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This study considers sodium-alginate (C6H9NaO7) fluid over an accelerated vertical

plate. The plate is heated from the bottom. A non-Newtonian model of C6H9NaO7 is

considered. The convection term in the momentum equations is also considered. The

dimensionless form of the problem is constructed based on dimensionless variables. The

integral transformation of Laplace is used to develop the exact solution to the problem.

Explicit expressions are obtained for the velocity field and temperature distribution. The

corresponding skin-friction and Nusselt number results are computed based on this.

Equations for entropy generation (EG) and Bejan number (BN) are developed. The results

are plotted and discussed for embedded parameters. Most significantly, the results for

EG and BN are computed and discussed.

Keywords: heat transfer, entropy generation, Casson fluid, exact solutions, integral transform

INTRODUCTION

Entropy generation (EG) is a tool that helps to assess improved results, enhance achievements, and
reduce the loss of energy in thermal engineering systems (TES) [1]. Recently, this technique has
been applied to TES operating with nanofluids [2]. The EGmethod is used to develop performance
standards for thermal engineering equipment. In the literature, Bejan is considered to be the first
to point out the various factors behind EG [3, 4] in TES. Bejan [5] introduced the EG number,
referred to as the Bejan number, which is the ratio of EG due to heat transfer to the total EG of
the system. Moreover, he indicated the conditions of the second law of thermodynamics related
to the convection problems of nanofluids. Selimefendigil et al. [6] demonstrated the magnetic-
resistive convection flow of nanofluids (CuO-water and Al2O3-water) in a restricted trapezoidal
cavity. Quing et al. [7] investigated EG in radiative flow of Casson nanofluids over permeable
stretchable sheets. A detailed review of EG in nanofluid flow was presented by Mahian et al. [8],
who collected and critically discussed recent studies with a wide range of applications. The study
organized different aspects of heat-transfer problems and EG in the current state of the art, making
suggestions for useful future directions.

Darbari et al. used the response surface method (RSM) to conduct a numerical sensitivity
analysis of the effect of nanoparticles (Al2O3) in water-based nanofluids on EG [9]. The results
indicated that the total EG comprised EG due to friction and due to heat conduction. The sensitivity
analysis of EG highlighted the influence of the Reynolds number, particle size, and solid-volume
fraction. Ellahi et al. [10] mathematically analyzed EG in natural-convection boundary-layer flow
of nanofluids near an inverted cone. It was found that EG was produced because of nanoparticles.
Sheikholislami et al. [11] revealed that the EG and heat-transfer rate were enhanced by volume
friction and Rayleigh number during the flow of various types of nanofluids in a cavity containing
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square-shell rectangular heated objects. Saqib et al. [12]
developed a Caputo-type fractional model for the mixed-
convection flow of different types of nanofluids. The exact
analytical results for velocity, temperature, EG, and Bejan
number were obtained via the Laplace-transform technique
and presented in figures and tables with physical explanations.
Khan et al. [13] described the EG in unsteady magnetic fluid
dynamics (MHD) flow through porous media, combining the
effects of mass and heat transfer. The effects of several factors
on EG, Bejan number, and velocity distribution were reported in
numerous figures. Bhatti et al. [14] analyzed the EG of Eyeling-
Powell nanofluids through a permeable stretchable surface.
The effects of magnetohydrodynamics (MHD) and non-linear
thermal radiation were also considered. Li et al. [15] considered
EG in forced-convection flow of Al2O3-water nanofluids. They
reported the impact of Reynolds number (Re), height ratio, and
pitch ratio on EG.

Khan et al. [16] obtained an exact solution for the problem
of convection-MHD flow of sodium-alginate-based Casson-
type nanofluids with the effects of MHD and Newtonian
heating. Haq et al. [17] used an exact analysis and developed
an exact solution for the free-convection problem of viscous
fluid, which depends strongly on time and the slippage
condition. Khan et al. [18] generated exact solutions for a
rotating viscous fluid such that the fluid exhibits eccentric-
concentric rotation. Ahmed and Khan [19] examined the
mixed-convection flow of SA-NaAlg nanofluids such that the
base fluid is taken as MoS2. Khater et al. [20, 21] studied
two different problems using the magnetohydrodynamics effect
with a Hall current. In this problem, the analysis of entropy
generation is considered for Casson fluid over an accelerated
plate. The problem in dimensionless form is solved by using
the Laplace transform technique, and the results are plotted
and discussed.

DESCRIPTION OF THE PROBLEM

Consider the unsteady, incompressible mixed-convection flow of
a Casson fluid near an infinite vertical plate. It is assumed that, at
τ ≤ 0, the system is at rest at a temperature of θ∞. At τ = 0+,
the plate starts moving with a variable velocity of v (0, τ) = Aτ ,
and the temperature of the plate increases from θ (η, 0) = θ∞
to θ (0, τ) = θw. At this stage, mixed convection occurs owing to
the change in temperature and the motion of the plate. The initial
fluid motion is in the vertical direction and is governed by the
following partial differential equations (momentum and energy
equations) [16, 19].

ρ
∂v (η, τ)

∂τ
= µ

(

1+
1

β

)

∂2v

∂η2
+ ρgβθ

(

θ(η, τ )− θ∞
)

, (1)

ρcp
∂θ(η, τ )

∂τ
= k

∂2θ(η, τ )

∂η2
, (2)

These are associated with the following physical initial and
boundary conditions.

V (η, 0) = 0, θ (η, 0) = θ∞
v (0, τ) = Aτ , v (∞, τ) = 0
θ (0, τ) = θw, θ (∞, τ) = θ∞







, (3)

where ρ is the density, v (η, τ) the x-component of the velocity
vector, µ the dynamic viscosity, g the gravitational acceleration,
βθ the volumetric thermal expansion, θ(η, τ ) the x-component of
the temperature vector, cp the heat capacitance, and k the thermal
conductivity of the fluid. To remove the units, the following
dimensionless variables are introduced into Equations (1)–(3).

v∗ =
v

(vA)
1
3

, η∗ =
ηA

1
3

ν
2
3

, τ ∗ =
τA

2
3

ν
1
3

, θ∗(η, τ ) =
θ − θ∞

θw − θ∞
,

This yields the following form.

∂v

∂τ
=
(

1+
1

β

)

∂2v

∂η2
+ Grθ , (4)

Pr
∂θ

∂τ
=

∂2θ

∂η2
, (5)

V (η, 0) = 0, v (0, τ) = τ , v (∞, τ) = 0
θ (0, τ) = 1, θ (∞, τ) = 0, θ (η, 0) = 0

}

, (6)

where Gr = gβθ1θ

A ,Pr =
µcp
k
.

Entropy Generation
The following entropy-generation relation is developed to
optimize the heat transfer and minimize the energy loss in the
system defined in Equations (4)–(6) [3–5, 12, 13].

sgen =
k

θ2∞

(

∂θ

∂η

)2

+
µ

θ∞

(

1+
1

β

)(

∂v

∂η

)2

. (7)

Using the non-similarity variable, ∂θ/∂η = 1θA
1
3 ν−

2
3 ∂θ∗/∂η∗

and ∂v/∂η = A
2
3 ν−

1
3 ∂v∗/∂η∗ are derived and incorporated into

Equation (7), which yields

Ns =
(

∂θ

∂η

)2

+
Br

�

(

1+
1

β

)(

∂v

∂η

)2

, (8)

where

Ns =
sgenν

4
3 θ2∞

kA2/3(1θ)2
, Br =

µA
2
3 ν

2
3

k1θ
, � =

1θ

θ∞
=

θw − θ∞

θ∞
.

Bejan Number
Bejan is generally considered in the literature to be the
first person to point out various factors for optimizing
the performance of thermal systems. He developed Bejan’s
number, which is the ratio of heat-transfer entropy production
to total entropy production, and proposed aspects of the
second law of thermodynamics that consider various problems
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associated with mixed convection. The Bejan number is
given by

Be =

k

θ2∞

(

∂θ

∂η

)2

k

θ2∞

(

∂θ

∂η

)2

+
µ

θ∞

(

1+
1

β

)(

∂v

∂η

)2 (9)

and

Be =

(

∂θ

∂η

)2

(

∂θ

∂η

)2

+
Br

�

(

1+
1

β

)(

∂v

∂η

)2 . (10)

EXACT SOLUTIONS

In the literature, mixed-convection problems are handled using
numerical or approximate methods, and exact solutions are
limited. Here, the exact solutions are obtained using the Laplace
transform method. Applying the Laplace transform to Equations
(4)–(6) gives

qv
(

η, q
)

=
(

1+
1

β

)

∂2v(η, q)

∂η2
+ Grθ(η, q) (11)

v
(

0, q
)

=
1

q2
, v

(

∞, q
)

= 0 (12)

Pr qθ
(

η, q
)

=
∂2θ(η, q)

∂η2
(13)

θ
(

0, q
)

=
1

q
, θ

(

∞, q
)

= 0 (14)

The second-order partial differential Equation (13) is solved
using the transform boundary conditions (14) as follows.

θ
(

η, q
)

=
e−η

√
Pr q

q
(15)

Inverting the Laplace transform yields

θ (η, τ) = erfc

(

η
√
Pr

2
√

τ

)

(16)

Similarly, the solution of Equation (11) using Equations (12) and
(15) is given by

v
(

η, q
)

=
a1

q2
e−η

√
γ q +

a0

q2
e−η

√
Pr q (17)

where
(

1+
1

β

)

=
1

γ
, a0 =

Grγ

γ − Pr
, a1 = 1− a0.

With the inverse Laplace transform,

v(η, τ ) = a1






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1

2
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)
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η
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2
√

τ
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√
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π
e

η2γ

4τ






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




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η2 Pr+τ

)
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(

η
√
Pr

2
√

τ

)

− η

√

τ Pr

π
e

η2 Pr

4τ






.

(18)

Special Case:Note that Equation (18) is reduced to the following
form for Newtonian fluid ( 1

β
→0):

v(η, τ ) = (1−
Gr

1− Pr
)







(

1

2
η2 + τ

)

erfc

(

η

2
√

τ

)

− η

√

τ

π
e

η2

4τ







+
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1− Pr







(

1

2
η2 Pr+τ

)

erfc

(

η
√
Pr

2
√

τ

)

− η

√

τ Pr

π
e

η2 Pr

4τ






.

(19)

FIGURE 1 | Velocity plot for τ.

FIGURE 2 | Velocity plot for Gr.
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Skin Friction
In the dimensionless form, skin friction is defined as

cf =
(

1+
1

β

)

∂v(η, τ )

∂η

∣

∣

∣

∣

η=0
(20)

Nusselt Number
The heat-transfer rate in the dimensionless form is given by

Nu =
∂θ(η, τ )

∂η

∣

∣

∣

∣

η=0
(21)

FIGURE 3 | Velocity plot for β.

FIGURE 4 | Temperature plot for τ.

RESULTS AND DISCUSSION

In this paper, we conducted an entropy generation (EG) analysis
for accelerated flow of non-Newtonian fluid. EG, also known as
the second law of thermodynamics, is quite useful in heat transfer
problems such as in analyzing heat exchangers. This section
highlights the influence of different parameters on velocity,
temperature, entropy generation, and Bejan number. Since, in
this work, sodium-alginate is taken as a counter-example of a
Casson fluid, the Prandtl number (Pr) value is taken as 13.09

FIGURE 5 | Entropy generation plot for τ.

FIGURE 6 | Entropy generation plot for �.
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in all of these figures. This value of Pr is computed from Pr =
µcp/k, µ = 0.002; k = 0.6376; cp = 4175.

Figure 1 shows the effects of time τ on velocity. It is found
that an increase in time results in an increase in the velocity
profile. Physically, the fluid is considered to be unsteady, and
thus velocity increases with time. Figure 2 highlights the effect
of Gr: the velocity profile increases with increasing Gr Value.
The increase in Gr enhances the buoyancy force, causing the
velocity to increase. The physical interpretation indicates that
positive values of Gr show heating of the fluid or cooling of
the boundary surface. The effect of the Casson parameter, β ,
is highlighted in Figure 3; a dual effect is generated. Initially,

FIGURE 7 | Entropy generation plot for Gr.

FIGURE 8 | Entropy generation plot for β.

near the plate, the velocity is found to increase, and then away
from the plate, it decreases for large values of β . This is because
an increase in β reduces the boundary-layer thickness. Figure 4
shows the influence of time τ on the temperature profile, where
the maximum values of time τ lead to an increase in temperature.

The impact of EG (Ns) for dissimilar values of τ is highlighted
in Figure 5. An increase in time τ leads to an increase in EG.
Figure 6 presents the EG values for different values of �. �

is defined as the temperature difference, and an increase in
temperature difference decreases entropy generation. Figure 7
presents the influence of unlike values ofGr on EG. The buoyancy
forces increase with increasing Gr values, which results in an

FIGURE 9 | Entropy generation plot for Br.

FIGURE 10 | Bejan number plot for t.
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increase in entropy generation. In addition, an increase in Gr
could save energy in the system.

The effect of β is shown in Figure 8; it is significant
to note that the thickness of the velocity boundary layer
decreases with increasing Casson parameter value, and hence
EG increases. Furthermore, at high values of β , i.e., β →
∞, Newtonian fluid behavior is observed. The decrease in
the Casson parameter leads to an increase in fluid plasticity.
The influence of Brickman’s number, Br, is investigated in
Figure 9. A large value of Brickman’s number produces
a high amount of heat via viscous dissipation and vice
versa. Therefore, high values of Brickman’s number increase
entropy generation.

FIGURE 11 | Bejan number plot for �.

FIGURE 12 | Bejan number plot for Gr.

The influence of time parameter τ on Bejan number variation
is highlighted in Figure 10. The influence of time τ leads to
a decrease in Bejan number. Figure 11 shows the effect of the
temperature difference, �, on the Bejan number; the maximum
value of � corresponds with an increase in the Bejan number.
Figure 12 highlights the change in Bejan number with respect
to Gr. It is detected that a greater Gr value decreases the Bejan
number. This is because heat-transfer reunification becomes
dominant in the region near the plate with increasing Gr value.
In Figure 13, the Bejan number can be seen to decrease with
increasing Casson parameter β . The Bejan number variation for
different Br values is reported in Figure 14. Larger values of Br
are associated with decreasing Bejan number.

FIGURE 13 | Bejan number plot for β.

FIGURE 14 | Bejan number plot for Br.
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TABLE 1 | Effect of variation of different variables on Cf.

t β Gr Pr Cf

1 0.1 5 0.6 1.5

2 1.811

3 2.05

0.3 2.147

0.5 2.219

7 3.598

9 5.695

0.7 1.215

0.8 0.975

TABLE 2 | Effect of variation of different variables on Nu.

τ Pr Nu

1 0.6 0.219

2 0.077

3 0.042

1.2 0.309

2.2 0.418

Table 1 examines the effect of different factors on skin friction.
It is observed that the skin friction increases with increasing
τ , β , and Gr values. Table 2 highlights the effect of the variation
in τ and Pr on Nusselt number. The Nusselt number decreases
up to the maximum value of τ and increases for the maximum
value of Pr.

CONCLUDING REMARKS

An exact analysis of entropy generation in sodium-alginate
fluid over an accelerated heated plate is conducted via Laplace-
transform methods. The Bejan number Be and local entropy
generation Ns are discussed for various parameters. The effects
are displayed for different embedded parameters. The main
conclusions are:

• For maximum entropy generation Ns, we need to maximize
the t, Gr, β , and Br values. In contrast, for minimum values,
we need to minimize the Pr and � values.

• For the maximum Bejan number, Be, we need to maximize the
Pr and � values. In contrast, for minimum values, we need to
minimize the t, Gr, β , and Br values.

• The Casson parameter, β , exhibits dual effects.
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NOMENCLATURE

u -Velocity of the fluid, [ms−1]

θ -Temperature of the fluid, [K]

g -Acceleration due to gravity, [ms−2]

cp -Specific heat at a constant pressure, [jkg−1K−1]

Gr -Thermal Grasshof number, (= βTw )

k -Thermal conductivity of the fluid, [Wm−2K−1]

Nu -Nusselt number, [−]

Pr -Prandtl number, (= µcp/k)

θ∞ -Fluid temperature far away from the plate, [K]

q -Laplace transforms parameter

A -Arbitrary constant [ms−2]

GREEK SYMBOLS

ν -Kinematic viscosity of the fluid, [m2s−1]

µ -Dynamic viscosity, [kgm−1s−1]

ρ -Fluid density, [kgms−3]

βθ -Volumetric coefficient of thermal expansion,[K−1]

β -Casson fluid parameter

Bγ -Brinkman number

� -Dimensionless temperature function
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