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In this article, the lump-type solutions of the new integrable time-dependent coefficient

(2+1)-dimensional Kadomtsev-Petviashvili equation are investigated by applying the

Hirota bilinear technique and a suitable ansatz. The equation is applied in the modeling

of propagation of small-amplitude surface waves in large channels or straits of

slowly varying width, depth and non-vanishing vorticity. Applying the Bell’s polynomials

approach, we successfully acquire the bilinear form of the equation. We firstly find a

general form of quadratic function solution of the bilinear form and then expand it as

the sums of squares of linear functions satisfying some conditions. Most importantly,

we acquire two lump-type and a bell-shaped soliton solutions of the equation. To

our knowledge, the lump type solutions of the equation are reported for the first

time in this paper. The physical interpretation of the results are discussed and

represented graphically.

Keywords: Bell’s polynomials, Hirota bilinear form, bell-type solutions, lump-type solutions, (2+1)-dimensional

Kadomtsev-Petviashvili equation

1. INTRODUCTION

Nonlinear equations (NLEs) have been the subject of concentrate in different parts of
numerical physical sciences, for example, material science, science, and so forth. The explanatory
arrangements of such conditions are of essential significance since a great deal of scientific physical
models are depicted by NLEs [1]. Among the conceivable answers for NLEs, certain unique frame
arrangements may depend just on a solitary blend of factors, for example, solitons. In soliton
theory [2], optical solitons, painleve analysis, investigation of integrability of systems of equations,
Hamiltonian structure, Bell’s polynomials, Backlaund transformations, etc. are the hot topics in
recent time. Lump solutions are important models to used to describe certain complicated physical
phenomena in science [3]. Lump solution is a kind of special rational function solutions localized
along all directions in the space. Lump solitons have been intensively studied and some of the results
have been reported in [4–6]. The be integrable time-dependent coefficient (2+1)-dimensional
Kadomtsev-Petviashvili model that will be studied in this work is given by Wazwaz [7]:

(ψt + ψψx + ψxxx)x + 3ψyy + g(t)ψxx = 0, (1)
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where ψ(x, t, y) is a function of the temporal variable t and
two scaled spatial variables x and y. g(t) is a functions of t.
The equation is applied in the modeling of propagation of
small-amplitude surface waves in large channels or straits of
slowly varying width, depth and non-vanishing vorticity. (1) was
proposed by WazWaz in [7] where the integrability property
of the equation were explicitly demonstrated and the multiple
complex and multiple real soliton solutions of the equation
were reported. Variable-coefficients KP equations have been
investigated thoroughly in the literature [8–11].

To our knowledge, the lump soliton solutions to (1) have not
been studied using the Hirota Bilinear methods. In this article,
by applying the concept of Bell polynomials [3, 4] and Hirota
Bilinear approach [12–14], the lump soliton solutions of (1) will
be derived. In addition, a Bell-shaped soliton solution will also be
derived using an efficient ansatz [15].

2. BELL POLYNOMIAL

In this part, we recall some important terminologies about the
Bell polynomials [12–14].

Let f = f (y1, y2, ..., yn) be a C
∞ function, the multi-

dimensional Bell polynomials are defined by the following:

Yn1y1 ,...,mryr (f ) ≡ Ym1,...,mr (fl1y1 , ..., flryr ) = e−f ∂m1
y1

...∂mr
yr

ef , (2)

where (fl1y1 , ..., flryr ) = ∂
l1
y1 ...∂

lr
yr (0 ≤ li ≤ mi, i = 1, 2, ...r).

Takingm = 1, Bell polynomials is given by:

Ymy(f ) ≡ Ym(f1, ..., fm)
∑ m!

s1!...sm!(1!)s1 ...(m!)sm
f s11 ...f smn ,

m =

m
∑

k = 1

ksk. (3)

The multi-dimensional Bell polynomials can be represented by
Gilson et al. [14]:

Ym1y1 ,...mryr (v,w) = Ym1,...,mr (f )|fl1y1 ,...,flr yr

=

{

vl1y1 , ..., flryr , l1 + ...lr is odd

wl1y1 , ..., flryr , l1 + ...lr is even
(4)

Yy = vy, Y2y(v,w) = v2x + w2y, Yy,t(v,w) = vyvt + wyt ,

Y3y(v,w) = v3y + 3vyw2y + v2y , ... (5)

The conjunction between Y-polynomials and the Hirota bilinear
operator are related by the following identity:

Ym1y1 ,...,mryr

(

v = lnF/G, w = lnFG

)

.

(

FG

)−1

Dm1
y1
...Dmr

yr
F.G,

(6)

where F andG are functions of y and t. Setting F = G, the identity
(6) becomes:

F−2Dm1
y1
...Dmr

yr
F.F = Y(0, 2lnF)

=











0, m1 + ...mr is odd

Ym1y1 ,...mryr (q), m1 + ...mr is even.

(7)

The first fewP-polynomials can be represented by the following:

P2y(q) = q2y, Pyt(q) = qyt , P4y(q) = q4y + 3q22y,

P6y(q) = q6y + 15q2yq4y + 15q32y, ... (8)

The Bell polynomials Ym1y1 ,...mryr (v,w) can be separated into
certain polynomials and Y -polynomials:

(FG)−1Dm1
y1
...Dmr

yr
F.G = Ym1y1 ,...mryr (v,w)|v=lnF/G,w=lnFG)

=
∑

m1+...+mr=even

m1
∑

l1 = 0

...

mr
∑

lr = 0

r
∏

i = 0

(

mi

li

)

Pl1y1 ,...,lryr (q)Y(mr−lr)yr (v).

(9)

The main property of the Bell polynomials:

Ym1y1 ,...nryr (v)|v = ln ψ = ψm1y1,...,mryr /ψ (10)

means that the binary Bell polynomials Ym1y1 ,...mryr (v,w) can be
linearized by applying the Hopf-Cole transformation v = lnψ ,
that is ψ = F/G

Theorem 1. By applying the transformation,

ψ = 12(lnf )xx, (11)

(1) bilinearized into

(D4
x + g(t)D2

x + DtDx + 3D2
y).f .f = 0, (12)

where f = f (x, t, y).
Proof: Introducing the potential field variable q on setting

ψ = h(t)qxx, (13)

where h = h(t) is a function of t. Substituting (13), we can obtain

1

2
h(t)q2xx + g(t)qxx + 3qyy + qxxxx + qxt = 0. (14)

Integrating (14) with respect to x, setting h(t) = 6 and by
means of formula (8), (14) can be converted to P-polynomials
represented by:

3P2y(q)+ g(t)P2x(q)+ P4x(q)+ Pxt(q) = 0. (15)

By applying (10), we obtain:

ψ = 2lnf ⇐⇒ ψ = h(t)qxx = 12(lnf )xx. (16)
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3. LUMP-TYPE SOLITONS TO (1)

TheHirota bilinear form (12) of (1) is equivalent to the following:

3ffyy−2g(t)fx
2+2fg(t)fxx+6f 2xx−8fxfxxx+2ffxxxx−2fxft+2ffxt = 0.

(17)
To derive the lump-type soliton of (1), we consider f in the
following form [3]

f = XTBX + f0, (18)

where B = (aij)4×4 is a symmetric matrix, X = (1, x, y, t)T , aij
and f0 are constants. (18) can be expanded as:

f = a22x
2 + a44t

2 + a33y
2 + 2a12x+ 2a13y+ 2a14t + a23xy

+2a24tx+ 2a34ty+ a11 + f0. (19)

Putting (19) into (12) and performing all the necessary algebraic
calculations by symbolic computations, we acquire the following
system of algebraic expressions:

6f0a33 + 6a11a33 − 8a12a14 + 24a222 + 4g(t)(−2a212

+ (f0 + a11)a22)+ 4f0a24 + 4a11a24 = 0, (20)

−2 a22(2g(t)a22 + 2a24 − 3a33) = 0, (21)

(−8g(t)a12a22 − 8a14a22 + 12a12a33) = 0, (22)

(−4a14a23 + 8g(t)(a13a22 − a12a23)

+ 8a13a24 + 12a13a33 − 8a12a34) = 0, (23)

(−4g(t)a22a23 + 6a23a33 − 8a22a34) = 0, (24)

(4a24a33 + 6a233 − 2g(t)(a223 − 2a22a33)− 4a23a34) = 0, (25)

4 (2g(t)(a14a22 − 2a12a24)+ 3a14a33 − 2a12a44) = 0, (26)

(−8g(t)a22a24 + 12a24a33 − 8a22a44) = 0, (27)

(12a33a34 + g(t)(−8a23a24 + 8a22a34)− 4a23a44) = 0, (28)

(2(−2a24 + 3a33)a44 + g(t)(−8a224 + 4a22a44)) = 0. (29)

Solving (20) to (29), we acquire the following soliton parameters:























































































































































a22 =
a224a33

a234
,

a13 =
a14a33

a34
,

a12 =
a14a24a33

a234
,

a44 =
a234
a33

,

a23 =
2a24a33

a34
,

g(t) = −

(

2a24a33 − 3a233
)

a234

2a224a
2
33

,

f0 = −a11 +
a33

(

−2a424 + a214a
2
34

)

a434
.

(30)

where a33 6= 0, a24 6= 0, a34 6= 0 are necessary and sufficient
conditions which must be satisfied for the solution to exist. From
(30), we obtain the following solution of f under the general
quadratic function:

f =
1

a434

{

− 2a424a33 + a224a33a
2
34x

2

+ 2a24a
2
34(a14a33x+ a34(a33y+ ta34))

+
a234(a14a33 + a34(a33y+ a34t))

2

a33

}

. (31)

Using (30), under the transformation (11), we acquire the
following lump-type solution of (1).

ψ(x, t, y) =
12(ffxx − f 2x )

f 2

=
12

f 2a634

{

2a224(2a
4
24a

2
33 + x2a224a

2
33a

2
34

+ 2xa24a33a
2
34(a14a33 + a34(ya33 + ta34))

+ a234(a14a33 + a34(ya33 + ta34))
2)

}

. (32)

It should be noted that the positiveness of f cannot be guaranteed.
To tackle this problem, we expand (18) as the sums of squares of
linear function f and introduce the following theorem:

Theorem 2. (Cholesky Decomposition Theorem [3]). Let B =

(aij) be a real symmetric positive matrix, then it can be simplified
into the following:

B = RRT , (33)

where R = (rij) is a triangular matrix. The relationship between
elements in B and elements in R is given below:

rij =































(aii −
∑i−1

k = 1 r
2
ik
)2, (i = j),

1
rii
(aii −

∑i−1
k = 1 rikrjk), (i > j),

0, (i < j).

(34)

In accordance with Theorem 2, (18) can be rewritten as:

f = XTRRTX + f0 = (RTX)T(RTX)+ f0 =

(r11 + r12x+ r13y+ r14t)
2 + (r22x+ r23y+ r24t)

2

+(r33y+ r34t)
2 + r244t

2 + f0.

(35)

(35) guarantees the positive definiteness of f . Putting (35)
into (12) and solving the result, we obtain the following
soliton coefficients:
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

























































r23 = 0,

r22 = 0,

r33 = 0,

r31 = 0,

r24 =
√

−r234 − r244,

g(t) =
3r213−2r12r14

2r212
,

f0 = −
2r412
r213

.

(36)

Where r23 6= 0, r22 6= 0 are necessary and sufficient conditions
which must be satisfied for the solutions to exist. From (36), we
obtain the solution of f as:

f = −
2r412
r213

t2 +
(

r11 + r12x+ r13y+ r14t
)

2

+r234t
2 + t2r244 +

(

−r234 − r244
)

.

(37)

Putting (36) into (35) using (11), we acquire the following
lump-type solution of (1) under positive quadratic function:

ψ(x, t, y) =
12(ffxx − f 2x )

f 2
= 12

{

−
4r212(r11 + xr12 + yr13 + tr14)

2

(−
2r412
r213

+ (r11 + xr12 + yr13 + tr14)2 + t2r234 + t2r244 + t2(−r234 − r244))
2
+

2r212

−
2r412
r213

+ (r11 + xr12 + yr13 + tr14)2 + t2r234 + t2r244 + t2(−r234 − r244)

}

.

(38)

4. LUMP SOLITONS TO (1)

4.1. Lump Solitons to (1) Using (32)
Setting the following soliton parameters a24 = 1, a33 = 2, a14 =
1, a34 = 3 in (32), we obtain the following lump solution to (1):

ψ(x, t, y)

= −
864

(

8+ 36x2 + 36x(2+ 3(3t + 2y))+ 9(2+ 3(3t + 2y))2
)

(

−8+ 36x2 + 36x(2+ 3(3t + 2y))+ 9(2+ 3(3t + 2y))2
)2

.

(39)

4.2. Lump Solitons to (1) Using (38)
Setting the following soliton parameters: r11 = 1, r12 = 2, r13 =
−1, r44 = 1, r34 = 3, r14 = 1 in (38), we acquire the following
lump solution to (1)

ψ(x, t, y)

= 12

{

8

−32+ (1+ t + 2x− y)2
−

16(1+ t + 2x− y)2

(−32+ (1+ t + 2x− y)2)2

}

.

(40)

5. BELL-SHAPED SOLITON TO (1)

The bell-shaped soliton solution of (1) may be derived using:

ψ(x, t, y) = ρsechpσ , (41)

where σ = η(x+ y− vt). Putting (41) into (1) yields:

pvη2ρsech(σ )p − pη4ρsech(σ )p + 2p(1+ p)η4ρsech(σ )p −

p(1+ p)vη2ρsech(σ )2+p sinh(σ )2 + p(1+ p)η4ρsech(σ )2+p

sinh(σ )2 − 2p(1+ p)2η4ρsech(σ )2+p sinh(σ )2

+p2η2ρ2sech(σ )2+2p sinh(σ )2 + 3(−pη2ρsech(σ )p

+p(1+ p)η2ρsech(σ )2+p sinh(σ )2)+ g(t)(−pη2ρsech(σ )p

+p(1+ p)η2ρsech(σ )2+p sinh(σ )2)+ ρsech(σ )p

(−pη2ρsech(σ )p + p(1+ p)η2ρsech(σ )2+p sinh(σ )2)− pη2ρ cosh(σ )

(−(1+ p)η2sech(σ )1+p + (1+ p)(2+ p)η2sech(σ )3+p sinh(σ )2)

−pηρ sinh(σ )(−(1+ p)η3sech(σ )2+p sinh(σ )

+2(1+ p)(2+ p)η3sech(σ )2+p sinh(σ )

−(1+ p)ηsinh(σ )(−(2+ p)η2sch(σ )2+p

+(2+ p)(3+ p)η2sech(σ )4+p sinh(σ )2) = 0.

(42)

Equating the exponents 4+p = 2+2p, we obtain p = 1. Plugging
the obtained value of p into (42) yields:

2η2ρ(−3+ v+ 8η2 − ρ − g(t))sech(σ )2

+6η2ρ(3− v− 20η2 + 2ρ + g(t))sech(σ )2 tanh(σ )2

+10η2(12η2 − ρ)ρsech(σ )2 tanh(σ )4 = 0.

(43)

Equating the coefficients of linearly independent terms in (43) to
zero, we get:

2η2ρ(−3+ v+ 8η2 − ρ − g(t)) = 0,

6η2ρ(3− v− 20η2 + 2ρ + g(t)) = 0,

10η2(12η2 − ρ)ρ = 0.

(44)

Solving (44) yields:

η =
1

2

√

ρ

3
, g(t) =

1

3
(−9+ 3v− ρ). (45)

The bell-shaped soliton is represented by:

ψ(x, t, y) = ρsech2

[

1

2

√

ρ

3
(x+ y− vt)

]

. (46)

Frontiers in Physics | www.frontiersin.org 4 January 2020 | Volume 7 | Article 242

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Aliyu et al. Lump Solitons to TDC KP Equation

FIGURE 1 | Perspective view of the lump soliton (39) at t = 0. (A) 3D plot (B) Density plot.

FIGURE 2 | Perspective view of the lump soliton (40) at t = 0. (A) 3D plot (B) Density plot.

FIGURE 3 | Perspective view of the bell-shaped soliton (46) at t = 0. (A) 3D plot (B) Density plot.

Specifically, for the soliton (46) to exist, the condition ρ > 0
must hold.

6. PHYSICAL INTERPRETATION OF
RESULTS

It is worth to mention that at for every t, the solution
ψ = 12(lnf )xx will approach 0 whenever (x, y) approach

infinity in both solutions. The 3D and the density plot for

the lump soliton (39) for t = 0 is shown in Figure 1.

The 3D and the density plot for the lump soliton (40) for

t = 0 is shown in Figure 2. The lump solitons (39) and

(40) admits a pattern with one high peak and a deep hole

hidden beneath the plane wave. Finally, the 3D and the density

plot for the bell-shaped soliton (46) for t = 0 is shown in
Figure 3.
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7. CONCLUDING REMARKS

In this paper, with the aid of the Bell-polynomials approach,
we have successfully derived the bilinear forms of an integrable
time-dependent coefficient (2+1)-dimensional Kadomtsev-
Petviashvili. We also studied the positive quadratic function
solution to the model. Several constraint conditions that
are necessary for the existence of the polynomial solutions
were reported. Upon expanding the polynomials as sums
of squares of linear functions, we acquire a lump-type
solution possessing some arbitrary constraints. With the
choice of different solution parameters, we have reported
two forms of lump soliton solutions. We also utilized a
suitable ansatz approach to derive a one soliton bell-shaped

solution. To our knowledge, the results reported in this
paper are new and introduced for the first time in the

literature. Figures were given to describe the dynamics of
the obtained results.
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