. As expected, all dowsons d+ start to move to the left while
the dowsons d− move to the right.

For the purpose of the further discussion we will label seven
neighboring dowsons d+ on the start line AB with an integer
index i = 1,2,3,... (see Figure 6C).

At the very beginning of this race, the motion of dowsons
is driven exclusively by shortening of the 2π walls connected
to them, as discussed in the section 1.4. Therefore, they have
therefore the same velocity vi = const and conserve their
alignment on the curved line which is moving to the left as
a whole.
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FIGURE 4 | Dowsons’ colliders. (A) The first version developed during studies of the rheotropism of the dowser texture [6]. Here, we will call it the Double Dowson

Collider (DDC). (B) The second version tailored for production of circular trajectories of dowsons. We refer to it as the Circular Dowsons’ Collider (CDC). (C,D)

Approximative representations of the rheotropic torque Ŵ(x, y) in DDC and CDC. (E,F) Typical wound up dowser textures obtained with DDC and CDC.

However, soon after the departure, an instability occurs: the
set of all dowsons is split into two subsets defined by the
parity of the index i and, for example, dowsons with i odd (see
Figure 6D) begin to move more slowly than those with i even.
This retardation of odd dowsons (with i = 2n+1) is easy to
understand: the width λ2n+1 of the 2π walls to which they are
attached is twice larger then that of the even dowsons λ2n.

If the force fi pulling dowsons was determined only by the
width λi of the 2π walls to which they are attached, the ratio of
velocities v2n/v2n+1 should be 2. However, measurements of the
dowsons’ velocity have shown that v2n/v2n+1 ≈ 3.

Explanation of this apparent discrepancy involves a more
detailed evaluation of the elastic energy released during the
motion of dowsons. If the “lanes” left behind faster dowsons
stayed free of distortion, the force acting on them would
remain constant during the race. However, as shown in
Figure 6D, these lanes are filled by enlargement of the lanes of
slower dowsons. The corresponding amount of the
released elastic energy per unit length is equal to the
force f2n+1 pulling slower dowsons. In conclusion, the
elastic force f2n acting on faster dowsons is not two
but three times larger than f2n+1. A more detailed
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FIGURE 5 | Motion of the dowson d+ in the phase gradient generated in the dowson collider DDC. The series of five pictures shows successive positions of the

dowson d+ at: (A) t = 0 s, (B) t = 380 s, (C) 520 s, (D) 620 s, and (E) 700 s. For a better visibility, small areas in vicinity of the dowson have been enlarged in pictures

(B–E). (F) Plot of the velocity of the dowson d+ vs. the local wave length of the wound up dowser texture. The continuous red line represents the fit to the power law

v = Aλα with α = −1.24. The dashed blue line corresponds to α = −1.
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FIGURE 6 | Dowsons race. (A) Central portion of the dowser texture wound up in the DDC. It can be seen as a stack of 2π walls. (B) Collective generation of (d+,d−)

pairs by application of a transient shear flow (in y direction) which “breaks” simultaneously all 2π walls. (C) At the beginning of the race, dowsons d+ (or d−) are

moving with the same velocity. (D) Odd-even instability: odd dowsons (i = 2n+1) stay behind even dowsons (i = 2n) because they become about three times slower.

(Collaboration with Elise Hadjefstatiou and Lisa-Marie Montagnat).

discussion of the dowsons’ race is postponed to
another article.

2.2.3. Are Trajectories of Dowsons Isophasic?
In experiments with dowsons’ colliders, the 2π walls can be
defined as bundles of four adjacent isogyres; when one crosses
one of such bundles, the phase varies by 2π .

In the vicinity of the mirror symmetry plane (x,z) of the
Double Dowson Collider, the 2π walls are parallel to the x
axis so that the dowsons d+ and d− are moving on straight
isophasic trajectories. However, as we know already from section
2.1 (see Figure 4C), the whole dowser texture, wound up in the
Double Dowsons’ Collider, can be seen as made of 2π walls
forming closed loops in the absence of defects. Let us suppose
that a pair (d+,d−) of dowsons has been generated by breaking
one of these 2π walls. Pulled in opposite directions by the broken
2π wall these dowsons will move apart. Will their trajectories
remain isophasic? If it was the case, they would remain connected
to the same 2π wall which would became shorter and shorter so
that, finally, the two dowsons would meet and annihilate. Such
a behavior was indeed observed in first experiments with the
dowser texture wound up by a rotating magnetic field [5].

As we will see below, experiments with dowsons’ colliders have
shown that trajectories of dowsons are not necessarily isophasic
so that they do not remain connected to the same 2π wall.
Therefore, when after a half turn of the wound up dowser texture
the two dowsons of the pair meet again, the distance of their

trajectories 1ϕ in terms of the phase is not necessarily zero so
that their annihilation is not granted.

2.2.4. The First Evidence for Non-isophasic

Trajectories of Dowsons
The issue of non isophasic trajectories of dowsons was raised for
the first time in experiments with the DDC. Let us consider a
typical experiment illustrated in the Figures 7A,B by a view of
one of the two target patterns of the wound up dowser texture.
We identify here four dowsons d+ and three dowsons d−. On
this background we represented by rows of circular markers
successive positions, recorded at intervals of 30 s, of dowsons d+
(Figure 7A) and d−(Figure 7B).

Several conclusions can be drawn from this figure:

1. Dowsons d+ and d−, pulled by 2π walls, circulate in opposite
directions, as expected.

2. The velocity of dowsons is correlated to the local width λ of
2π walls, as expected.

3. The trajectory of the dowson d+ is parallel to isogyres while
the one of the dowson d− is crossing isogyres. In other words,
the trajectory of the dowson d+ seems to be isophasic while
that of the dowson d− is not isophasic.

4. The non isophasic behavior of dowsons d− is even more
obvious when one considers the one labeled with a dashed
circle in Figure 7. It is located in the center of the target
pattern and this central position is dynamically stable during
the phase winding. Now, as during the phase winding, the
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FIGURE 7 | Trajectories of two dowsons, d+ and d−, in the DDC. Circular markers indicate successive positions of dowsons at time intervals of 30 s. Trajectories start

from larger markers labeled “S” and end at markers labeled “E.” (A) The dowson d+ circulates in the clockwise direction of the phase winding. (B) The dowson d−

circulates in the opposite, anticlockwise direction. Its trajectory starts in the vicinity of the center of the target pattern and ends at the periphery. Clearly such a

trajectory is not isophasic. (C) Segment of the trajectory inside the dashed frame displayed in (A). (D) Blue crosses: velocity of the dowson d+ from (A) plotted vs. the

width λ of the 2π wall pulling on it. Continuous blue line: the best fit to the power law with the exponent α = −1.14. Red crosses and the red line: reminder of the data

from Figure 5. The dashed black line corresponds to α = −1.

angular velocity ω = dϕ/dt is the largest here, this central
position is obviously not isophasic. Consequently, the maltese
cross (formed by four isogyres) of this dowson is rotating as a
whole with the angular velocity ω.

Knowing that the circular markers in Figure 7 indicate successive
positions of dowsons at time intervals of 30 s, the velocity v of
dowsons has been determined. Simultaneously the local width λ

of the 2π walls pulling on dowsons has been measured in this
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Figure 7A. Results obtained with the dowson d+ are plotted with
blue crosses in Figure 7D. The best fit to the power law v ∼ λα

plotted with the blue plain line was obtained with α = −1.14. On
the same diagram of Figure 7D we have plotted once again (with
red crosses and a red line) results shown previously in Figure 5.

2.3. Experiments With the Circular
Dowsons’ Collider
The most recent experiments performed with the Circular
Dowsons’ Collider confirmed these conclusions but also unveiled
other remarkable properties of the dowsons dynamics. In
particular, we have found that the result of the phase
winding process in the Circular Dowsons’ Collider depends
on the initial state of the dowser field as well as on the
amplitude of the excitation. In general, for topological reasons

(homeotropic boundary conditions at the nematic/air interface of
the meniscus), the dowser field can contain only an odd number
2n+1 of dowsons d+ and an even number 2n of dowsons d−. We
will show below that two different dynamically stable states C-B1
or C-B2 can be reached when, respectively, n = 0 and n > 0.

2.3.1. Cladis-Brand Stationary State C-B1: One

Dowson d+ Orbiting Around the Target Pattern
In the simplest case of n = 0, one dowson d+ is located initially
at the center O of the drop and the dowser field has the radial
configuration imposed by the cuneitropisme [4] of the dowser
texture. This radial configuration also satisfies the homeotropic
boundary conditions at the nematic/air interface on the edge of
the droplet (see Figure 8A).

FIGURE 8 | Cladis-Brand state C-B1 obtained by winding of the dowser texture in the Circular Dowsons’ Collider. (A) Initial radial configuration of the dowser field. (B)

Beginning of the winding in the anticlockwise direction. The initial configuration is slightly perturbed by a -π/2 rotation in the center. (C) The first isogyre nucleated in

the center is growing. (D,E) Continuation of the winding. Remark: As for energetic reasons the dowson d+ cannot change easily its configuration, it conserves its

phase staying at the periphery of the growing target pattern. (F) Dynamically stable Cladis-Brand state C-B1. The continuing phase growth in the center of the target

pattern is absorbed by the orbiting dowson which acts as a phase sink.
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When the rheotropic driving torque due to the circular
Poiseuille flow is applied to the dowser field, it starts to rotate
with the angular velocity ω(r, t), varying with the distance r from
the center as shown in Figure 4D. Rotation of the dowser field
is thus clockwise in the center at r=0, then the angular velocity
ω(r, t) decreases and changes its sign at r = rc (dashed circle in
Figure 8B). As a result, the maltese cross formed by four isogyres
shown in Figure 8A is deformed: its four arms become spiral as
shown in Figure 8B. Later, the dowson d+ leaves the center O
and a target pattern of loop-like isogyres starts its growth from
the center O: one after another, new isogyres’ loops are nucleated
at the center O and their radii are growing (see Figure 8).

If ω(0, 0, t) is the phase growth rate at the center O, then
the rate of nucleation of 2π walls (each made of four isogyres)
is ω(0, 0, t)/(2π).

During this winding process, the dowson d+ is pushed
(elastically) by isogyres toward the periphery of the target pattern

as shown in Figure 8. By this means, its position inside the
evolving phase field ϕ(x, y, t) remains isophasic. This behavior
results from the elastic anisotropy of the nematic. Indeed, as
shown in Figure 2 the configuration of the dowson d+ depends
on the phase ϕi at the point of its insertion into the wound
up phase field. From Pieranski et al. [5] we know that the
elastic energy of the dowson d+ depends on its configuration.
As energetically the orthoradial configurations (clockwise or
anticlockwise) are the best ones, the dowson tends to conserve
its position at ϕ = π/2(modπ).

Simultaneously, pulled by the 2π wall to which it is attached,
the dowson d+ begins its orbiting motion with velocity v (see
Figure 8E) around the target pattern made of concentric 2π
walls. The orbiting dowson d+ can be seen as a “phase sink”:
after each whole turn around the target pattern, one 2π wall is
“swollen.” If T is the period of the orbit, then we can define the
phase sinking rate as 2π/T.

FIGURE 9 | Cladis-Brand [11] dynamically stable state C-B1 of the phase winding in the Circular Dowsons’ Collider. (A) Spatio-temporal cross section taken along

the dashed line defined in Figure 8F. Four new isogyres are nucleated at the center O during one period T of the orbiting motion of the dowson d+. (B) Blow up of the

rectangular domain defined with a dashed line in (A). λ is the width of a 2π wall composed of four oblique trajectories of isogyres. During one period T = 30 min, the

2π wall is shifted by λ to the right. (C) Successive positions of the dowson d+ recorded as colored dots at intervals of 10 s during three periods of its orbital motion.

The three colors of dots correspond to the three periods T of the orbital motion. (D) Blow up of the rectangular domain defined with dashed line in (C).
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During the winding process, the phase growth rate ω(r, t)
decreases because the rheotropic torque is opposed by the
growing elastic torque. Simultaneously, the sinking rate increases
because the orbiting dowson is moving faster pulled by the
narrowing 2π wall.

The dynamically stable (stationary) phase field ϕ(x, y, t)
is achieved when the phase growth rate at the center
equals the sinking rate due to the orbiting dowson d+ :
ω(0, 0, t) = 2π/T (see Figure 9). As Cladis and Brand have
formerly discovered in free standing smectic C films the same
configuration of a +2π defect orbiting around a target pattern
[11] we propose to call it “The Cladis-Brand state 1” or
shortly C-B1.

2.3.2. C-B2: Second Version of the Cladis-Brand

Stationary State
At first sight, upon the action of the rheotropic torque Ŵr(r),
the dowser field should rotate in the anticlockwise direction
for r > rc, rc being defined in Figure 4D. It seems
therefore that new isogyres could nucleate also in the annular
area near the second extremum of the torque Ŵr(r). In the
experiment discussed above and illustrated by the series of
six pictures in Figure 8, this is not the case: new isogyres
nucleate only at the first extremum of Ŵr(r) located in the center
O at r = 0.

Explanation of this experimental fact is very simple. Beside
the rheotropic torque driving the rotation of the dowser field,

FIGURE 10 | Generation of the second Cladis-Brand dynamically stable state by the phase winding in the Circular Dowsons’ Collider. (A) At the beginning of the

winding, the “residual” d+ dowson is close to the edge of the droplet. It is connected to the center O by a 2π wall. (B–D) Upon application of a strong excitation, the

phase is wound up simultaneously in clockwise direction for r < rc and anticlockwise direction for r > rc. (E,F) Emergence of the second Cladis-Brand dynamically

stable state with the dowson d+ orbiting around an extended double target pattern. The outer and inner target patterns are made of one spiral-shaped 2π wall

connecting the dowson d+ with the center of the droplet.
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there is also the cuneitropic torque Ŵc = (πK/h)g × d (see
[4]) tending to orient the dowser field d in the direction of
the thickness gradient g, that is to say in the radial direction
r of the sphere/plane geometry of the sample (this is the
case in Figure 8A). This cuneitropic torque vanishes at r=0
for symmetry reasons but is finite at r > rc. For a given
r, it reaches its maximum value Ŵcmax = (πK/h(r))|g(r)|
when d is orthogonal to g. In the experiment of Figure 8,
for r > rc the rheotropic torque is smaller than Ŵcmax so
that rotation of the dowser field is hindered there. In another
experiment illustrated by the series of six pictures in Figure 10,
the rheotropic torque was much larger so that nucleation of
new isogyres occurred also in the secondary extremum of the
rheotropic torque.

2.3.3. Triplet Stationary State: Two Dowsons d+

Orbiting Around One d− in the Center
Experiments with the Circular Dowsons’ Collider unveiled a
third stationary state (see Figure 11). To reach it, the winding
process has to be applied to the dowser field with n>0, that is
to say containing at least two dowsons d− and one dowson d+
when n = 1.

For reasons which so far have been not fully understood,
during the winding, the dowson d− is attracted to the center
O [maximum of ω(r, t)] and stays there while the two dowsons
d+, on the contrary, are pushed to the periphery of the growing
pattern. Let us emphasize that in this new configuration the
winding process does not require nucleation of new isogyres.
The phase growth in the center is now due to rotation of

FIGURE 11 | Generation of the dynamically stable “triplet” configuration of dowsons during the phase winding in the Circular Dowsons’ Collider. (A) First, the

Cladis-Brand configuration of one orbiting d+ dowson is generated as shown in Figure 8. (B) Application of a transitory shear flow to the Cladis-Brand state results in

generation of three additional dowsons pairs (d+,d−). One these pairs is labeled as “+” and “−.” (C) Annihilation of the (d+,d−) pair labeled in (B). The second (d+,d−)

pair is labeled as “+” and “−.” (D) Annihilation of the (d+,d−) pair labeled in (C). Only three dowsons are left. (E) Continuation of the winding process. (F) Dynamically

stable trio of three dowson: two dowsons d+ are orbiting around the dowson d− which stays in the center.
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the dowson d− located there. This mechanism is similar to
the Frank-Read model of crystal growth in which a spiral
step, attached to a dislocation emerging on a crystal facet,
is rotating.

When n is larger than 1, the (d+,d−) pairs in excess with
respect to n = 1 are eliminated by annihilation during the winding
process as shown in Figures 11B–D.

Like in the Cladis-Brand process, the stationary triplet state
is reached when the phase growth rate in the center, due
to the rotation of the dowson d−, is fully compensated by
the orbital motion of the two dowsons d+ acting as phase
sinks. In this stationary state, the two dowsons d+ are located
on the same orbit (see Figure 12D) and have therefore the
same angular velocity ωd+ . The total phase absorption rate
is therefore 2ωd+ . Therefore, if the d− dowson in the center
rotates with the angular velocity ωd− then in the stationary state

one has:

dϕ

dt
= ωd− + 2ωd+ = 0 (8)

so that

ωd− = −2ωd+ (9)

This equality is illustrated by in Figures 12A,B.

3. GENERATION, COLLISIONS, AND
ANNIHILATION OF DOWSONS’ PAIRS

The dynamically stable states of the Circular Dowsons’ Collider
are convenient for studies of generation of dowsons and of their
subsequent collisions which can lead to annihilation. Indeed,

FIGURE 12 | Dynamics of the stable triplet configuration of dowsons. (A,B) Two pictures of the wound up dowser texture taken at an interval of 5 min. In this interval,

the dowson d− in the center rotated by π/2, while the dowson d+ on their orbits made only 1/8th of the whole turn. (C) Spatio-temporal cross section taken along the

dashed line CS defined in (A). The inset shows that the orbiting dowson d+ acts as a phase sink: after each crossing of the line CS by one of orbiting dowsons d+,

four isogyres are suppressed. Simultaneously four new isogyres are emitted by the dowson d− rotating in the center O. (D) Successive positions of the two dowsons

d+ recorded at intervals of 10 s during one period of their orbital motions. The two inset show that velocities of the two dowsons d+ are the same. (E,F) To check that

the two dowsons d+ are isophasic, a divergent Poiseuille flow was applied to the wound up dowser field shown in (E).
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like positrons and electrons in a hadron collider, dowsons
d+ and d− are moving in the Circular Dowsons’ Collider
on respectively clockwise and anticlockwise trajectories so that
they can undergo collisions that can result in annihilation of
dowsons pairs.

By a collision we mean an event during which the linear
distance l+− between two dowsons, d+ and d−, decreases and
becomes of the order of the winding wave length λ.

3.1. Generation of One (d+,d−) Pair
For the purpose of clarity of the forthcoming discussion, let
us consider the example represented in Figure 13 which shows
in the Figure 13A, a view of the wound up dowser field
shortly after generation of just one dowsons pair. The process
of generation itself is illustrated by the series of five pictures
(Figures 13C–G). It is triggered by a rapid and short forth-
and-back motion of the oscillating glass slide applied to the
wound up texture visible in Figure 13C. During the motion,
the image of the isogyres’ pattern becomes fuzzy (Figure 13D)
but shortly after that, at the beginning of the relaxation
(Figure 13E), one can distinguish seven 2π walls thinned by
the perturbation.

As discussed in Pieranski et al. [6] thinning of 2π walls is
due to the rheotropism of the dowser texture, that-is-to-say, to
its sensitivity to Poiseuille flows. Anticipating a more detailed
discussion in section 3.5 we infer that at the beginning of the
relaxation a transitory Poiseuille flow 2π walls occurred.

An excessive thinning of one of the 2π walls leads to its
breaking shown in Figure 13E. Subsequently the two dowsons
generated by this means are moving in opposite directions on
initially isophasic trajectories.

3.2. Collision of a (d+,d−) Pair
As the isogyres pattern in the wound up Cladis-Brand state is
made of concentric rings, one could think that after a half turn
of their orbits (see Figure 13B), the freshly generated dowsons
should come to a collision on isophasic trajectories. The series of
five pictures (Figures 13H–I), shows clearly that this is not the
case: there is a 1ϕ ≈ 2π distance (see Figure 13H), in terms
of the phase, between trajectories of the two dowsons coming
to their collision. We postpone discussion of this paradox to
another paper.

In meantime, let us just say that the two dowsons coming to
collision are pulled by two distinct 2π walls so that annihilation
is avoided.

3.3. Rules for Collisions of (d+,d−) Pairs
When more than one pair of dowsons is generated
simultaneously, the subsequent collisions occur at variable
distances 1ϕ of trajectories. From observations of many of
such collisions with −2π < 1ϕ < +2π we inferred the
following rules:

1. Bypass: When |1ϕ| > π , the annihilation is avoided and the
dowsons are passing by (see Figures 14A–I).

FIGURE 13 | Generation and collision of a dowsons’ pair in the Circular Dowsons Colider. (A) Wound up dowser field with a pair of dowsons “in statu nascendi.” (B)

After a half turn of their orbits, the d+ and d− dowsons are coming to a collision. (C–G) Generation of the dowsons pair. (H–L) Collision of the pair without annihilation.
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2. Annihilation: When |1ϕ| < π , the annihilation occurs
(see Figures 14J–R).

3. Critical: When |1ϕ| = π , the outcome of the collision
is random.

3.4. Influence of Poiseuille Flows on
Collisions of Dowsons Pairs, Experiment
The rules formulated above apply to pairs of dowsons moving
inside a very slowly evolving stationary wound up dowser field.

Knowing from former experiments that the dowser
texture is very sensitive to Poiseuille flows [6] we used
this property, called rheotropism, to influence the outcome
of dowsons collisions. As an example we point out
in the series of 20 pictures in Figures 15A–T that the
annihilation, which should occur in terms of the collisions’
rules applied to the pair of dowsons in Figure 15A,
can be avoided by application of a Poiseuille flow in an
appropriate direction.

Indeed, at the beginning of the experiment (see Figures 15A–
D) dowsons d+ and d− coming to collision are almost isophasic

and are connected by a 2π wall which is shortening. The
outcome of the forthcoming collision seems unavoidable: an
annihilation. However, an application of the Poiseuille flow
−→v in the left direction [parallel to the dowser field in the
middle of the wall (d+,d−)], has a very striking effect well
visible in pictures Figures 15E–L: the wall connecting the
dowsons pair as well as the whole system of isogyres is split
in such a manner that the two dowsons are reconnected
to two new, different 2π walls. These walls, narrowed
by the Poiseuille flow, pull strongly on dowsons which
move rapidely on distinct trajectories separated now by
2π , in terms of the phase. After cessation of the flow
(Figures 15M–T) the system of isogyres relaxes: the trajectories
of the two dowsons become almost isophasic again but they
diverge now.

3.5. Influence of Poiseuille Flows on
Collisions of Dowsons Pairs, a Model
Theoretically, this experiment can be modeled as follows. At the
beginning of the experiment, the phase field can be is expressed

FIGURE 14 | Criterium for the outcome of collisions. (A–I) When |1ϕ| > π , annihilation is avoided. Here, |1ϕ| ≈ 3π/2. Pictures taken at intervals of 10 s. (J–R) When

|1ϕ| < π , annihilation occurs. Here, |1ϕ| ≈ π/2. Pictures taken at intervals of 5 s.
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as before (see Equation 5):

ϕo(x, y) =
2π

λ
y+arctan

(

y− y+

x− x+

)

+arctan

(

−
y− y−

x− x−

)

(10)

with (x+, y+) = (−5,−π/4) and (x−, y−) = (5,π/4) so that

1ϕ = 2π
y+ − y−

λ
=

π

2
(11)

This initial field is depicted in Figure 15U using the color code
defined in Figure 2A. Application of the Poiseuille flow of the
amplitude vmax in the -x direction perturbs the field ϕo(x, y).
The rheotropic torque exerted by this Poiseuille flow on the field

ϕ(x, y)o can be written as:

−→
Ŵ rt =

2α2

π
vmax sinϕo(x, y)

−→e z (12)

In the first approximation, the resulting elastic distortion is
proportional to this torque so that the perturbed phase field can
be written as:

ϕpert(x, y) ≈ ϕo(x, y)+ δϕ sin(ϕo(x, y)) (13)

with δϕ ∼ vo. The graphic representation of ϕpert(x, y) in
Figure 15V shows an agreement with the experimental picture
in Figure 15I.

FIGURE 15 | Influence of Poiseuille flows on collisions of dowsons. (A–T) Experiment. Evolution of the dowser field before, during and after application of a Poiseuille

flow. (U–W) Simulation. Pair of dowsons without flow (U) and in the presence of flows in left and right drections.
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Let us stress that when the Poiseuille flow is applied
in the inverse, +x direction, our model predicts that the
2π wall connecting the dowsons’ pair is no split but
narrowed as shown in Figure 15W so that the annihilation
is accelerated.

These simulations are in agreement with our experiments:
the outcome of the forthcoming collisions can be
chosen at will by application of Poiseuille flows in
appropriate directions.

4. CONCLUSIONS

The present paper is by no means exhaustive in the matter of
generation, motions, and collisions of dowsons. Nevertheless,
it raises new issues concerning (1) laws of motion of dowsons
driven by phase gradients and (2) laws ruling the outcome of
dowsons’ collisions.

In particular, there is a huge difference in the behavior of
dowsons d+ and d− during phase winding. The dowsons
d+ cannot rotate because of the elastic anisotropy so
that they tend to escape from the winding up phase
field and are going to areas where the phase growth
rate is zero. In the case of a unique dowson d+, this
leads to the Cladis-Brand stationary states in which the
orbiting dowson d+ absorbs the phase generated by the
dowsons’ collider.

The behavior of the dowson d− seems to be a contrary
one and much more enigmatic. Indeed, experiments showed
that during the winding process the dowsons d− is attracted
to the area in which the phase growth rate is maximal. By
this means another stationary state, with the dowson d− in
the center (acting as a phase source) and two dowsons d+
orbiting around it (acting as phase sinks), can be reached.
This gyrophilic behavior of the dowson d− remains to
be explained.

The law ruling translational motion of dowsons on their
orbits needs also further clarification. Theoretically, in the first
approximation, the velocity v of dowsons should be proportional
to the local phase gradient ∇ϕ = 2π/λ: v ∼ λα with
α = −1. Experiments have shown however that in practice the
exponent α is smaller than −1. This discrepancy is probably
due to interactions between moving dowsons which certainly

play the major role during the dowsons sprint discussed in
section 2.2.2.

From observations of dowsons pairs (d+d−) moving on
counter-rotating orbits, a rule for the outcome of their collisions,
i.e., either annihilation or bypass, was inferred. The distance of
trajectories 1ϕ in terms of the phase appeared as the pertinent
parameter: for 1ϕ < π a collision of a pair of dowsons leads to
their annihilation, while for 1ϕ > π the dowsons are passing by.
However, this rule is valid only for quasi-static stationary wound
up textures and can be easily broken by application of a Poiseuille
flow in an appropriate direction.
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