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In this paper, we present the shape-preserving properties of the four-point ternary

non-stationary interpolating subdivision scheme (the four-point scheme). This scheme

involves a tension parameter. We derive the conditions on the tension parameter and

initial control polygon that permit the creation of positivity- and monotonicity-preserving

curves after a finite number of subdivision steps. In addition, the outcomes are

generalized to determine conditions for positivity- and monotonicity-preservation of the

limit curves. Convexity-preservation of the limit curve of the four-point scheme is also

analyzed. The shape-preserving behavior of the four-point scheme is also shown through

several numerical examples.
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1. INTRODUCTION

Subdivision Schemes (SS) are iterative algorithms for constructing smooth curves/surfaces from a
given control polygon/mesh. The advantages of such schemes are that they are easy to use, simple to
investigate, and highly flexible. The popularity of SS is increasing in various applications such as in
computer-aided geometric design, computer graphics, computer animation, signal processing, and
commercial industry due to their attractive properties. Shape-preservation of the subdivision curve
has significant importance in geometric shape design. Shape-preserving SS are extensively used in
the design of curves to manage and predict their shape according to the shape of initial control
points. Differential equations are used for mathematical modeling of many phenomena. Different
techniques are being used to solve boundary value problems [1] and non-linear problems [2]. In
the same way, SS can also be used to solve fractional differential equations such as [3–7].

Rham [8] was the first to present an SS with C0 continuity to attain a smooth
curve. Afterward, Chaikin [9] introduced a corner-cutting approximating scheme with C1

continuity. Dyn et al. [10] developed a four-point binary interpolating scheme that is
capable of generating a C1-continuous limit curve. Dyn et al. [11] formulated the convexity-
preserving property of the famous four-point interpolatory scheme [10] by taking into account
that the initial control points are convex. Kuijt and Damme [12] presented a series of
local non-linear interpolating schemes that preserve monotonicity. With time, the research
community started taking an interest in ternary SS because, by increasing arity from binary
to ternary, one can improve the order of continuity of the limit curve without significantly
increasing support width [see Beccari et al. [13]]. Hassan et al. [14] constructed a four-
point ternary interpolatory scheme with a tension parameter. Cai [15] derived conditions
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on this parameter to ensure convexity preservation of the limit
curve. Pitolli [16] examined the shape-preserving properties of a
ternary scheme with bell-shaped masks.

Most of the SS offered in literature are stationary, but this
limits the application of the schemes. To reproduce conics,
spirals, and polynomial curves, one has to opt for non-stationary
schemes. Beccari et al. [17] presented a C1 four-point binary
non-stationary interpolating scheme. Akram et al. [18] analyzed
the shape-preserving properties of this scheme [17]. Beccari
et al. [19] also offered a four-point ternary non-stationary
interpolatory scheme with a tension parameter. They showed
that the proposed scheme can generate a variety of curves within
the C2-continuous range of its tension parameter. Ghaffar et al.
[20, 21] introduced odd and even point non-stationary binary SS
with a shape parameter for curve design. Ghaffar et al. [22] also
presented a new class of 2m−point non-stationary SS with some
attractive properties such as torsion, continuity, monotonicity,
curvature, and convexity preservation.

This research aims to completely explore the shape-preserving
properties of the four-point ternary non-stationary interpolatory
scheme [19] (the four-point scheme).We formulate the necessary
conditions on the tension parameter of the scheme and
initial control points that permit the creation of positivity-
and monotonicity-preserving curves after finite iteration levels.
Beccari et al. [19] visually demonstrated that, for an initial
convex control polygon, the four-point scheme did not generate
convex curves. In this regard, we establish the conditions on the
tension parameter that prove that the four-point scheme does not
generate convexity-preserving limit curves.

The rest of the paper is designed as follows. In section 2, we
present the four-point scheme and recall some of its important
results. The positivity-preserving and monotonicity-preserving
properties of the four-point scheme are proved in sections 3 and
4, respectively. In section 5, the convexity-preserving property
of the four-point scheme is discussed. Some numerical examples
are given in section 6 to analyze and demonstrate the shape-
preserving properties of the four-point scheme. Conclusions are
drawn in the last section.

2. THE FOUR-POINT SCHEME

Beccari et al. [19] presented a four-point scheme involving a
tension parameter. For given initial control polygon {(x0i , p

0
i ) ∈

R}i∈Z and for the set of control points at the jth refinement level

{(x
j
i, p

j
i)}i∈Z, j ∈ N0 : = N∪ {0}, the control points at the (j+ 1)th

refinement level can be obtained by the rules:



























p
j+1
3i = p

j
i,

p
j+1
3i+1 =

1
60 ((−90γ

j+1
i − 1)p

j
i−1 + (90γ

j+1
i + 43)p

j
i

+(90γ
j+1
i + 17)p

j
i+1 + (−90γ

j+1
i + 1)p

j
i+2),

p
j+1
3i+2 =

1
60 ((−90γ

j+1
i + 1)p

j
i−1 + (90γ

j+1
i + 17)p

j
i

+(90γ
j+1
i + 43)p

j
i+1 + (−90γ

j+1
i − 1)p

j
i+2),

(1)

where,

γ
j+1
i = −

1

3(1− (β j+1)2)(1+ β j+1)
, (2)

and,

β j+1 =

√

2+ β j,β j ≥ −2 (β j 6= −1)∀j ∈ N0. (3)

The four-point scheme (1) generates C2-continuous limit
curves for any choice of the initial tension parameter β0

in the interval [−2,+∞[\{−1}. For the initial parameter
β0 ∈ [−2,+∞[\{−1}, the recurrence relation in (3) satisfies
the property:

lim
j→+∞

β j = 2. (4)

Proposition 1.

Given the initial parameter β0 ∈ [−2,+∞[\{−1}, the parameter

γ
j+1
i given in (2) satisfies the property:

lim
j→+∞

γ
j+1
i =

1

27
. (5)

3. POSITIVITY PRESERVATION

In this section, we discuss the positivity-preserving property of

the four-point scheme (1), which can be obtained by taking f
j
i =

p
j
i+1

p
j
i

and Fj = maxi{f
j
i ,

1

f
j
i

}, j ∈ N0.

Lemma 2.

Let the initial control points {(x0i , p
0
i ) : i ∈ Z} be positive, i.e.,

p0i > 0, i ∈ Z, for any j ∈ N0, such that:

F0 <
1

γ
j+1
i

= αj (6)

then p
j
i > 0, Fj < αj, j ∈ N0, i ∈ Z, i.e., the control points

generated by the four-point scheme (1) at the jth refinement level
are also positive.
Proof.

As γ
j+1
i ∈ (1,∞)∀j ∈ N0, we have:

αj =
1

γ
j+1
i

> 0.

The proof of Lemma 2 is obtained by induction on j.

• By hypothesis, the holds for j = 0, i.e., p0i > 0, F0 < αj, i ∈ Z.

• Suppose, by induction hypothesis p
j
i > 0 and Fj < αj, i ∈ Z

and for some j ∈ N. Now, we prove that p
j+1
i > 0 and

Fj+1 < αj.
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Obviously, 1
αj < f

j
i < αj and 1

αj < 1

f
j
i

< αj.

By the definition of the four-point scheme (1), we have:

p
j+1
3i > 0. (7)

Consider

p
j+1
3i+1 =

1

60
((−90γ

j+1
i − 1)p

j
i−1 + (90γ

j+1
i + 43)p

j
i

+(90γ
j+1
i + 17)p

j
i+1 + (−90γ

j+1
i + 1)p

j
i+2)

=
p
j
i

60

(

−(90γ
j+1
i + 1)

1

f
j
i−1

+ 90γ
j+1
i + 43

+(90γ
j+1
i − 90γ

j+1
i f

j
i+1)f

j
i + (17+ f

j
i+1)f

j
i

)

>
p
j
i

60

(

−(90γ
j+1
i + 1)αj + 90γ

j+1
i + 43+ (90γ

j+1
i

−90γ
j+1
i αj)

1

αj
+

(

17+
1

αj

)

1

αj

)

=
p
j
i

60(αj)
2
(−90γ

j+1
i (αj)

3
− (αj)

3
+ 43(αj)

2

+90γ
j+1
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=
p
j
i

60

(γ
j+1
i )2

(

−90γ
j+1
i

(γ
j+1
i )3

−
1

(γ
j+1
i )3

+
43

(γ
j+1
i )2

+
90γ

j+1
i

γ
j+1
i

+
17

γ
j+1
i

+ 1

)

=
p
j
i

60γ
j+1
i

(

91(γ
j+1
i )3 + 17(γ

j+1
i )2 − 47γ

j+1
i − 1

)

,

As we know that p
j
i > 0, it is also clear that 1

60γ
j+1
i

[91(γ
j+1
i )3 +

17(γ
j+1
i )2 − 47γ

j+1
i − 1] > 0, for γ

j+1
i > 0. This implies that:

p
j+1
3i+1 > 0. (8)

In the same way, we can get p
j+1
3i+2 > 0, so we have p

j+1
i > 0.

In order to prove Fj+1 < αj, we show that f
j+1
i < αj and

1

f
j+1
i

< αj. For this, consider:

f
j+1
3i =

p
j+1
3i+1

p
j+1
3i

=
1

60
(−(90γ

j+1
i + 1)

1

f
j
i−1

+ 90γ
j+1
i + 43

+(90γ
j+1
i − 90γ

j+1
i f

j
i+1)f

j
i + (17+ f

j
i+1)f

j
i ).

So, we have:

f
j+1
3i − αj =

1

60

(

−(90γ
j+1
i + 1)

1

f
j
i−1

+ 90γ
j+1
i + 43

+(90γ
j+1
i − 90γ

j+1
i f

j
i+1)f

j
i + (17

+f
j
i+1)f

j
i − 60αj

)

<
1

60

(

−(90γ
j+1
i + 1)

1

αj
+ 90γ

j+1
i + 43

+

(

90γ
j+1
i −

90γ
j+1
i

αj

)

αj + (17

+αj)αj − 60αj
)

=
1

60αj
(−90γ

j+1
i − 1+ 90γ

j+1
i αj + 43αj

+90γ
j+1
i (αj)2 − 90γ

j+1
i αj + 17(αj)2

+(αj)3 − 60(αj)2)

=
1

60(γ
j+1
i )2

(−90(γ
j+1
i )4 − (γ

j+1
i )3

+133(γ
j+1
i )2 − 43γ

j+1
i + 1).

Since 1

60(γ
j+1
i )2

> 0, it is also clear that [−90(γ
j+1
i )4 − (γ

j+1
i )3 +

133(γ
j+1
i )2 − 43γ

j+1
i + 1] < 0, for αj = 1

γ
j+1
i

and γ
j+1
i > 0. This

implies that f
j+1
3i − αj < 0. Thus, we have:

f
j+1
3i < αj. (9)

Similarly, we can have f
j+1
3i+1 < αj and f

j+1
3i+2 < αj. Thus, it

shows that f
j+1
i < αj. In the same way, it can be shown that

1

f
j+1
i

< αj when 1

f
j+1
3i

< αj, 1

f
j+1
3i+1

< αj and 1

f
j+1
3i+2

< αj. Since,

Fj+1 = maxi{f
j+1
i , 1

f
j+1
i

}, so Fj+1 < αj.

Lemma 2 examines the positivity-preservation of the four-
point scheme (1) for the finite number of j subdivision steps.
Henceforth, Theorem 3 is given to build up the positivity-
preserving condition in the limiting case, as j → ∞. It

can be observed that the parameter γ
j+1
i given in (2) fulfills

limj→∞ γ
j+1
i = 1

27 . Thus, limj→∞ αj = 27 in Theorem 3, and
the proof can be followed from Lemma 2 easily.
Theorem 3.

Suppose that the initial control points {(x0i , p
0
i ) : i ∈ Z} are

positive, with the end goal that:

F0 < 27,

at that point, the limit curves generated by the four-point scheme
(1) are positive.

4. MONOTONICITY PRESERVATION

The monotonicity-preservation property of the four-point
scheme (1) which can be obtained by defining the first-order

divided difference by D
j
i = p

j
i+1 − p

j
i and taking q

j
i =

D
j
i+1

D
j
i

,Qj =

max{q
j
i,

1

q
j
i

}, j ∈ N0, i ∈ Z examined in this section.
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The next lemma is given to build the monotonicity-preserving
condition for the finite number of j subdivision steps.
Lemma 4.

For j ∈ N, suppose that the initial control points {(x0i , p
0
i ) : i ∈

Z} are strictly monotonically increasing, i.e., D0
i > 0, i ∈ Z,

such that:

Q0 ≤
1

γ
j+1
i

= ηj. (10)

Then D
j
i > 0,Qj ≤ ηj, i ∈ Z, j ∈ N, i.e., the control points

generated by the four-point scheme (1) at the jth subdivision step
are still strictly monotonically increasing.
Proof.

First-order divided differences for the four-point scheme (1) can
be obtained as:

D
j+1
3i =

(

3

2
γ
j+1
i +

1

60

)

D
j
i +

3

10
D
j
i+1

+

(

−
3

2
γ
j+1
i +

1

60

)

D
j
i+2,

D
j+1
3i+1 = −

1

30
D
j
i +

2

5
D
j
i+1 −

1

30
D
j
i+2,

D
j+1
3i+2 =

(

−
3

2
γ
j+1
i +

1

60

)

D
j
i +

3

10
D
j
i+1

+

(

3

2
γ
j+1
i +

1

60

)

D
j
i+2.

As γ
j+1
i ∈ (1,∞),∀j ∈ Z+, so it gives

ηj =
1

γ
j+1
i

> 0.

The proof of Lemma 4 proceeds by induction on j.

• By hypothesis, the assertion holds for j = 0, i.e., D0
i > 0,Q0 ≤

ηj, i ∈ Z.

• Suppose by induction hypothesis D
j
i > 0 and Qj ≤ ηj, i ∈ Z

and for some j ∈ N. Now we prove that D
j+1
i > 0 and

Qj+1 ≤ ηj.

To prove D
j+1
i > 0, we show that:

D
j+1
3i > 0, D

j+1
3i+1 > 0 and D

j+1
3i+2 > 0.

For this consider,

D
j+1
3i =

(

3

2
γ
j+1
i +

1

60

)

D
j
i +

3

10
D
j
iq
j
i +

(

−
3

2
γ
j+1
i

+
1

60

)

q
j
iq
j
i+1D

j
i

>
D
j
i

60

(

90γ
j+1
i + 1+

1

ηj
(18− 90γ

j+1
i ηj)

+
1

(ηj)2

)

=
D
j
i

60(ηj)2
[(ηj)2 + 18ηj + 1]

=
D
j
i

60

(γ
j+1
i )2

(

1

(γ
j+1
i )2

+
18

γ
j+1
i

+ 1

)

=
D
j
i

60
((γ

j+1
i )2 + 18γ

j+1
i + 1).

As we know that D
j
i > 0, and it is also clear that 1

60 [(γ
j+1
i )2 +

18γ
j+1
i + 1] > 0, for ηj = 1

γ
j+1
i

and γ
j+1
i > 0. This implies that,

D
j+1
3i > 0. (11)

In the same way, it can be proved that D
j+1
3i+1 > 0 and D

j+1
3i+2 > 0.

This implies that we have D
j+1
i > 0. Moreover, to verify Qj+1 ≤

ηj, we show that q
j+1
i ≤ ηj and 1

q
j+1
i

≤ ηj. For this, consider:

q
j+1
3i =

D
j+1
3i+1

D
j+1
3i

=
−2+ 24q

j
i − 2q

j
iq
j
i+1

90γ
j+1
i + 1+ 18q

j
i − 90γ

j+1
i q

j
iq
j
i+1 + q

j
iq
j
i+1

,

thus,

q
j+1
3i − ηj =

−2+ 24q
j
i − 2q

j
iq
j
i+1

90γ
j+1
i + 1+ 18q

j
i − 90γ

j+1
i q

j
iq
j
i+1 + q

j
iq
j
i+1

−ηj,

q
j+1
3i − ηj =

Nm1

Dm1

. (12)

Using (11), asDm1 = 90γ
j+1
i +1+18q

j
i−90γ

j+1
i q

j
iq
j
i+1+q

j
i+1q

j
i >

0. Further, Nm1 of (12) fulfills

Nm1 = −2+ 24q
j
i − 2q

j
iq
j
i+1 − 90γ

j+1
i ηj − ηj − 18q

j
iη

j

+90γ
j+1
i q

j
iq
j
i+1η

j − q
j
iq
j
i+1η

j

≤ −2+ ηj
(

24−
2

ηj

)

− 90γ
j+1
i ηj − ηj −

18ηj

ηj

+ηj
(

90γ
j+1
i (ηj)2 −

ηj

ηj

)

= 90γ
j+1
i (ηj)3 − 90γ

j+1
i ηj + 22ηj − 22

=
90γ

j+1
i

(γ
j+1
i )3

−
90γ

j+1
i

γ
j+1
i

+
22

γ
j+1
i

− 22

=
1

(γ
j+1
i )2

(−112(γ
j+1
i )2 + 22γ

j+1
i + 90),
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FIGURE 1 | The convexity-preserving limit curves generated by the proposed scheme with the control polygon.
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Since 1

(γ
j+1
i )2

> 0, and it is clear that (−112(γ
j+1
i )2 + 22γ

j+1
i +

90) < 0, for ηj = 1

γ
j+1
i

and γ
j+1
i > 0. Thus, from (12), we have

q
j+1
3i − ηj ≤ 0. This implies that:

q
j+1
3i ≤ ηj. (13)

Similarly, it is easy to show that q
j+1
3i+1 ≤ ηj and q

j+1
3i+2 ≤ ηj, which

leads to q
j+1
i ≤ ηj.

In the same way, it can be proved that 1

q
j+1
i

≤ ηj by showing

that 1

q
j+1
3i

≤ ηj, 1

q
j+1
3i+1

≤ ηj and 1

q
j+1
3i+2

≤ ηj. Since Qj+1 =

maxi{q
j+1
i , 1

q
j+1
i

}, thus Qj+1 ≤ ηj. So, by induction D
j
i > 0 and

Qj ≤ ηj, i ∈ Z, for some j ∈ N.
Lemma 4 examines the monotonicity preservation of the four-
point scheme (1) for the finite number of j subdivision steps.
Henceforth, Theorem 5 is given to build up the monotonicity-
preserving condition in the limiting case, as j → ∞. It

can be observed that the parameter γ
j+1
i given in (2) fulfills

limj→∞ γ
j+1
i = 1

27 . Thus, limj→∞ ηj = 27 in Theorem 5 and
note that the proof can be followed from Lemma 4.
Theorem 5.

Assume that the initial control points {(x0i , p
0
i ) : i ∈ Z} are strictly

TABLE 1 | Wind data (positive data) [23].

i 0 1 2 3 4 5 6

xi 0 0.25 0.5 1 1.2 1.8 2

fi 2 0.8 0.5 0.1 1 0.5 1

monotonicallly increasing, with the end goal that

Q0 ≤ 27,

at that point, the limit curves generated by the four-point scheme
(1) are strictly monotonically increasing.

5. CONVEXITY PRESERVATION

In this section, we examine the convexity-preserving property
of the four-point scheme (1). Basically, a subdivision scheme
satisfies the convexity-preserving property if, for an initial convex
control polygon, the limit curves generated by the scheme
preserve the convexity of the initial data. For a subdivision
scheme, the convexity-preserving property is attained if, at each
refinement level, the second-order divided differences of the
scheme are all positive. Specifically, for a given jth-level sequence

of real values {p
j
i, i ∈ Z} located at regularly spaced parameter

values {x
j
i = i

3j
, i ∈ Z}, the second-order divided difference of

TABLE 2 | Positive data from Sarfraz et al. [24].

i 0 1 2 3 4 5 6

xi 2 3 7 8 9 13 14

fi 10 2 3 7 2 3 10

TABLE 3 | Positive data from Butt and Brodlie [25].

i 0 1 2 3 4 5 6

xi 0 2 4 10 28 30 32

fi 20.8 8.8 4.2 0.5 3.9 6.3 9.6

FIGURE 2 | The positivity-preserving curves generated by the four-point scheme (1) for positive initial data.
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FIGURE 3 | The positivity-preserving curves generated by the four-point scheme (1) for positive initial data.

TABLE 4 | Positive data from Hussain and Ali [26].

i 0 1 2 3 4 5 6

xi 2 3 7 8 9 13 14

fi 10 2 3 7 2 3 10

TABLE 5 | Monotonic data.

i 0 1 2 3 4 5 6

xi –5.89 –4.56 –3.39 –2.47 –1.66 0 0.898

fi 2.62 2.36 2.10 1.86 1.63 1 0.33

the scheme is defined by d
j
i = 32j

2 (p
j
i−1 − 2p

j
i + p

j
i+1) and, for

convexity preservation, {d
j
i > 0, i ∈ Z, j ∈ N0} holds.

Beccari et al. [19] showed that, for an initial convex control
polygon, the four-point scheme (1) fails to generate a convex
limit curve when choosing different values of the initial tension
parameter β0 in the interval [−2,+∞[\{−1}. In Figures 1A–D,
dotted lines show the initial convex polygon and solid lines
represent curves generated by the four-point scheme (1) after one
iteration level. It is clear from the figure that the scheme does not
preserve convexity.

Now, we check whether the condition {d
j
i > 0, i ∈ Z, j ∈ N0}

is satisfied by the four-point scheme (1) or not. By taking y
j
i =

d
j
i+1

d
j
i

,Y j = max{y
j
i,

1

y
j
i

}, j ∈ N0, i ∈ Z, we establish the following

result.
Proposition 6.

For j ∈ N, suppose that the initial control points {(x0i , p
0
i ) : i ∈ Z}

are strictly convex, i.e., d0i > 0, i ∈ Z, such that

Y0 ≤
1

γ
j+1
i

= δj (14)

then d
j
i ≤ 0, i.e., the points generated by the four-point scheme

(1) at the jth subdivision step are not strictly convex.
Proof.

The second-order divided difference of the four-point scheme (1)
can be obtained as:































d
j+1
3i =

(

3
2γ

j+1
i + 1

20

)

d
j
i +

(

3
2γ

j+1
i − 1

20

)

d
j
i+1,

d
j+1
3i+1 =

(

3
2γ

j+1
i − 1

20

)

d
j
i +

(

3
2γ

j+1
i + 1

20

)

d
j
i+1,

d
j+1
3i+2 =

(

− 3
2γ

j+1
i + 1

60

)

d
j
i +

(

−3γ
j+1
i + 3

10

)

d
j
i+1

+
(

− 3
2γ

j+1
i + 1

60

)

d
j
i+2.

As γ
j+1
i ∈ (1,∞),∀j ∈ N, so it gives δj = 1

γ
j+1
i

> 0. The proof of

Proposition 6 proceeds by induction on j.

• By hypothesis, the assertion holds for j = 0, i.e., d0i > 0,Y0 ≤

δj, i ∈ Z.
• Suppose by induction hypothesis d

j
i > 0 and Y j ≤ δj, i ∈ Z

and for some j ∈ N. Now we show that d
j+1
i > 0. Also, simply,

we have 1
δj
≤ y

j
i ≤ δj and 1

δj
≤ 1

y
j
i

≤ δj.

To prove d
j+1
i > 0, it is sufficient to show that:

d
j+1
3i > 0, d

j+1
3i+1 > 0 and d

j+1
3i+2 > 0.

From (15), we have:

d
j+1
3i =

3

2
γ
j+1
i d

j
i +

1

20
d
j
i +

3

2
γ
j+1
i y

j
id

j
i −

1

20
y
j
id

j
i

>
d
j
i

60
[90γ

j+1
i + 3+ 90γ

j+1
i

1

δj
− 3δj]
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FIGURE 4 | The monotonicity-preserving curves generated by the four-point scheme (1) with monotonic initial data.

TABLE 6 | Monotonic data.

i 0 1 2 3 4 5 6

xi –3.89 –2.56 –1.39 0 1.47 2.66 3.89

fi -58.86 –16.78 -2.56 0 3.18 18.82 58.86

=
d
j
i

60γ
j+1
i

[90(γ
j+1
i )3 + 90(γ

j+1
i )2 + 3(γ

j+1
i )− 3].

As we know that d
j
i > 0, and it is also clear that

1

60γ
j+1
i

[90(γ
j+1
i )3 + 90(γ

j+1
i )2 + 3(γ

j+1
i ) − 3] > 0, for δj = 1

γ
j+1
i

and γ
j+1
i > 0. So, we have:

d
j+1
3i > 0. (15)

Now consider from (15)

d
j+1
3i+1 =

(

3

2
γ
j+1
i −

1

20

)

d
j
i +

(

3

2
γ
j+1
i +

1

20

)

y
j
id

j
i

>
d
j
i

60

(

90γ
j+1
i − 3+ 90γ

j+1
i

1

δj
+ 3

1

δj

)

=
d
j
iγ

j+1
i

60

(

90−
3

γ
j+1
i

+ 90γ
j+1
i + 3

)

=
d
j
i

60
(90(γ

j+1
i )2 + 93γ

j+1
i − 3).

As we know that d
j
i > 0, and it is clear that 1

60 [90(γ
j+1
i )2 +

93γ
j+1
i − 3] > 0, for δj = 1

γ
j+1
i

and γ
j+1
i > 0. This implies

that:

d
j+1
3i+1 > 0. (16)

Now consider,

d
j+1
3i+2 =

(

−
3

2
γ
j+1
i +

1

60

)

d
j
i +

(

−3γ
j+1
i +

3

10

)

d
j
iy
j
i

+

(

−
3

2
γ
j+1
i +

1

60

)

d
j
iy
j
iy
j
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>
d
j
i

60

(

−90γ
j+1
i + 1+

(

−180γ
j+1
i +

1

δj

)

1

δj

+(18− 90γ
j+1
i δj)

1

δj

)

=
d
j
i

60
(−179(γ

j+1
i )2 − 162γ

j+1
i + 1),

As we know that d
j
i > 0, and it is also clear that

d
j
i

60 [−179(γ
j+1
i )2−

162γ
j+1
i + 1] < 0, for δj = 1

γ
j+1
i

and γ
j+1
i > 0. This implies that:

d
j+1
3i+2 < 0. (17)

By combining (15), (16), and (17), we have d
j+1
i ≤ 0, which

shows that the four-point scheme (1) does not preserve
strict convexity. Some numerical examples are presented to
verify and examine the conditions of shape preserving for the
4-point ternary scheme (1). In Examples 1 − 4, the initial set of
values is displayed by dotted line segments while the limit curves
are marked by solid lines, such that the limit curves generated by
the four-point scheme (1) satisfy the shape-preserving condition.

Example 1.

There are several important meteorological data parameters that
scientists use for dealing with different climate challenges. Wind
velocity data (WVD) is one of them. These data always have a
positive value, and the minimum value is ∼0. In this example,
we choose WVD from Wu et al. [23], as given in Table 1.
We use these WVD to demonstrate the positivity-preserving
property of the four-point scheme (1). In Figure 2A, the dotted
line represents WVD (which is positive) and the solid curve is
generated by the four-point scheme (1), which is also positive.
Example 2.

In this example, we consider experimental data that are quoted
from Sarfraz et al. [24]. The proposed data are positive and
represent the volume of NaOH vs. HCl in a beaker, as stated in the
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experimental procedures. These experimental data are presented
in Table 2. Figure 2B presents the positivity preservation of the
curve generated by the four-point scheme (1). In this figure,
the dotted line represents the positive data (which are given
in Table 2) and the solid curve is generated by the four-point
scheme (1). It is clear that the curve generated by the scheme is
also positive.
Example 3.

The data given in Table 3 are also experimental data. These data
represent the oxygen level from an experiment conducted in the
laboratory and are quoted from Butt and Brodlie [25]. We use
the proposed data in Figure 3A. In this figure, we find that, by
imposing the condition of positivity on the initial data, the four-
point scheme (1) is capable of producing a positive curve.
Example 4.

The data in Table 4 are obtained from Hussain and Ali [26].
These data represent the depreciation of the valuation of the
market price of computers installed at City Computer Center.
The x-coordinate corresponds to the time in years, and the y-
coordinate corresponds to the computer price in Rs. 10,000.
Figure 3B generated by the four-point scheme (1) indicates the
positivity preservation of the curve generated by the scheme.
Example 5.

The data given in Table 5 represents monotonic data that are
obtained from a monotonic function. From Figure 4A we find
that by imposing the condition of monotonicity on the initial
data, the four-point scheme (1) is capable of producing a
monotonically increasing curve.
Example 6.

In this example, we again consider monotonic data from
a monotonic function. These data are presented in Table 6.

Figure 4B displays the curve generated by the four-point scheme
(1). It is clear from the figure that, for an initial monotonic
dataset, the scheme produces a monotonic curve.

6. CONCLUSION

In this paper, we have presented the shape-preserving properties
of the four-point scheme (1). We have derived the necessary
conditions on the initial control points and tension parameter
of the scheme to show that the four-point scheme (1) generates
positivity- and monotonicity-preserving curves after a finite
number of subdivision steps. We have also shown that, for
initial convex data, the proposed scheme does not generate
a convex curve. Further, we have generalized these results
for the positivity- and monotonicity-preservation of the limit
curves. Finally, the discussion is followed by several numerical
examples. By using this technique, one can analyze the shape-
preserving properties of higher arity interpolation and also
approximating schemes.
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