
REVIEW
published: 28 January 2020

doi: 10.3389/fphy.2020.00001

Frontiers in Physics | www.frontiersin.org 1 January 2020 | Volume 8 | Article 1

Edited by:

Ruprecht Machleidt,

University of Idaho, United States

Reviewed by:

Victor Mokeev,

Thomas Jefferson National

Accelerator Facility, United States

Roelof Bijker,

National Autonomous University of

Mexico, Mexico

*Correspondence:

Enrique Ruiz Arriola

earriola@ugr.es

Jose Enrique Amaro

amaro@ugr.es

Specialty section:

This article was submitted to

Nuclear Physics,

a section of the journal

Frontiers in Physics

Received: 21 November 2019

Accepted: 06 January 2020

Published: 28 January 2020

Citation:

Ruiz Arriola E, Amaro JE and Navarro

Pérez R (2020) NN Scattering and

Nuclear Uncertainties.

Front. Phys. 8:1.

doi: 10.3389/fphy.2020.00001

NN Scattering and Nuclear
Uncertainties
Enrique Ruiz Arriola 1*, Jose Enrique Amaro 1* and Rodrigo Navarro Pérez 2

1Departamento de Física Atómica, Molecular y Nuclear and Instituto Carlos I de Física Teórica y Computacional, Universidad

de Granada, Granada, Spain, 2Department of Physics, San Diego State University, San Diego, CA, United States

Ab initio calculations in Nuclear physics for atomic nuclei require a specific knowledge

of the interactions among their constituents, protons and neutrons. In particular, NN

interactions can be constrained down to scale resolutions of 1r ∼ 0.6 fm from the study

of phase shifts below the pion production threshold. However, this allows for ambiguities

and uncertainties which have an impact on finite nuclei, nuclear- and neutron-matter

properties. On the other hand the nuclear many body problem is intrinsically difficult

and the computational cost increases with numerical precision and number of nucleons.

However, it is unclear what the physical precision should be for these calculations. In

this contribution we review much of the work done in Granada to encompass both the

uncertainties stemming from the NN scattering database in light nuclei such as triton and

alpha particle and the numerical precision required by the solution method.

Keywords: nucleon-nucleon interaction, scattering data, uncertainty quantification, nuclear binding, effective

interactions, statistical analysis

1. INTRODUCTION

One of the main goals in Theoretical Nuclear Physics for many years has been to achieve a
sufficiently accurate ab initio solution of the Nuclear Many Body Problem from a reductionist
perspective. Within the present context this means starting with the forces among the hadronic
constituents, protons and neutrons, and solving the corresponding quantum mechanical problem.
While this has been widely and openly recognized as an extremely difficult problem, it already
represents a simplification as compared to the fundamental problem where the constituents are
quarks and gluons building the nucleons and the interactions are deduced from the gauge principle
in QCD. The nuclear problem schematically comprises two main steps (i) the determination of the
basic interactions from spectroscopy and reactions at the few body level and (ii) a precise method
of solution of the inferred interactions for the many body problem. The predictive power of the
theory corresponds therefore to the relation between the input (nuclear two-, three-, four-body,
and so on, forces) and the output nuclear binding energies, form factors and nuclear reactions, and
the corresponding uncertainties.

The seminal paper of Yukawa [1] established the first theoretical evidence that the nuclear force
has a finite range by the particle exchange mechanism. The first determination of the tensor force
and its consequences for the deuteron were analyzed by Bethe [2, 3]. The first χ2 statistical analyzes
of NN scattering data below pion production threshold started in the mid fifties [4] (an account up
to 1966 can be traced from Arndt and Macgregor [5]). A modified χ2 method was introduced [6]
in order to include data without absolute normalization. The steady increase along the years in
the number of scattering data with better precision generated incompatibilities and hence different
criteria had to be introduced [7–9] to discard inconsistent data. For a comprehensive review up to
1977 see [10–13]. For a historical presentation before 1989 we recommend Machleidt [14].
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Error analysis of NN phase-shifts for several partial waves
became first possible when the Nijmegen group [15] carried out
a partial wave analysis (PWA) fitting about 4,000 experimental
np and pp data, after rejecting about 1,000 inconsistent data
with a 3σ criterion. The analysis resulted in a value χ2/dof ∼
1. In the fit the potential was an energy dependent square
well of radius 1.4 fm, plus one-pion-exchange (OPE) and
charge-dependent (CD) contributions starting at 1.4 fm, and
a one-boson-exchange (OBE) piece operating below 2–2.5 fm.
Unfortunately, the required energy dependence becomes messy
for nuclear structure calculations. In the next decade a variety of
NN (energy independent) potentials appeared in the literature
fitting a large body of scattering data with χ2/dof ∼ 1 [15–
19], but surprisingly error estimates on potential parameters
were not made. While all these modern potentials share the
local OPE and CD tail and include electromagnetic effects, the
unknown short range components of these potentials display
a variety of forms and shapes: local potentials [16], non-
local ones with angular momentum dependence [17], energy
dependence [15], or momentum dependence [16, 18, 19]. While
in principle p−, L−, and E−non-localities are equivalent on-
shell (see e.g., Amghar and Desplanques [20] for a proof in a
1/MN expansion) they reflect truly different physical effects and
generally one should consider them as independent quantities.
Any specific choice results in a bias and hence becomes a source
of systematic errors.

Error propagation from nucleon-nucleon data to three-
and four-nucleon binding energies was pioneered in Adam
et al. [21]. A rudimentary method based on coarse grained
NN interactions was proposed [22, 23] providing a first guess
for error on bindings in nuclei and neutron and nuclear
matter. The Granada analysis of the triton using hyper-spherical
harmonics method was performed in Navarro Perez et al. [24].
The triton and the alpha particle were analyzed by solving
the Faddeev equations for 3H and the Yakubovsky equations
for 4He in [25], and in ab initio no-core full configuration
calculations [26]. Theoretical uncertainties in the elastic nucleon-
deuteron scattering observables were calculated in Skibinski
et al. [27].

While the history of the NN force and its applications to
nuclear physics is rather long, uncertainty quantification has
not been addressed seriously until recently (see e.g., [28] for
a review prefacing a full volume of the ISNET community).
There are several reasons why we think that stressing this
aspect of the theory may be particularly useful and fruitful.
One obvious one is to provide sensible error estimates in the
theoretical calculations. The traditional way was to try out several
schemes and compare the different results. Another, less obvious
reason, is to address the many body nuclear problem within
the realistic physical accuracy, rather than the computational
accuracy as it has been the customary approach up to now. This
applies in particular to the a priori accuracy of the solution
of the nuclear many body problem, which may eventually
be relaxed as to facilitate calculations not addressed before.
However, this may occur at a high price; it is not unthinkable
that any realistic attempt to quantify the theoretical uncertainties
may end up with a lack of predictive power on the side of
the theory.

We distinguish as usual in error analyses two sources
of uncertainties: statistical errors stemming from the data
uncertainties for a fixed form of the potential, and systematic
errors arising from the different most-likely forms of the
potentials. Assuming they are independent, the total uncertainty
corresponds to adding both uncertainties in quadrature. In what
follows it is advantageous to take the viewpoint of considering
any of the different potentials as an independent but possibly
biased way to determine the scattering amplitudes and/or phase-
shifts. Because the biases introduced in all single potential are
independent on each other, a randomization of systematic errors
makes sense.

A prerequisite for such an analysis is to discern as much
as possible between statistical and systematic uncertainties. The
former correspond to the proper propagation of the experimental
input while the latter is concerned with the model or scheme
dependence of the calculation procedure. Systematic errors may
include the genuine bias to describe the physics and truncation
errors which are related to the approximate way the calculation
is carried out. At the present stage, the model bias is the largest
source of uncertainty.

After many years of tremendous efforts and steady progress,
state of the art calculations suggest that considerable success can
be expected if one includes the current knowledge of the two-,
three-body forces and a variety of many body techniques are
applied. Going beyond four-body forces has never been tried
out, partly because of technical difficulties but also because of
the appearance of α−clustering, based on the large stability and
compactness of the 4He nucleus, suggests that five body forces
are marginal1.

As already said, a credible quantification of the accuracy of the
theory requires a judicious determination of all sources of error
in the final results, including both the experimental information
needed to pin down the interactions as well as the convergence of
the numerical procedure used to solve the many body problem.
Given the formidable computational effort needed to implement
accurately many body calculations—even for light nuclei—an a
priori determination of the errors induced from input data would
very helpful. This would set an useful accuracy goal and a limit
beyond which all refinements in the numerics would not improve
the theoretical accuracy of the output. The purpose of the present
work is to review estimates on such limiting accuracy based on
the imperfect knowledge of the basic two body interactions.

Unfortunately, the situation we face in strong interactions
in general and in nuclear physics in particular is to compare
and validate inaccurate theories on the basis of accurate
data. No theoretical predictions outperforming experimental
measurements in accuracy are easily found. To make our point
and concern more clear let us take for instance the case of nuclear
binding energies from a semi-empirical point of view, where a
direct reference to nuclear forces is mostly avoided. Bindings are
experimentally known to high accuracy, 1B = 0.01 − 10 KeV,
whereas liquid-drop model inspired mass fit formulas yield a
lower theoretical accuracy 1B = 0.6 MeV (see e.g., Toivanen
et al. [29] and references therein). This suggests that already

1Actually there are no purely contact interactions beyond four body ones for fields

with (n, p,↑,↓) degrees of freedom.
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within such a simple picture the phenomenological theory is
generally not expected to be more accurate in its predictions than
experiment. Actually, according to the standard χ2/dof ∼ 1
criterion the previous results show that the theory is literally
incompatible with data, and thus not even an error analysis based
on uncertainty propagation may be undertaken. The situation
is presumably less optimistic for the ab initio approach based
entirely on the knowledge of (multiparticle) nuclear forces and a
skillful solution of the nuclear many body problem. This provides
a motivation to quantify the accuracy needed to solve the many
body problem.

2. STATEMENT OF THE PROBLEM

Let us be more specific on the meaning of uncertainty
quantification in nuclear physics. From aHamiltonian describing
A-nucleons, HA, with kinetic energy T = ∑A

i=1 p
2
i /2M and

multi-nucleon forces VnN ,

HA = T + V2N + V3N + V4N + . . . , (1)

where

V2N =
∑

i<j

Vij , V3N =
∑

i<j<k

Vijk , V4N =
∑

i<j<k<l

Vijkl . . .

(2)
one proceeds to solve the Schrödinger equation

HA9n = En,A9n. (3)

In the absence of useful and accurate QCD-ab initio
determinations, phenomenological V2N interactions are
adjusted to NN scattering data and the deuteron, 2H (A = 2),
binding energy, while V3N enter into the 3H and 3He (A = 3),
bindings, V4N in 4He (A = 4), and so on. Thus, the theoretical
predictive power flow is expected to be from light to heavy nuclei.
For instance, in the case of the binding energy the problem of
error propagation based on NN force variations corresponds to

VNN = V̄NN ± 1VNN → En(A) = Ēn(A)± 1En(A) (4)

The meaning of the variation 1VNN is a bit subtle, since there
are variations which are (scattering) equivalent and hence do not
change the scattering observables.

We are interested firstly in the NN scattering problem [30].
Quite generally we will consider non-relativistic scattering of two
particles with masses m1 and m2 where H = H0 + V and
H0 = p2/2µ is the kinetic energy and µ = m1m2/(m1 + m2)
the reduced mass (we drop “NN” for simplicity). The S-matrix is
defined as a boundary condition problem for E ≥ 0

S(E+ iǫ) = 1− 2π iδ(E−H0)T(E+ iǫ) (5)

where we have introduced the T-matrix which satisfies the
scattering equation in operator form,

T(E) = V + VG0(E)T(E)

= V + VG0(E)V + · · · = V(1− G0(E)V)
−1 (6)

where in the second equality we write the exact summation of the
perturbative series. Other (complex) energy values are defined
by analytical continuation. The T-matrix satisfies the reflection
property T(E + iǫ)† = T(E − iǫ) if V = V† in Equation (6) and
hence the unitarity condition, S(E + iǫ)S(E + iǫ)† = 1, follows
also from V = V† in Equation (6). The phase-shift is defined in
terms of the eigenvalues of the S-matrix, so that Sϕα = e2iδαϕα

and for rotational invariant interactions (we neglect spin to ease
the notation) the scattering amplitudeM(p′, p) is given by

M(p′, p) =
∑

lm

4πYlm(p)Ylm(p
′)
eiδl(p) sin δl(p)

p

= −2µ

4π
〈Ep′|T(E+ iǫ)|Ep〉

∣∣∣
Ep=Ep′=E

(7)

with Ylm(p) the spherical harmonics and in our convention
dσ/d� = |M(p′, p)|2 the differential cross section. Any NN
unitary transformation, U, transforms the Hamiltonian and
hence the potential as V → Ṽ = UHU† − H0. For an
infinitesimal transformation U = 1 + iη + . . . , where η is a
small self-adjoint two-body operator, the scattering equivalent
variation corresponds to the change 1V = i[η,H]. To see the
effect on scattering, start with the LS equation in the form T−1 =
V−1 − G0 which upon a variation of the potential produces a
variation of the T-matrix 1T = TV−11VV−1T and after some
manipulation one gets

− i1T = (1+ TG0)ηG
−1
0 − G−1

0 η(1+ G0T) (8)

so that sandwiching this expression between plane waves gives

1〈Ek′|T(E+ iǫ)|Ek〉 = −i(E− Ek′ + iǫ)〈k′|η(1+ G0T)|k〉
+i(E− Ek + iǫ)〈k′|(1+ TG0)η|k〉 (9)

which vanishes in the on-shell limit Ek = Ek′ = E and ǫ → 0.
Thus,

1V = i[η,H] H⇒ 1〈Ek′|T(E+ iǫ)|Ek〉
∣∣∣
Ek=Ek′=E

= 0 (10)

or equivalently for finite unitary transformations, using
Equation (7), δl,H(p) = δl,UHU†(p).

Given this general ambiguity the long lasting problem has
been to decide which is the proper representation of the NN
interaction based on NN scattering data. This is in essence the
so-called inverse scattering problem which has been studied
extensively in the past (see e.g., Chadan and Sabatier [31]
and Newton [32] for reviews)] and requires additional strong
assumptions to fix the particular form of the potential. For
instance, assuming a local potential and complete knowledge of
the phase-shifts in each partial wave it is possible to determine
the solution uniquely provided the binding energies and long
distance behavior of the corresponding bound states wave
functions allocated by the potential are known. Clearly, these
inverse scattering ambiguities have an impact on the solution of
the many body problem, as was documented long time ago in
nuclear matter [33] and in the triton and alpha particles [34],
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just to mention two prominent examples (see Srivastava and
Sprung [35] for a review).

Much of the arbitrariness is reduced by invoking an
underlying theoretical description in terms of hadronic degrees
of freedom, which allows to compute VNN(Ex) in terms of one-,
two-,. . . , pion exchanges. which in turn may be related to the
πN scattering process, involving coupling constants for vertex
interactions. At present such a picture seems to hold down to
NN separations of about the elementary radius, rc = 1.8 fm,
below which composite and finite size effects start playing a role
That means that, essentially, variations of the NN potential of are
restricted at least to 1VNN(Ex) = 0 for r ≥ rc ≈ 1.8 fm.

3. THE NN POTENTIAL

3.1. The Concept of a Potential
In order to properly formulate the uncertainties of the potentials
it would be adequate to review first the meaning of a potential in
nuclear physics. This is of utmost importance but also intriguing.
On the one hand the potential is not an observable but on the
other hand to our knowledge it is not practical to carry out
ab initio calculations in Nuclear Physics at the hadronic level
without potentials. Ultimately, one hopes to be able to provide
a direct link between the uncertainties in the input data and
propagate them to the output of the many body problem. As said,
this is only possible by using non-observable nuclear potentials as
intermediate steps.

From a classical (and macroscopic) point of view, potential
and force can be measured directly by just determining the
separation static energy between two infinitely heavy sources.
Such a definition admits a direct extension to the quantum
mechanical microscopic case and specifically to the NN
interaction assuming interpolating composite local nucleon fields
made out of three quarks. In essence, this is the approach
followed in recent years in lattice QCD where many of the
traditionally assumed features of the NN interaction seem to
be confirmed [36–38]. A major drawback of this approach is
that such a calculation determines the static NN energy which
would become a physical observable if nucleons were infinitely
heavy. The quantum mechanical problem needs adding kinetic
energy contributions. Moreover, the fact that low energy NN
scattering provides unnaturally large cross sections corresponds
to an extreme fine tuning which is beyond the present
lattice capabilities.

3.2. The Tensorial Structure
Assuming isospin invariance for the moment, the most general
form of the NN interaction can be written as Okubo et al. [39]

V(p ′, p) = VC + Eτ1 · Eτ2WC +
[
VS + Eτ1 · Eτ2WS

]
Eσ1 · Eσ2

− iES · (q× P)
[
VLS + Eτ1 · Eτ2WLS

]

+
[
VT + Eτ1 · Eτ2WT

]
Eσ1 · q Eσ2 · q

+
[
VQ + Eτ1 · Eτ2 WQ

]
Eσ1 · (q× P ) Eσ2 · (q× P )

+
[
VP + Eτ1 · Eτ2WP

]
Eσ1 · P Eσ2 · P , (11)

where p ′ and p denote the final and initial nucleon momenta in
the CMS, respectively. Moreover, q = p ′ − p is the momentum
transfer, P = (p ′ + p)/2 the average momentum, and ES =
(Eσ1 + Eσ2)/2 the total spin, with Eσ1,2 and Eτ1,2 the spin and isospin
operators, of nucleon 1 and 2, respectively.

The scalar functions appearing in the potential, Equation (11),
depend on both initial and final momentum p and p′ respectively.
Because of rotational invariance we may thus form three
independent invariants, such as p, p′ and also q·P (which vanishes
on-shell). Transforming to coordinate space in the variable r,
conjugate to q, we have

V(r,P) =
∫

d3q

(2π)3
eiq·r〈P+ 1

2q|V|P− 1
2q〉, (12)

where we take 〈P + 1
2q|V|P − 1

2q〉 ≡ V(p′, p). The case
where these functions depend only on the momentum transfer
q = p′ − p corresponds in coordinate space to a local
potential, V(r,P) = V(r). Local potentials are appealing because
they provide physical insight besides being directly manageable
by means of a Schrödinger equation in configuration space.
Moreover, attaching a field theoretical interpretation to the
interaction, locality must be satisfied by heavy and point-like
elementary nucleons which act as static sources, so that in this
case the potential becomes the static energy between nucleons
which is an unique observable defined by

ENN(r) = VNN(r)+ 2MN +O(M−1
N ), (13)

where we assume MN ≫ mπ ,E. Non-localities are expected
to be weak because P/MN ≪ 1, and should have a larger
influence at short distances (see e.g., Piarulli et al. [40] for an
explicit implementation). The finite mass effects generate some
ambiguity in the definition of the potential and, as we will see,
are the largest source of uncertainties in nuclear physics. In any
case, there is some freedom that can be used advantageously to
choose—by means of suitable unitary transformations [41]—a
convenient form of the potential to simplify the solution of the
two-body problem, and to simplify a particular scheme of the
many body problem. We remind, however, that this choice may
be a source of bias and hence of systematic uncertainty.

3.3. Operator Basis
In our analysis we will be using potentials which become local
in the partial wave basis. While the use of local potentials is very
appealing since the whole analysis simplifies tremendously, the
truth is that their use at all distances is questionable for extended
particles. However, the range of non-locality is determined by the
interaction and our analysis (see below) supports that on a scale
1r ∼ 0.6 fm non-locality is not essential.

The potential is written as a sum of functions multiplied by
each operator

V(r) =
∑

n=1,23

Vn(r)O
n (14)
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The first 14 operators are charge independent and correspond to
the ones used in the Argonne v14 potential

On=1,14 =1, τ1 ·τ2, σ1 ·σ2, (σ1 ·σ2)(τ1 ·τ2), S12, S12(τ1 ·τ2),
L·S, L·S(τ1 ·τ2), L2, L2(τ1 ·τ2), L2(σ1 ·σ2),
L2(σ1 ·σ2)(τ1 ·τ2), (L·S)2, (L·S)2(τ1 ·τ2). (15)

These 14 components are denoted by c, τ , σ , στ , t, tτ , ls, lsτ , l2,
l2τ , l2σ , l2στ , ls2, and ls2τ . The remaining CD operators are

On=15,21 =T12, (σ1 ·σ2)T12, S12T12, (τz1 + τz2) ,

(σ1 ·σ2)(τz1 + τz2) , L
2T12, L

2(σ1 ·σ2)T12.

L·ST12, (L·S)2T12 (16)

and are labeled as T, σT,tT, τz,στz, l2T, l2σT, lsT, and ls2T. The
first five were introduced by Wiringa et al. [17]; the following
two were included in Navarro Pérez et al. [42] to restrict CD
to the 1S0 partial wave by following certain linear dependence
relations between VT , VσT , Vl2T , and Vl2σT . The last two terms
are required for the CD on the 3P0,

3P1, and
3P2 partial waves. To

incorporate CD on P waves two more operators need to be added
to the basis we used previously getting a total of 23 operators On.

As in our previous analysis we set VtT = Vτz = Vστz = 0
to exclude CD on the tensor terms and charge asymmetries.
To restrict CD to the S and P waves parameters the remaining
potential functions must follow

48Vl2T = −5VT + 3VσT + 12VlsT − 48Vls2T (17)

48Vσ l2T = VT − 7VσT + 4VlsT − 16Vls2T (18)

The algebraic relation between the operator basis in momentum
space and in configuration space is explicitly given in Navarro
Perez and Ruiz Arriola [43] and several examples are displayed.

3.4. The Long Range Contributions
As mentioned above, the potential becomes an observable within
a QFT setup for infinitely heavy hadronic sources. For the
finite mass case one may use instead a perturbative matching
procedure between a QFT with hadronic (and electro-magnetic
fields) fields and the quantummechanical problem, which should
work at sufficiently long distances. The hadronic QFT calculable
contribution is separated into two pieces, the strong (pion
exchange) piece and the purely EM piece,

VQFT = Vπ (r)+ VEM(r) . (19)

The CD-OPE potential in the long range part of the interaction
is the same as the one used by the Nijmegen group on their 1993
PWA [15] and reads

Vm,OPE(r) = f 2
(

m

mπ±

)2 1

3
m
[
Ym(r)σ1 · σ2 + Tm(r)S1,2

]
(20)

being f the pion coupling constant, σ1 and σ2 the single nucleon
Pauli matrices, S1,2 the tensor operator,Ym(r) and Tm(r) the usual
Yukawa and tensor functions,

Ym(r) =
e−mr

mr
,

Tm(r) =
(
1+ 3

mr
+ 3

(mr)2

)
e−mr

mr
. (21)

CD is introduced by the difference between the chargedmπ± and
neutralmπ0 pion mass by setting

VOPE,pp(r) = Vm
π0 ,OPE

(r),

VOPE,np(r) = −Vm
π0 ,OPE

(r)+ (−)(T+1)2Vmπ± ,OPE(r). (22)

The neutron-proton electromagnetic potential includes only a
magnetic moment interaction

VEM,np(r) = VMM,np(r) = − αµn

2Mnr3

(
µpS1,2

2Mp
+ L·S

µnp

)
, (23)

whereµn andµp are the neutron and proton magnetic moments,
Mn the neutron mass, Mp the proton one and L · S is the spin
orbit operator. The EM terms in the proton-proton channel
include one and two photon exchange, vacuum polarization and
magnetic moment,

VEM,pp(r) = VC1(r)+ VC2(r)+ VVP(r)+ VMM,pp(r) (24)

where

VC1(r) = α′

r
, (25)

VC2(r) = − αα′

Mpr2
, (26)

VVP(r) = 2αα′

3πr

∫ ∞

1
e−2merx

(
1+ 1

2x2

) √
x2 − 1

x2
dx,

(27)

VMM,pp(r) = − α

4M2
pr

3

[
µ2
pS1,2 + 2(4µp − 1)L·S

]
. (28)

Note that these potentials are only used above rc = 3 fm and thus
form factors accounting for the finite size of the nucleon can be
set to one. Energy dependence is present through the parameter

α′ = α
1+ 2k2/M2

p√
1+ k2/M2

p

, (29)

where k is the center of mass momentum and α the fine structure
constant. Table 1 lists the values used for the fundamental
constants in our calculations and typically used since the
benchmarking Nijmegen analysis.

3.5. Short Range Contributions
The short range contributions are fundamentally unknown and,
despite some lattice QCD efforts [36–38, 44], can only be
determined indirectly and phenomenologically, mostly from NN
scattering. Along the years some experience has been gathered
about the size, shape, and range of the potentials in the bulk, at
least in configuration space, so that refinements are made by a χ2

minimization to pp and np scattering data (see below). Besides,
the analysis of scattering data allows to obtain information on
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TABLE 1 | Values of fundamental constants used.

Constant Value Units

h-c 197.327053 MeV fm

mπ0 134.9739 MeV/c2

mπ± 139.5675 MeV/c2

Mp 938.27231 MeV/c2

Mn 939.56563 MeV/c2

me 0.510999 MeV/c2

α−1 137.035989

f2 0.075

µp 2.7928474 µ0

µn −1.9130427 µ0

the lowest distance where the long range contributions can be
trusted. We anticipate that they may be assumed to be valid for
rc ≥ 1.8 fm when OPE and TPE contributions are included.
This coincides a fortiori with the distance above which protons
interact by Coulomb force as point-like particles, and also with
the typical distance between nucleons in nuclear matter, d =
ρ−1/3 = 1.8 fm for ρ = 0.17 fm−3.

Finally, there is the issue on which and how many parameters
are needed to describe the short range force in a satisfactory
manner. The primary 2013 Granada analysis has been carried
out in terms of the so-called coarse grained potentials [45]. The
coarse grain procedure samples the interaction with an optimal
grain size, corresponding roughly to the reduced de Broglie
wavelength 1r = h̄/p. For the maximum LAB energy, 350 MeV,
this corresponds to1r = 0.6 fm. Thus, we do not need to sample
the potential functions Vi(r) at all points, but rather in a grid of
points, Vi(rn) given by rn = n1r. We consider the Vi(rn) values
as fitting parameters. The particular interpolations between these
points are not physically relevant, because shorter scales than
1r cannot be probed by the scattering process below a maximal
p = √

TLABMN/2 ∼ 2 fm−1.
The number of grid points depends on the cut distance, rc,

above which the functional form of the potential is known and
corresponds to N = rc/1r. Thus, the simplest case corresponds
to rc = 1.8 fm and N = 3 grid points for any radial component,
Vi(rn), in the operator basis. In the partial wave basis some
refinements can be incorporated since the centrifugal barrier
limits the sampling points below the barrier in the classically
forbidden region, so that the estimate is Fernandez-Soler and
Ruiz Arriola [46] and Ruiz Arriola and Ruiz de Elvira [47],

NPar ∼
1

2
(pmax

CM rc)
2 gS gT , (30)

where gS and gT are spin and isospin degeneracy factors. The
counting of parameters for pp and np [48] yields about 40
“grained” points rn in the fit carried up to a maximum energy
TLAB ≤ 350 MeV. This a priori estimate coincides in the
bulk with the number of parameters which have traditionally
been needed to fit data satisfactorily in the past. The previous
argument suggests that including more parameters is not
expected to improve significantly the fits to scattering data, but
rather increase the correlations among the Vi(rn) parameters.

There are many possible ways to describe the interaction at the
“grained” points. The simplest is to consider Dirac delta-shells
located at the sampled points [49, 50]

V(r)|Short = 1r
∑

i,n

OiVi(rn)δ(r − rn) r ≤ rc (31)

We refer to Navarro Perez et al. [51] for a pedagogical
presentation of coarse grained interactions which solve the
Schrödinger equation by a discretized form [49, 50] of the
variable phase approach of Calogero [52]. This delta-shells
decomposition implies a similar one at the partial waves level,
so that one may use the partial wave strengths V JS

LL′ (rn) as
fitting parameters. This choice is rather convenient for least
squares minimization as the low angular momentum partial
wave components of the potential are largely uncorrelated,
substantially speeding up the minimum search [53, 54]. The

transformation matrix from the Vi(rn) to the V JS
LL′ (rn) basis can

be found in Navarro Pérez et al. [42].

4. PARTIAL WAVE ANALYSIS

The NN scattering amplitude has five independent complex
components which are a function of energy and scattering
angle [55],

M =a+m(σ1 · n)(σ2 · n)+ (g − h)(σ1 ·m)(σ2 ·m)

+(g + h)(σ1 · l)(σ2 · l)+ c(σ1 + σ2) · n. (32)

We use the three unit vectors (kf and ki are relative final and
initial momenta),

l = kf + ki

|kf + ki|
, m = kf − ki

|kf − ki|
, n = kf ∧ ki

|kf ∧ ki|
. (33)

For this amplitude the total spin S is conserved and in this case
the partial wave expansion reads,

Ms
m′
s ,ms

(θ) = 1

2ik

∑

J,l′ ,l

√
4π(2l+ 1)Y l′

m′
s−ms

(θ , 0)

×C
l′ ,S,J
ms−m′

s ,m
′
s ,ms

il−l′ (SJ,S
l,l′ − δl′ ,l)C

l,S,J
0,ms,ms

, (34)

where S is the unitary coupled channel S-matrix, and the C′s
are Clebsch-Gordan coefficients, Cl,S,J

m,ms ,M
= 〈lmSMs|JM〉. The

spins of the nucleon pair can be coupled to total spin S =
0, 1 and hence J = L ± 1 for unnatural parity, (−1)L+1

states and J = L for natural parity states. This amplitudes
contains all measurable physical information and the relation
to observable quantities such as differential cross sections and
polarization asymmetries can be found in Hoshizaki [56] and
Bystricky et al. [57].

In the Stapp-Ypsilantis-Metropolis (SYM) representation [4]
the S-matrix is written in terms of the nuclear-bar phase shifts
δ̄j±1 and ǭj. Dropping the bars for simplicity and denoting the

phase shifts as δ
J,s
l,l′ , for the singlet (s = 0, l = l′ = J) and triplet

uncoupled (s = 1, l = l′ = J) channels the S matrix is simply
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e
2iδ

J,s
l,l , in the triplet coupled channel (s = 1, l = J ± 1, l′ = J ± 1)

it reads

SJ =
(

e2iδ
J,1
J−1 cos 2ǫJ iei(δ

J,1
J−1+δ

J,1
J+1) sin 2ǫJ

iei(δ
J,1
J−1+δ

J,1
J+1) sin 2ǫJ e2iδ

J,1
J+1 cos 2ǫJ

)
, (35)

with ǫJ the mixing angle.
The partial wave expansion provides an indirect way to find

out the range of nuclear forces by truncating the expansion.
According to the standard semi-classical argument (see e.g.,
[58]), for an impact parameter b = (J + 1/2)/p (p is the CM
momentum) the no-scattering condition corresponds to b ≥ a,
so that |δJmax | ≤ 1δJmax where maximal angular momentum is
provided by Jmax ≈ pa with a the range of the force. For the
Yukawa OPE interaction the exponential fall-off of the potential
alsomeans a similar behavior for the phase-shifts, so typically one
takes S, P,D, and F waves as active if the condition is J+1/2 ≈ prc
with rc the separation distance.

We will review briefly the basics of scattering from a NN
potential for completeness and to provide our notation. Details
may be found in standard textbooks on scattering theory
(see e.g., [59]). The generalization of the well-known Rayleigh
expansion for spin S is

eik·xχSMs
= 4π

∑

l,m

iljl(kr)Y
∗
l,m(k̂)

∑

J,M

〈lmSMs|JM〉YlSJM(x̂), (36)

where χSMs
is an eigenspinor with spin quantum numbers

(S,Ms), and the functions YlSJM(x̂) are the couplings of the
spherical harmonics with the spinors χSMs

to total angular
momentum J,

YlSJM(x̂) =
∑

m′,M′
s

〈lm′SM′
s|JM〉Yl,m′ (x̂)χ

SM′
s
. (37)

The local (but angular momentum dependent) NN potential
described in the previous section conserves spin S and total
angular momentum J, but not the orbital angular momentum L.
Therefore, the scattering wave function for spin S is expanded as

9k,SMs (x) = 4π
∑

lmJM

ilY∗
l,m(k̂)〈lmSMs|JM〉

∑

l′

u
SJ
l′l (r)

kr
Yl′SJM(x̂) .

(38)
where the reduced radial wave functions u

SJ
l′l (r) satisfy the

coupled channel differential equations

[
− d2

dr2
+ l′(l′ + 1)

r2
− k2

]
u
SJ
l′l +

∑

l′′
U

SJ
l′ ,l′′ (r)u

SJ
l′′l = 0 (39)

and the reduced potential is defined as U(r) = 2µV(r). For
regular potentials the boundary condition at the origin reads

u
SJ
l′l(r) ∼ rl

′+1 (r → 0) (40)

The integration of the equations can advantageously be done
using the delta shell representation of the NN potential taking

1r = 0.6 fm for r ≤ rc (the coarse-grained and unknown part)
and1r = 0.1 fm for r ≥ rc (the known field theoretical part). The
complete set of equations including Coulomb forces is provided
in Navarro Pérez et al. [42]. The scattering boundary condition

9S,ms (Ex) → ei
Ek·ExχS,ms +

eikr

r

S∑

ms′=−S

MmS ,mS′ χS,m′
s

(41)

implies a similar asymptotic condition for the reduced radial
wave functions. For the uncoupled case, l = J, one has for
r ∼ R≫ 1/mπ

uJ(r) ≡ uJJ(r) → ĵJ(kr)− cot δJ(k)ŷJ(kr) (42)

where ĵJ(x) = xjJ(x) and ŷJ(x) = xyJ(x) are the reduced spherical

Bessel functions of order J and δJ = δ
1J
J , δ0JJ . In the coupled triplet

case, S = 1, the four wave functions ul′l(r), with l
′, l = J−1, J+1,

are coupled in pairs. The pair

vαJ = uJ−1,J−1 wαJ = uJ+1,J−1 (43)

verifies the coupled equations

[
− d2

dr2
+ J(J − 1)

r2
− k2

]
vαJ + U

SJ
J−1,J−1(r)vαJ

+ U
SJ
J−1,J+1(r)wαJ = 0 (44)

[
− d2

dr2
+ (J + 1)(J + 2)

r2
− k2

]
wαJ

+ USJ
J+1,J+1(r)wαJ + USJ

J+1,J−1(r)vαJ = 0 (45)

On the other hand the pair

wβJ = uJ+1,J+1 vβJ = uJ−1,J+1 (46)

verifies the same coupled equations by changing α → β . This
is equivalent to say that the system (44, 45) has two linearly
independent solutions that we label as α and β solutions. Their
asymptotic behavior can be expressed in terms of the eigen phase
shifts as,

vαJ(r) →ĵJ−1(kr) cot δ
1J
J−1 − ŷj−1(kr) (47)

wαJ(r) → tan ǫJ

[
ĵj+1(kr) cot δ

1J
J−1 − ŷj+1(kr)

]
(48)

vβJ(r) →− tan ǫ
[
ĵj−1(kr) cot δ

1J
J+1 − ŷj−1(kr)

]
(49)

wβJ(r) →ĵj+1(kr) cot δ
1J
J+1 − ŷj+1(kr) (50)

This is known as the Blatt-Biedenharn (BB) parameterization in

terms of the eigen phase shifts δ
1j
j±1 and ǫj. These are related to the

nuclear-bar phase shifts by the following equations

δ
1J
J−1 + δ

1J
J+1 =δ̄

1J
J−1 + δ̄

1J
J+1 (51)

sin(δ̄1JJ−1 − δ̄
1J
J+1) =

tan 2ǭJ

tan 2ǫJ
(52)
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sin(δ1JJ−1 − δ
1J
J+1) =

sin 2ǭJ

sin 2ǫJ
(53)

Unless otherwise stated, in this work the phase shifts will always
be assumed to be the nuclear-bar ones. The Coulomb force is
included exactly by replacing in the previous formulas the Bessel
functions jl and yl by Coulomb functions Fl and Gl [59]. The
inclusion ofmagneticmoments effect is complicated by their 1/r3

behavior requiring about 1,000 partial waves [42].

5. STATISTICS

The statistical treatment we follow here is quite standard, and we
list for the benefit of the newcomer to the field the main steps
to be discussed in the following subsections. We first address the
existing scattering data and then we formulate the nature of the
problem and the standard χ2 approach searching for the most
likely potential. This requires discriminating between consistent
and inconsistent data, something which can be formulated
in terms of a self-consistent selection problem. After this, a
direct statistically satisfactory result can be deduced and, more
importantly, error propagation may legitimately be carried out
in terms of the corresponding covariance matrix implementing
statistical correlations. This allows in particular to determine
the scattering phase-shifts with error bars reflecting directly
the experimental uncertainties. More generally, it allows to
transport these experimental errors to any observable based
on the nucleon-nucleon potential. We will call these the
statistical errors.

5.1. Scattering Data
Once we have defined the potential model and the scattering
formalismwemay proceed to determine the potential parameters
Vi(rn) from the available np and pp scattering data and from the
corresponding scattering observables which are obtained from
the scattering amplitude [56, 57] (see also Tables 2, 3 below
for the notation). The compilation of the existing published
data since 1950 till 2013 is described in detail in Navarro Pérez
et al. [42] and comprises 8,124 fitting data including 7,709
experimental measurements and 415 normalizations provided by
the experimentalists.

5.2. Statement of the Problem
The finite amount, precision and limited energy range of the data
as well as the many different observables calls for a standard
statistical χ2-fit analysis [62, 63]. This approach is subjected
to assumptions and applicability conditions that can only be
checked a posteriori in order to guarantee the self-consistency of
the analysis. Indeed, scattering experiments deal with counting
Poisson statistics and for moderately large number of counts
a normal distribution is expected. Thus, one hopes that a
satisfactory theoretical description Oth

i can predict a set of N
independent observed dataOi given an experimental uncertainty
1Oi as

Oi = Oth
i + ξi1Oi (54)

TABLE 2 | Contributions to the total χ2 for different pp observables [60, 61].

Observable Code Npp χ2
pp χ2

pp/Npp

dσ/d� DSG 935 903.5 0.97

Ayy AYY 312 339.0 1.09

D D 104 135.1 1.30

P P 807 832.4 1.03

Azz AZZ 51 47.4 0.93

R R 110 112.8 1.03

A A 79 70.5 0.89

Axx AXX 271 250.7 0.92

Ckp CKP 2 3.1 1.57

R′ RP 29 11.9 0.41

Ms′0sn MSSN 18 13.1 0.73

Ns′0kn MSKN 18 8.5 0.47

Azx AZX 264 250.6 0.95

A′ AP 6 0.8 0.14

We use the notation of Hoshizaki [56] and Bystricky et al. [57].

TABLE 3 | Contributions to the total χ2 for different np observables [60, 61].

Observable Code Nnp χ2
np χ2

np/Nnp

dσ/d� DSG 1712 1803.4 1.05

Dt DT 88 83.7 0.95

Ayy AYY 119 96.0 0.81

D D 29 37.1 1.28

P P 977 941.7 0.96

Azz AZZ 89 108.1 1.21

R R 5 4.5 0.91

Rt RT 76 72.2 0.95

R′
t RPT 4 1.4 0.35

At AT 75 77.0 1.03

D0s′′0k D0SK 29 44.0 1.52

N0s′′kn NSKN 29 25.5 0.88

N0s′′sn NSSN 30 20.3 0.68

N0nkk NNKK 18 13.5 0.75

A A 6 2.9 0.49

σ SGT 411 500.2 1.22

1σT SGTT 20 26.3 1.31

1σL SGTL 16 18.4 1.15

We use the notation of Hoshizaki [56] and Bystricky et al. [57].

with i = 1, . . .,N and ξi are independent random normal
variables with vanishing mean value 〈ξi〉 = 0 and unit variance
〈ξiξj〉 = δij, implying that 〈Oi〉 = Oth

i . Establishing the validity
of Equation (54) is of utmost importance since it provides a basis
for the statistical interpretation of the error analysis.

5.3. The Least Squares Minimization
If the ξi are independent normal variables,then

∑ν
i=1 ξ 2i

represents a χ2 distribution with ν degrees of freedom. Thus,
under this hypothesis we may consider the standard χ2 method,
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which in our case is defined as

χ2[Vk(rn)] =
NDat∑

i=1

[
O
exp
i − Oth

i (Vk(rn))

1O
exp
i

]2
(55)

where O
exp
i is the experimental observable, 1O

exp
i its estimated

uncertainty and Oth
i (Vk(rn)) are the theoretical results which

depend on the fitting parameters Vk(rn), the values of
the potentials at the sampled points rn. The least squares
minimization has always a solution which may be a global or a
local minimum, namely

χ2
min = min

Vk(rn)
χ2[Vk(rn)] ≡ χ2[V̄k(rn)] (56)

where V̄k(rn) the minimizing parameters. Basically, this
minimization eliminates NPar parameters from the NDat data
and we are left with ν = NDat − NPar degrees of freedom.
The important aspect here is the statistical significance of the
procedure. This can be checked a posteriori by looking at
the residuals

Ri =
O
exp
i − Oth

i |min

1O
exp
i

(57)

where Oth
i |min = Oth

i (V̄k(rn)). According to the assumption
underlying the χ2-method, the set of variables R1, . . .,RNpar

should be distributed as normal variables, i.e., they should look
as NPar variables extracted from a normal distribution N(0, 1).
For a finite sample the veracity of this hypothesis can only be
established in probabilistic terms, so that we may estimate how
likely or unlikely would it be to accept of reject the starting
normality assumption. Technically, this can be done in a variety
of ways (see e.g., [53, 54, 64]), but the most popular measure
of goodness of a fit is the χ2-test which requires that the fit is
accepted if

χ2
min

ν
= 1±

√
2

ν
(58)

with ν = NDat − NPar. More elaborate tests may be applied
and we refer to Navarro Perez et al. [53, 54, 64] for further
details. In practice this means that for NDat = 8000 and NPar =
50 we should get χ2

min/ν = 1 ± 0.016 in order to validate
Equation (54). Note that this is very different than the loose
claims in the literature where χ2/ν ≈ 1 qualifies for a good
fit, complemented with a visual inspection of the phase shifts.
We emphasize that looking similar is not the same as statistical
consistency. In fact, a direct fit to the full database with our model
gives χ2

min/ν = 1.41 which is 25σ away from the expected value.
This clearly indicates either a bad model, inconsistent data, or
both. A statistical measure of the probability that the theory is
plausible is given by the p-value; assuming that the normality of
residuals is correct it corresponds to the probability of obtaining
results at least as extreme as the results actually observed [62, 63].
Thus, the probability of having χ2

min/ν = 1.41 for ν ∼ 7000 is
p = 10−20, which clearly rules out that the theory describes the
data within fluctuations.

5.4. Inconsistent vs. Consistent Data
The determination of theoretical uncertainties requires as a
prerequisite the compatibility or consistency of all data. This
is a strong condition which is not always fulfilled, particularly
when the number of data becomes large. Most often, different
experiments have different sources of errors and are mutually
incompatible. Thus, while any statistical analysis benefits from
a large amount of data, a side effect is the proliferation of
inconsistent data. In that case it is obvious that no model
will be able to simultaneously describe all the data in a
satisfactory manner. To appreciate this point more clearly,
assume two experiments which yield the measurements Oexp1 ±
1Oexp1 and Oexp2 ± 1Oexp2. If the theoretical estimate is Oth,
we have

χ2 =
[
Oexp1 − Oth

1Oexp1

]2
+
[
Oexp2 − Oth

1Oexp2

]2
(59)

Minimizing respect to Oth we get

χ2
min = (Oexp1 − Oexp2)

2

1O2
exp1 + 1O2

exp2

(60)

which becomes larger than 1 for |Oexp1 − Oexp2| ≥√
1O2

exp1 + 1O2
exp2, in which case we have two inconsistent

measurements. The important question is whether both
measurements are wrong or just only one. The term wrong here
does not necessarily mean an incorrect measurement; it suffices
if one or both errors 1Oexp1 and 1Oexp2 are unrealistically small.
In case of a discrepancy one may re-analyze the experiment or
simply ask the experts, an unfeasible strategy for the experiments
performed in the time span 1950–2013 comprising the analysis.
The advantage of the statistical method is that, for a large number
of experiments, the systematic errors are also randomized and
one may rule out some experiments in a kind of majority
vote argument.

The case discussed previously corresponds to two different
measurements of the same observable, say the differential cross
section at the same energy and angle, and the generalization
to any number of experiments is straightforward. However,
in the case of experiments with close kinematics there is
no simple way to decide between inconsistent data unless
some continuity and smooth behavior is assumed in order to
intertwine the two measurements. Here is where the model
enters and statistical methods will never tell us if a given
model is correct but rather if the model is inconsistent with
the data. This is a kind of circular argument which can
only be avoided by looking for models which congregate
as many data as possible in a consistent way. Clearly,
following this criterion, once one finds a good model, any
improvement of the model should describe more data in a
statistically significant fashion. The great advantage is that
if there are reasons to intertwine theoretically the different
measurements of all possible observables one may discuss the
data consistency in a generalized way and be able to select
between different observables.
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5.5. Self-Consistent Data Selection
The self-consistent criterion for data selection was proposed by
Gross and Stadler [19] and implemented in Navarro Pérez et al.
[45]. The way data have been selected proceeds according to the
following procedure:

1. Fit the model to all data. If χ2/ν < 1 you can stop. If not
proceed further.

2. Remove data sets with improbably high or low χ2

(3σ criterion).
3. Refit parameters for the remaining data.
4. Re-apply 3σ criterion to all data.
5. Repeat until no more data are excluded or recovered.

The effect of the selection criterion with our model is to go
from χ2/ν|all = 1.41 to χ2/ν|selected = 1.05 with a reduction
in the number of data from NData = 8173 to NData = 6713.
While this seems a drastic rejection it is the largest self-consistent
fit to date below 350 MeV. For this number of data this is
not a minor improvement; in terms of a normality test, it
makes the difference in p-value between having p = 10−20

or p = 0.68.

5.6. Fitting Results
The set of 32 scattering observables which we use for the fits
comprises a total of about 7000 selected measurements. It is
interesting to decompose the contributions to the total χ2 both
in terms of the fitted observables as well as in different energy
bins. The separation is carried out explicitly in Tables 2, 3 for pp
and np scattering observables respectively and for the latest fit
which includes also the pion-nucleon coupling constants [60, 61]
(see below). As we can see the size of the contributions χ2/N are
at similar levels for most observables. Note that observables with
a considerable larger or smaller χ2/N are also observables with a
small number of data and therefore larger statistical fluctuations
are expected (we remind that for N independent data we expect
χ2/N ≈ 1±√

2/N.
Likewise, we can also break up the contributions in order to

see the significance of different energy intervals, see Table 4. We
find that, in agreement with the Nijmegen analysis (see [65, 66]
for comparisons with previous potentials), there is a relatively
large degree of uniformity in describing data at different energy
bins. We note also that the fit in the low energy region below 2
MeV gives the largest values for χ2/N.

From the optimal fitting parameters Vα(rn) with α =1

S0,
3 P0,

3 S1,
3 D1,E1, . . . being the different partial waves in a

given pp or np channel, we define (λn)
α = 2µabV

α(rn)1r
which has units of fm−1 and ab = pp, np. In Table 5

we show the corresponding numerical values. It would be
nice to see whether something can be said about the nn
interaction. However, one remarkable feature of this and similar
analyses is the fact that with the exception of S-waves the
short distance parameters can be chosen to coincide in the
pp and np systems with common partial waves. The fact that
to this date it is not possible to do it for S-waves precludes
to predict the nn interaction from the combined np and
pp fit (see however a theoretical discussion in Calle Cordon
et al. [67]).

TABLE 4 | The χ2 results of the main combined pp and np partial-wave analysis

[60, 61] for the 10 single-energy bins in the range 0 < TLAB < 350 MeV.

Bin

(MeV)

Npp χ2
pp χ2

pp/Npp Nnp χ2
np χ2

np/Nnp N χ2 χ2/N|fit χ2/N|th

0.0–0.5 103 107.2 1.04 46 88.2 1.92 149 195.4 1.31 1 ± 0.11

0.5–2 82 58.8 0.72 50 92.8 1.86 132 151.5 1.15 1 ± 0.12

2–8 92 80.1 0.87 122 151.0 1.24 214 231.0 1.08 1 ± 0.10

8–17 124 100.3 0.81 229 183.9 0.80 353 284.1 0.80 1 ± 0.08

17–35 111 85.5 0.77 346 324.2 0.94 457 409.7 0.90 1 ± 0.07

35–75 261 231.2 0.89 513 559.7 1.09 774 790.9 1.02 1 ± 0.05

75–125 152 154.8 1.02 399 445.2 1.12 551 600.0 1.09 1 ± 0.06

125–183 301 300.5 1.00 372 381.7 1.03 673 682.2 1.01 1 ± 0.05

183–290 882 905.0 1.03 858 841.4 0.98 1740 1746.4 1.00 1 ± 0.03

290–350 898 956.1 1.06 798 808.1 1.01 1696 1764.1 1.04 1 ± 0.03

We compare the fit χ2/N|fit with the theoretical expectation χ2/N|th = 1±
√
2/N.

TABLE 5 | Fitting delta-shell parameters (λn)
JS
l,l′ (in fm−1) with their errors for all

states in the JS channel for a fit with isospin symmetry breaking on the 1S0 partial

wave parameters only and the pion-nucleon coupling constants f20 , f
2
p , and f2c as

fitting parameters We take N = 5 equidistant points with 1r = 0.6 fm.

Wave λ1 λ2 λ3 λ4 λ5

1S0np 1.16(6) -0.77(2) -0.15(1) − -0.024(1)

1S0pp 1.31(2) -0.716(5) -0.192(2) − -0.0205(4)

3P0 − 0.94(2) -0.319(7) -0.062(3) -0.023(1)

1P1 − 1.20(2) − 0.075(2) −
3P1 − 1.354(5) − 0.0570(5) −
3S1 1.79(7) -0.47(1) − -0.072(2) −
ε1 − -1.65(2) -0.33(2) -0.233(7) -0.018(3)

3D1 − − 0.40(1) 0.070(9) 0.021(3)

1D2 − -0.20(1) -0.206(3) − -0.0187(3)

3D2 − -1.01(3) -0.17(2) -0.237(6) -0.016(2)

3P2 − -0.482(1) − -0.0289(7) -0.0037(4)

ε2 − 0.32(2) 0.190(4) 0.050(2) 0.0127(6)

3F2 − 3.50(6) -0.229(5) − -0.0140(5)

1F3 − − 0.12(2) 0.089(8) −
3D3 − 0.54(2) − − −

f2p f20 f2c

0.0764(4) 0.0779(8) 0.0758(4)

− indicates that the corresponding fitting (λn )
JS
l,l′ = 0. The lowest part of the table shows

the resulting OPE coupling constants with errors.

5.7. Covariance Matrix Error Analysis and
Statistical Correlations
After the data selection and fitting, error propagation becomes
applicable. Here we show the results for the conventional
covariance error analysis which assumes small errors and where
one first determines the uncertainty in the fitting parameters
Vi(rn) which will be labeled generically as λi for ease of notation

2.

2The bootstrap approach based on the MonteCarlo method [45, 68] will be

discussed below.
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Expanding around the minimum values, λ̄i has

χ2 = χ2
min +

NP∑

ij=1

(λi − λ̄i)(λj − λ̄j)E
−1
ij + · · · (61)

where the NP × NP error matrix is defined as the inverse of the
Hessian matrix evaluated at the minimum

E
−1
ij = 1

2

∂2χ2

∂λi∂λj

∣∣∣
λi=λ̄i

(62)

The correlation matrix between the fitting parameters λi and λj
is given by

Cij =
Eij√
EiiEjj

(63)

We compute the error of the parameter λi as

1λi ≡
√
Eii. (64)

Error propagation of an observable depending on the fitting
parameters G = G(λ1, . . ., λP) is computed as

(1G)2 =
∑

ij

∂G

∂λi

∂G

∂λj

∣∣∣
λk=λk,0

Eij. (65)

The correlation matrix, Equation (63), has been evaluated in
Navarro Perez et al. [53, 54] where it has been found that for
the potentials in the partial wave basis V JS

l,l′ (rn) the different
points rn are largely correlated within a given partial wave,
whereas different partial waves are largely uncorrelated. This
information allows to substantially speed up the minimum
search as movements in the multidimensional space are thus
independent and the approaching path to the minimum operates
stepwise [53, 54].

5.8. Phase-Shifts
The first useful application of error propagation regards
scattering amplitudes and phase shifts. Extensive tables for the
selected values TLAB = 1, 5, 10, 25, 50, 100, 150, 200, 250, 300, 350
MeV have traditionally been presented since the Nijmegen
analysis as representative of the fits. These energy values
corresponds to a grid of almost equidistant CM momenta p =√
TLABMN/2 between 0 and 2 fm−1.
For illustration, Figure 1 compares, for low angular

momentum, the phase shifts of the primary PWA in Navarro
Pérez et al. [42] from a fit with fixed pion coupling constant, f 2

(blue bands), and the most recent ones [60] (red band) from a fit
with charge symmetry breaking on the 3P0,

3P1, and
3P2 partial

waves and in the pion coupling constants f 20 , f
2
p , and f 2c .

6. DETERMINATION OF YUKAWA
COUPLING CONSTANTS

The first determination of the coupling constant was carried
out in 1940 by Bethe who obtained the value f 2 = 0.077 −

0.080 from the study of deuteron properties [3] and very
close to the currently accepted value (see Table 1). Subsequent
determinations based on a variety of processes can be traced
from recent compilations [69, 70]. A recent historical account has
been given by Matsinos [71] where some newer determinations
can be consulted according to his own eligibility criterium.
For completeness we also quote recent studies based on pion-
deuteron scattering [72, 73] or on the analysis of Roy equations
for πN [74] where an upgrade of the corresponding scattering
data is considered.

We note that what follows is a brief summary of the results
presented in our previous papers where many more details
may be found regarding the most influential observables, the
dependence on the cut-off radius rc, the inclusion of two-pion
exchange contributions or the energy range used in the fit or
the evolution with the numerical values and precision along the
years [60, 61].

The πNN coupling constant is defined as the pion-nucleon-
nucleon vertex when the three particles are on the mass shell. The
corresponding potentials would be

Vpp→pp(r) =f 2
π0pp

Vm
π0
(r), (66)

Vnp→np(r) = Vpn→pn(r) =− fπ0nnfπ0ppVm
π0
(r) (67)

Vpn→np(r) = Vnp→pn(r) =fπ−pnfπ+np Vmπ± (r) (68)

Vnn→nn(r) =f 2
π0nn

Vm
π0
(r), (69)

There exist four pion nucleon coupling constants, fπ0pp, −fπ0nn,

fπ+pn/
√
2, and fπ−np/

√
2 which coincide with f when up and

down quark masses are identical and the electron charge is zero.
In NN interactions we have access to the combinations,

f 2n = fπ0nnfπ0nn,

f 2p = fπ0ppfπ0pp,

f 20 = −fπ0nnfπ0pp,

2f 2c = fπ−pnfπ+np. (70)

While there is no reason why the pion-nucleon-nucleon coupling
constants should be identical in the real world, one expects that
the small differences might be pinned down from a sufficiently
large number of independent and mutually consistent data. Note
that from np and pp analysis we would obtain f 2p , f

2
0 , and f 2c we

may deduce the nn coupling using the previous equations fn =
−f 20 /fp. We try to find out how many data would be needed by
recalling that electroweak corrections scale with the fine structure
constant α = 1/137 and the light quark mass differences. Thus,

δg

g
= O

(
α,

mu −md

3QCD

)
= O

(
α,

Mp −Mn

3QCD

)
(71)

for the relative change around a mean value. These are naturally
at the 1 − 2% level, a small effect. The question is on how
many independent measurements N are needed to achieve this
desired accuracy. According to the central limit theorem, for N
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FIGURE 1 | (Color online) Phase shifts obtained from a partial waves analysis to pp and np data and statistical uncertainties. Blue band from Navarro Pérez et al. [42]

from a fit with fixed f2 and orange band [60] from a fit with charge symmetry breaking on the 3P0,
3P1, and

3P2 partial waves and in the coupling constants f20 , f
2
p ,

and f2c .

direct independent measurements the relative standard deviation
scales as

1g

g
= O

(
1√
N

)

and δg ∼ 1g for N = 7000 − 10000. We cannot carry out
these direct measurements of g but we can proceed indirectly
by considering a set of mutually consistent NN scattering
measurements The most recent analysis [60, 61] based on the
Granada-2013 database comprises 6713 published data. This

allows: (i) to reduce the error bars, as expected and (ii) to
discriminate between the three coupling constants (see Table 6).
When charge dependence in 1S0, P waves is allowed one has

f 2p = 0.0761(4), f 20 = 0.0790(9), f 2c = 0.0772(5), (72)

The most remarkable consequence is that from the point of
view of the strong interaction neutrons interact more strongly
than protons.
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7. SYSTEMATIC VS. STATISTICAL
ERRORS: THE 6 GRANADA POTENTIALS

Within the phenomenological approach the estimation
of systematic errors can be addressed by using different
representations of the mid-range function below the separation
distance rc while keeping the long range potential and the NN
database. To this end we have analyzed 6 different potentials
in Navarro Pérez et al. [75] which have been fitted to the
same Granada 2013 database and have the same long distance
components of the potential. First we have checked that the 6
Granada potentials are statistically acceptable. In fact, as it has
been stressed in our previous works [53, 54] one can globally
slightly enlarge the experimental uncertainties by the so-called
Birge factor [76] provided the residuals verify a normality test.
After this re-scaling the p-value becomes 0.68 for a 1σ confidence
level and hence all potentials become statistically equivalent.
The results are summarized in Table 7. Thus, the overall spread
between the various phenomenological models with χ2/dof ∼ 1
provides an estimate of the scale of the systematic uncertainty.
A direct way of illustrating quantitatively the situation is by
analyzing the corresponding phase shifts in the different analyses.

Thus, for each energy and partial wave, one evaluates the
phaseshifts δ(1), . . ., δ(N) for a representative set of high-precision
NN potentials V(1), . . .,V(N), and computes the average δ and
standard deviation

1δ = Std δ =

√√√√ 1

N − 1

N∑

i=1

(
δ(i) − δ

)2
(73)

as a measure of the systematic uncertainty of the phaseshifts.
In Figure 2 we show the results for four different situations.
To provide some historical perspective, we show in the upper

left panel the averaged phase shifts, i.e., the absolute (mean-
square) errors for np partial wave phase shifts due to the different
potentials fitting scattering data with χ2/dof ∼ 1 [15–19] as a
function of the LAB energy, namely (CD Bonn) [78], Nijmegen
(Nijm-I and Nijm-II) [15], Argonne AV18 [17], Reid (Reid93)
[79], and the covariant spectator model [19]. As one naturally
expects the average uncertainties grow with energy and decrease
with the relative angular momentum which semi-classically
corresponds to probing an impact parameter

b = L+ 1/2

p
(74)

where p is the CM momentum, p = √
MNELAB/2, making

peripheral waves to be mostly determined from OPE. These
analyses stop at the pion production threshold so that one probes
distances larger than

bmin ∼ 1/3 = 0.5fm, 3 =
√
mπMN . (75)

Note that the bumps or bulges at low energy in 1S0 and 3S1
channels in the top left panel are due to a unique potential which
is an outlier at low energies. In particular, the authors believe
that the outlier behavior is due to the use of an interpolating
function used to approximate the potential between the values
of laboratory energy at which phaseshifts are usually tabulated.

In the upper right panel of Figure 2 we show the errors
obtained via the standard covariance-matrix method explained
above and including correlations in the fitting parameters for
the primary Granada 2013 analysis [45] which corresponds
to the DS-OPE potential. Thirdly, in the lower left panel
we show the case of the np phase shifts for the 6 Granada
potentials [45, 75, 77]. Finally, in lower right panel we present
the uncertainties for all the 7 pre-Granada potentials and the 6
Granada potentials simultaneously.

TABLE 6 | The pion-nucleon coupling constants f2p , f
2
0 , and f2c determined from different fits to the Granada-2013 database and their characteristics.

f2p f20 f2c CD-waves χ2
pp χ2

np χ2 NDat NPar χ2/ν

0.075 Idem Idem 1S0 2997.29 3957.57 6954.86 6720 46 1.042

0.0763(1) Idem Idem 1S0 2995.20 3952.85 6947.05 6720 47 1.041

0.0764(4) 0.0779(8) 0.0758(4) 1S0 2994.41 3950.42 6944.83 6720 49 1.041

0.0761(4) 0.0790(9) 0.0772(5) 1S0, P 2979.37 3876.13 6855.50 6741 55 1.025

We indicate the partial waves where charge dependence is allowed.

TABLE 7 | Granada potentials summary.

Potential NPar Nnp Npp χ2
np χ2

pp χ2/d.o.f. p-value Normality Birge factor

DS-OPE 46 2996 3717 3051.64 3958.08 1.05 0.32 Yes 1.03

DS-χTPE 33 2996 3716 3177.43 4058.28 1.08 0.50 Yes 1.04

DS-1BO 31 3001 3718 3396.67 4076.43 1.12 0.24 Yes 1.06

Gauss-OPE 42 2995 3717 3115.16 4048.35 1.07 0.33 Yes 1.04

Gauss-χTPE 31 2995 3717 3177.22 4135.02 1.09 0.23 Yes 1.05

Gauss-1BO 30 2995 3717 3349.89 4277.58 1.14 0.20 Yes 1.07
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FIGURE 2 | Uncertainties (in degrees, right axis) for partial wave np phase shifts with J ≤ 4 (left axis) for different potentials fitting scattering data with χ2/dof ∼ 1 as a

function of the LAB energy (in MeV). (Upper left) Averaged errors for pre-Granada potentials [15–19]. (Upper right) Statistical errors for the primary Granada 2013 χ2

analysis [45]. (Lower left) The averaged errors for the 6 Granada potentials [45, 75, 77]. (Lower right) Averaged errors for all 13=7 pre-Granada and the 6 Granada

potentials.

In Navarro Pérez et al. [75] we found similar statistical errors
in all the Granada potentials, which are statistically validated
with the same Granada-2013 database, i.e., if the phase-shift for

potential V(i) in a given partial wave is δ(i) ± 1δ
(i)
stat, then

1δ
(1)
stat ∼ · · · ∼ 1δ

(6)
stat , (76)
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However, we also found that the standard deviation of systematic
errors obeys

1δsys ≡ Std(δ(1), . . . , δ(6))≫ 1δ
(i)
stat . (77)

In all the potentials, the tails above r = 3 fm (including CD-
OPE and all electromagnetic effects) are the same, thus the
discrepancies between the potentials at short distances dominate
the uncertainties, rather than the np and pp experimental data
themselves. This conclusion holds also when all high quality
potentials are considered [75]. This counter-intuitive result relies
not only on the specific forms of potentials which treat the mid–
and short-range behavior of the interaction differently but also
on the fact that the fits are mainly done to scattering amplitudes
rather than to the phase-shifts themselves.

8. LOW ENERGY BEHAVIOR

8.1. Low Energy Parameters
The effective range expansion was proposed by Bethe [80] in
order to provide a model independent characterization of the
scattering at low energies where the shape of the potential is
largely irrelevant. The extension to higher partial waves reads (see
e.g., [81])

k2l+1Ml(k) ≡ k2l+1 cot δl(k) = − 1

αl
+ 1

2
rlk

2+v2,lk
4+v3,lk

6+· · ·
(78)

where αl is the scattering length, rl the effective range and vi,l
the curvature parameters. In the case of coupled channels due
to the tensor force one has that SJS = (MJS − i1)(MJS + i1)−1

with (MJS)† = MJS a hermitian coupled channel matrix (also
known as the K-matrix). At the level of partial waves the multi-
pion exchange diagrams generate left hand cuts in the complex
s-plane, which arise in addition to the NN elastic right cut and
the πNN, 2πNN etc., pion production cuts. At low energies for
|p| ≤ mπ/2 we have [82]

pl+l′+1M
JS
l,l′ (p) = −(α−1)JS

l,l′ +
1

2
(r)JS

l,l′p
2 + (v)JS

l,l′p
4 + . . . (79)

which is the coupled channels effective range expansion. While
at lowest orders explicit formulas where available in terms of
wave functions, larger order and partial waves become rather
cumbersome and no practical formula exists.

Fortunately, the variable S-matrix approach of Calogero [52]
offers a unique way to extract low-energy threshold parameters
for a given NN potential which was extended to coupled
channels [82] and applied to the Reid93 and NijmII potentials
up to J ≤ 5. For the 6 Granada potentials these have also been
extracted and we have found that the systematic uncertainties
are generally at least an order of magnitude larger than statistical
uncertainties [75]. In Table 8 where we provide the low energy
parameters for (J ≤ 2).

8.2. Low Energy Constants
Alternatively, one may use effective interactions derived from
a low momentum interaction where the coefficients can be

TABLE 8 | Low energy threshold np parameters for all partial waves with j ≤ 2.

Wave α r0 v2 v3 v4

1S0 −23.735(6) 2.673(9) −0.50(1) 3.87(2) −19.6(1)

−23.735(16) 2.68(3) −0.48(2) 3.9(1) −19.6(5)

3P0 −2.531(6) 3.71(2) 0.93(1) 3.99(3) −8.11(5)

−2.5(1) 3.7(4) 0.9(5) 3.9(1) −8.2(9)

1P1 2.759(6) −6.54(2) −1.84(5) 0.41(2) 8.39(9)

2.78(3) −6.46(9) −1.7(2) 0.5(2) 8.0(3)

3P1 1.536(1) −8.50(1) 0.02(1) −1.05(2) 0.56(1)

1.52(1) −8.6(1) −0.06(7) −0.9(2) 0.1(5)

3S1 5.435(2) 1.852(2) −0.122(3) 1.429(7) −7.60(3)

5.42(1) 1.84(1) −0.14(1) 1.46(3) −7.7(2)

ǫ1 1.630(6) 0.400(3) −0.266(5) 1.47(1) −7.28(2)

1.61(2) 0.39(2) −0.29(3) 1.47(2) −7.35(9)

3D1 6.46(1) −3.540(8) −3.70(2) 1.14(2) −2.77(2)

6.43(4) −3.57(2) −3.77(4) 1.11(5) −2.7(1)

1D2 −1.376 15.04(2) 16.68(6) −13.5(1) 35.4(1)

−1.379(6) 15.00(9) 16.7(2) −12.9(4) 36.2(14)

3D2 −7.400(4) 2.858(3) 2.382(9) −1.04(2) 1.74(2)

−7.39(1) 2.87(1) 2.41(3) −0.96(5) 1.75(8)

3P2 −0.290(2) −8.19(1) −6.57(5) −5.5(2) −12.2(3)

−0.288(5) −8.3(2) −6.8(7) −6.1(19) −12.7(26)

ǫ2 1.609(1) −15.68(2) −24.91(8) −21.9(3) −64.1(7)

1.604(6) −15.8(2) −25.2(7) −23.0(29) −66.2(69)

3F2 −0.971 −5.74(2) −23.26(8) −79.5(4) −113.0(16)

−0.971(5) −5.7(1) −23.3(6) −80.1(33) −117.2(121)

The central value and statistical error bars are given on the first line of each partial wave

and correspond to the mean and standard deviation of a population of 1020 parameters

calculated with the Monte Carlo family of potential parameters described in Navarro Pérez

et al. [83] using the DS-OPE potential [42, 45]. The second line quotes the systematic

uncertainties, the central value and error bars correspond to the mean and standard

deviation of the 9 realistic potentials NijmII [16], Reid93 [16], AV18 [17], DS-OPE [42, 45],

DS-χTPE [48, 77], Gauss-OPE [53], Gauss-χTPE, DS-1BO, and Gauss-1BO. For each

partial wave we show the scattering length α and the effective range r0, both in fm
l+l′+1,

as well as the curvature parameters v2 in fm
l+l′+3, v3 in fml+l′+5, and v4 in fm

l+l′+5. For

the coupled channels we use the nuclear bar representation of the S matrix. Uncertainties

smaller than 10−3 are not quoted.

identified with the phenomenological counter-terms of chiral
effective field theory. To obtain such counter-terms we express
the momentum space NN potential in the partial wave basis

vJS
l′ ,l(p

′, p) = (4π)2
∫ ∞

0
dr r2 jl′ (p

′r)jl(pr)V
JS
l′l (r) (80)

and use the Taylor expansion of the spherical Bessel function to
get an expansion for the potential in each partial wave. Keeping
terms up to fourth order O(p4, p′4, p3p′, pp′3, p2p′2) corresponds
to keeping only S-, P-, and D-waves along with S-D and P-F
mixing parameters. Using the normalization and spectroscopic
notation of Epelbaum et al. [84] one gets

v
JS
00(p

′, p) =C̃
JS
00 + C

JS
00(p

2+ p′2)+ D1
00

JS(p4+ p′4)+ D2
00

JSp2p′2+· · ·
vJS11(p

′, p) =pp′CJS
11 + pp′(p2 + p′2)DJS

11 + · · ·
v
JS
22(p

′, p) =p2p′2DJS
22 + · · ·
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v
JS
20(p

′, p) =p′2CJS
20 + p′2p2D1

20
JS + p′4D2

20
JS + . . .

vJS31(p
′, p) =p′3pDJS

31 + · · · (81)

and each counter-term can be expressed as a radial momentum
of the NN potential in a specific partial wave. Different methods
have been proposed to quantify some of the uncertainties in these
quantities [85, 86]. Using the statistical uncertainties method and
the corresponding systematic error estimates [87], the results are
summarized in Table 9 for the 6 Granada potentials.

8.3. Scale Dependence and Correlations
While one normally uses a fixed value for the maximum energy
in the fits (which in most NN studies has been 350 MeV), one
may analyze the consequences of varying this fitting energy [88].
Denoting 3 as the (running) maximal momentum it is clear that
the fitting potential will change as 3 is varied. Actually, these
parameters may be mapped [54] into the so-called counter-terms
which characterize the effective theories at small momenta [89].
We determined the two-body Skyrme force parameters arising
from theNN interaction as a function of themaximalmomentum
in the fit. We found general agreement with the so-called Vlowk

interactions based on high quality potentials after high energy
components have been integrated out [90, 91].

In line with our remarks in section 5.7 let us note that,
one major outcome of Navarro Pérez et al. [54] has been the
fact that the counter-terms corresponding to volume integrals
including OPE above 3 fm are weakly correlated, whereas those
including OPE+TPE above 1.8 fm have larger but still moderate
correlations. Thus, counter-terms in the partial waves basis would
be efficient fitting parameters, unlike in the cartesian basis. As
we have already discussed, using uncorrelated fitting parameters
has the practical consequence of reducing the computational
determination of the least squares minimization.

9. CHIRAL VS. NON-CHIRAL POTENTIALS

In common with the analysis presented in the previous sections,
much of the early work on phase-shift analysis was undertaken
long before the advent of QCD, so the NN potentials were at
most considered to be derivable from Quantum Field Theory in
purely hadronic terms. This implies in particular the One-Pion-
Exchange potential, which has survived over the years, and the
Two-Pion-Exchange which has been changing depending on the
computational scheme since the first attempts in the early 50’s
(see e.g., Machleidt [14] for a historical review, in particular about
the meson exchange picture).

TABLE 9 | Potential integrals in different partial waves.

DqS-OPE DS-χTPE DS-Born Gauss-OPE Gauss-χTPE Gauss-Born Compilation

C̃1S0
–0.141(1) –0.135(2) –0.128(2) –0.121(5) –0.113(9) –0.133(3) –0.13(1)

C1S0
4.17(2) 4.12(2) 4.04(1) 4.20(2) 4.16(2) 4.18(1) 4.15(6)

D1
1S0

–448.8(11) 443.7(5) –441.5(3) –447.0(10) –446.7(2) –446.3(2) –445.7(26)

D2
1S0

–134.6(3) –133.1(1) –132.46(4) –134.1(3) –134.02(7) –133.90(7) –133.7(8)

C̃3S1
–0.064(2) –0.038(1) –0.039(1) –0.070(2) –0.019(6) –0.038(4) –0.045(19)

C3S1
3.79(1) 3.55(1) 3.52(1) 4.09(2) 3.785(9) 3.724(9) 3.7(2)

D1
3S1

–510.7(3) –504.7(4) –504.1(2) –516.7(6) –509.7(1) –508.2(1) –509.0(46)

D2
3S1

–153.2(1) –151.4(1) –151.22(6) –155.0(2) –152.90(3) –152.47(3) –152.7(14)

C1P1
6.44(2) 6.54(1) 6.464(6) 6.37(2) 6.529(7) 6.488(7) 6.47(6)

D1P1
–594.9(2) –592.1(2) –590.21(6) –594.5(2) -597.83(7) -596.25(7) -594.3(28)

C3P1
3.738(2) 3.659(3) 3.633(3) 3.762(6) 3.677(3) 3.599(1) 3.68(6)

D3P1
–253.29(5) –249.8(2) –249.62(7) –254.23(9) -251.0(2) -251.06(2) -251.5(19)

C3P0
–4.911(8) –4.882(5) –4.897(3) –4.944(6) –4.802(8) –4.883(2) –4.89(5)

D3P0
347.0(2) 343.6(2) 344.62(6) 345.8(1) 345.02(3) 346.25(2) 345.4(12)

C3P2
–0.445(2) –0.434(3) –0.426(2) –0.426(2) –0.448(1) –0.427(1) –0.43(1)

D3P2
–10.62(7) –9.7(2) -9.45(6) –11.55(4) –9.939(8) –9.631(7) –10.1(8)

D1D2
–70.92(3) –70.66(6) –70.52(3) –70.58(3) -7-1.109(7) –71.074(5) –70.8(3)

D3D2
–367.8(2) –364.39(7) –364.54(4) –367.19(8) –367.10(2) –366.99(1) -366.3(15)

D3D1
205.8(2) 204.25(7) 204.26(4) 204.4(1) 205.17(3) 205.21(3) 204.9(6)

D3D3
0.55(1) 0.87(6) 0.90(4) –0.32(9) 0.26(3) 0.51(3) 0.46(45)

Cǫ1 –8.36(2) –8.500(4) –8.492(4) –8.35(1) –8.404(4) –8.399(5) –8.42(7)

D1
ǫ1

1012.6(6) 1005.5(1) 1006.23(6) 1010.5(3) 1011.83(5) 1012.71(6) 1009.9(32)

D2
ǫ1

434.0(3) 430.94(4) 431.24(3) 433.1(1) 433.64(2) 434.02(2) 432.8(14)

Dǫ2 84.18(4) 83.29(1) 83.398(7) 84.25(3) 83.660(5) 83.818(8) 83.8(4)

Errors quoted for each potential are statistical; errors in the last column are systematic and correspond to the sample standard deviation of the six previous columns. See main text for

details on the calculation of systematic errors. Units are: C̃’s are in 104 GeV−2, C’s are in 104 GeV−4, and D’s are in 104 GeV−6.
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After the appearance of QCD as a fundamental theory of
strong interactions there emerged dedicated studies on the
underlying quark dynamics in terms of quark cluster models,
particularly concerning the origin of the nuclear core (see
e.g., [92–94] and references therein). Despite the numerous
attempts it is fair to say that these investigations did provide some
microscopic and quantitative understanding of the short range
components of the interaction but did not offer an alternative to
the conventional partial wave analysis. Current QCD potentials
determined on the lattice [36–38, 44], are still less precise than
phenomenological ones.

In the early 90’s Weinberg [95] (see e.g., [96–98] for
comprehensive reviews and references therein) proposed an
Effective Field Theory (EFT) approach to NN scattering based
on chiral symmetry directly inspired by QCD features, where
the spontaneous breakdown of chiral symmetry underlies the
would-be Goldstone boson nature of the pion. As compared to
the phenomenological approaches, the attractive pattern of such
an EFT was also the natural hierarchy of n-body forces and
the possibility of making an a priori estimate of the systematic
uncertainties in terms of a power counting to different orders.
This happened at about the time when the phenomenological
approach harvested its great success when the Nijmegen group
obtained for the first time a statistically acceptable χ2/ν ∼ 1 by
fitting and selecting np+pp scattering data. Comprehensive fits
to data with chiral interactions have been made using the N2LO
chiral potentials [99] to the Nijmegen database [15] for pp [100]
and for pp+np [101] and the N3LO chiral potential [102] to the
enlarged database [18] for np [103]. The newest generation of
chiral potentials have already provided fits to the Granada-2013
database [40, 48, 77, 104–108].

9.1. Statistical Issues
Very recently chiral potentials to sixth order in the chiral
expansion have been been claimed by the Bochum group to
outperform the non-chiral potentials on the basis of the Granada-
2013 database [107]. This was a major achievement of the chiral
approach (see also [108] for a momentum space approach of the
Idaho-Salamanca group). Another great advantage of the chiral
approach is that the number of fitting parameters is substantially
smaller than in the phenomenological approach. In no case,
however, have the authors taken seriously the available statistical
tests to verify a posteriori the normality of residuals.

Within the uncertainty quantification context, a critical
analysis with an eye on the future developments has been put
forward in Ruiz Arriola et al. [109] and Navarro Perez and Ruiz
Arriola [43]. It has been suggested that a further order in the
expansion, namely N5LO, might quite likely achieve the desired
statistical consistency. At the present state, however, there are
still some pending, hopefully manageable, issues which need to
be resolved before the validation of the chiral approach to NN
scattering can be declared without reservations.

9.2. The Chiral Tensorial Structure
For instance, the tensorial structure of the force requires
phenomenologically that all allowed NN components should
contribute to some extent to the total NN potential. Chiral

perturbation theory proposes a hierarchy among the different
components so that the chiral WQ component vanishes to
N4LO, unlike all the phenomenological analyses so far [43]. In
addition, the number of independent parameters in a scheme
where WQ would be non-vanishing becomes comparable to the
phenomenological potentials.

9.3. Peripheral Waves
One of the reasons why the coupling constants discussed in
section 6 can be pinned down so accurately [60, 61] is given
by the fact that long distant physics is rather well-determined.
From that point of view one expects that peripheral waves are
rather sensitive to the shape of the potential and hence become
independent of the short range components. This also provides
a method to validate other analyses and in particular chiral
potentials. A very vivid way of presenting the discrepancy is by
comparing the phase-shifts in terms of the impact parameter
variable [110] (see Equation 74) for every partial wave

ξN4LO(b) = δN4LO
l

−Mean(δl)

Std(δl)

∣∣∣
l+1/2=bp

, (82)

which provides a measure of the discrepancy with respect to a
set of phase-shifts (see Figure 2 for a plot of different sets). The
conclusion of Simo et al. [110] is quite unequivocal: In the range
2 fm ≤ b ≤ 5 fm the δN4LO differ by more than 3σ when
compared to the primary Granada 2013 analysis for F, G, and H
waves, and become 1σ compatible with the spread of the 13 high
quality potentials.

9.4. Perturbation Theory for Higher Partial
Waves
The long distance character of chiral potentials suggests that one
may determine the high peripheral partial waves in perturbation
theory, as done explicitly in Entem et al. [111]. Actually, the
low energy parameters discussed above in section 8.1 probe the
longest distance features of a given partial wave. Going to N2LO
one sees that, while there is some rough agreement between the
perturbative and the full low energy parameters, the detailed
comparison including both statistical and systematic errors do
not agree. Using the perturbative version of the variable phase
approach, a perturbative evaluation [43] in the context of chiral
TPE (N2LO in the chiral expansion) was also undertaken and
shown not to converge to the exact result within uncertainties,
even at the largest angular momenta and hence for the most
peripheral waves.

9.5. Coarse Graining Chiral Potentials
Chiral potentials can be combined with coarse graining in a
statistically consistent way [48, 48, 77, 104]. This allows for a
reduction of parameters to about 30 since the separation distance
can bemade as small as rc = 1.8 fmwithout spoiling the statistical
analysis. This approach assumes the chiral power counting for
the potential above rc but not in the coarse grained region so
that the all the potential components (including the chirally
missing WQ) are non-vanishing, and taking f 2 = 0.0075 has
provided natural values for the chiral constants (c1, c3, c4) =
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(−0.41 ± 1.08,−4.66 ± 0.60, 4.31 ± 0.17)GeV−1 for TLAB ≤
350MeV [48, 77].

In contrast, the canonical (Weinberg) power counting scheme
applies to the full potential and only to at least N5LO provides
all non-vanishing tensorial components (WQ = 0 at N4LO),
in which case the number of parameters becomes comparable
with the phenomenological approach. As emphasized in Navarro
Perez and Ruiz Arriola [43], the end of the chiral road-
map in NN scattering based on the power counting will
definitely occur when such a scheme becomes reliable enough
to select and fit scattering data, without explicit reference to the
phenomenological approach.

10. BINDING IN LIGHT NUCLEI: ERROR
PROPAGATION

Much of the previous analysis may be used to analyze the impact
of NN scattering uncertainties to binding energies. A precursor
of this type of calculations was carried out in Adam et al. [21]
where estimates on binding uncertainties were carried out using
a statistical regularization of phases and a direct solution of the
inverse scattering problem.

10.1. On-Shell vs. Off-Shell
NN Scattering data describe only the behavior of nucleons
on-shell, i.e., with Ep =

√
p2 +M2 in the relativistic case.

However, nuclear structure calculations usually need also the
corresponding off-shell components so that when going from the
NN scattering data to the binding energy calculation some extra
information would be needed [35]. This ambiguity can be used
in fact to our benefit, since ideally one would determine the off-
shellness from the determination of the finite nuclei properties.
The successful attempts by Vary et al. are a good demonstration
of that [112, 113]

10.2. Computational vs. Physical Precision
Let us review the sources of numerical precision in the solution
of the quantum-mechanical problem. In the simplest NN case,
where we usually solve numerically the two-body Schrödinger
equation, the precision is fixed by the precision in the wave
function. In the positive energy situation corresponding to a
scattering state we are rather interested in the determination of
the scattering phase-shifts.

Within the few-body community there has been a trend to
determine the quantum mechanical solution with an increasing
pre-defined precision, say, a 1%. This is a pure conventional
precision which has been a goal per se and, of course, good
precision is not disturbing provided the computational cost does
not scale up to an unbearable limit where the calculation becomes
unfeasible. However, this does not correspond to the physical
precision where all necessary effects are taken into account and
which determines in fact the predictive power of the theory.

10.3. Monte Carlo Method
The normality property of the residuals has been exploited to
extract the effective interaction parameters and corresponding
counter-terms [54] and to replicate via Monte Carlo bootstrap

simulation as a mean to gather more robust information on the
uncertainty characteristics of fitting parameters [83]. We stress
that the verification of normality, Equation (54), is essential
for a meaningful propagation of the statistical error, since the
uncertainty inherited from the fitted scattering data 1O

exp
i

corresponds to a genuine statistical fluctuation. This allows to
determine the 1σ error of the parameters p = p0 ± 1pstat and
hence the error in the potential

VNN = VNN(p0)± 1Vstat
NN (83)

which generates in turn the error in the NN phase-shifs δ =
δ(p0) ± 1δstat and mixing angles. Once the NN-potential
is determined the few body problem can be solved for the
binding energy,


∑

i

Ti +
∑

i<j

VNN(ij)


9 = EA9 (84)

where

EA = EA(p0)± 1EstatA . (85)

Direct methods to determine 1pstat, 1Vstat
NN and 1EstatA proceed

either by the standard error matrix or Monte Carlo methods
(see e.g., [68]). In Navarro Pérez et al. [83] we have shown that
the latter method is more convenient for large number of fitting
parameters (typically NP = 40 − 60), and consists of generating
a sufficiently large sample drawn from a multivariate normal
probability distribution

P(p1, p2, . . . , pP) =
1√

(2π)NP det E
e−

1
2 (p−p0)

T
E
−1(p−p0), (86)

where Eij = (∂2χ/∂pi∂pj)
−1 is the error matrix. We generate

M samples pα ∈ P with α = 1, . . .,M, and compute
VNN(pα) from which the corresponding scattering phase shifts
δ(pα) and binding energies EA(pα) can be determined. Of
course, one drawback of the MonteCarlo propagation method
is that the object function, in this case the energy, needs to
be evaluated a sufficiently large number of times which may
be unduly time consuming. An analysis of statistical errors at
the phase shift level shows that M = 25 may be sufficient to
reproduce consistently the covariance matrix uncertainties from
the MonteCarlo method.

10.4. The Deuteron
The deuteron is the simplest bound nuclear np system for which
the theory has long been developed [114]. Its quantum numbers
JP = 1+ correspond to the coupled 3S1 −3 D1 channel with
reduced wave functions u(r) and w(r) respectively, so that we
solve the bound state problem with Ed = −Bd = −γ 2/2µnp,
i.e., with p = iγ . At long distances

u(r) → ASe
−γ r , w(r) → ηASe

−γ r

[
1+ 3

γ r
+ 3

(γ r)2

]

(87)
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For normalized states we list in Table 10 the asymptotic D/S
ratio η, asymptotic S-wave amplitude AS, mean squared matter
radius rm, quadrupole moment QD, D-wave probability PD and
inverse matter radius 〈r−1〉 for some high quality potentials
compared with two Granada potentials, DS-OPE [45], DS-
TPE [77]. The PWA analysis indeed uses its binding energy
as a fitting parameter, so that the quoted uncertainties are
purely statistical. Unlike rm, QD, or PD which require (small)
meson exchange currents corrections before being compared
to experimental data, AS and η are purely hadronic. As we
see, both the DS-OPE [77] DS-TPE [77] provide smaller
uncertainties than the experimental/recommended values for
AS and η. To our knowledge, this is an unprecedented
situation in Nuclear Physics. Similar trends are also observed for
the corresponding deuteron charge, magnetic and quadrupole
form factors (see e.g., [121] for a review) where DS-
OPE [45] and DS-TPE [77, 122] generate tiny uncertainties
and offer an opportunity to discriminate meson exchange
currents contributions.

10.5. Binding Energies for A = 3,4 Systems
The primary Granada DS-OPE potential which was used to fit
and select np+pp scattering data uses Dirac delta-shells which are
too singular in configuration space or have too long momentum
tails, for instance in the deuteron [26], to be handled in few body
calculations. Actually, this was the reason to design smooth SOG
(Sum of Gaussian) potentials [53, 75] referenced in section 7.

In Navarro Perez et al. [24] the triton binding energy was
evaluated for the SOG-OPE Granada potential using the hyper-
spherical harmonics method withM ∼ 200MonteCarlo replicas,
and statistical distributions where also obtained yielding 1Et =
12 KeV. One motivation for such a calculation was to determine
if the computational accuracy was unnecessarily better than the
statistical accuracy inherited from the NN scattering data. Our
points are illustrated in Table 11 from Navarro Perez et al. [24]
where the numerical convergence regarding the number of
partial waves is displayed. The error estimate clearly marks where
the accuracy of the numerical calculation is larger than the
physical accuracy.

The statistical uncertainty of experimental NN scattering data
have also been propagated into the binding energy of 3H and 4He
using the no-core full configuration method in a sufficiently large

harmonic oscillator basis. The error analysis [26] yields1Bt = 15
KeV and 1Bα = 55 KeV.

Similar patterns occur when solving the Faddeev equations
for 3H and the Yakubovsky equations for 4He respectively [25].
We check that in practice about M = 30 samples prove
enough for a reliable error estimate within the MonteCarlo
method, giving 1Bt = 12 KeV and 1Bα = 50 KeV whereas,
again, the computational accuracy is better, 1Bnumt = 1 KeV
and 1Bnumα = 20 KeV.

Results for the 3N and 4N binding energies for various
NN potentials using the Faddeev equations for 3H and the
Yakubovsky equations for 4He are listed in Table 12 where we
see a systematic underbinding with respect to the experimental
values. A popular interpretation of this disagreement suggests
that the influence of three- and four-body forces has been
neglected. However, the contribution of three body forces
depends on the definition of two body forces as we will
discuss next.

10.6. The Tjon Line
Much of the error analysis which can and has been carried out in
Nuclear Physics is probably best exemplified by the so called Tjon

TABLE 11 | Triton binding energy convergence for the hyper-spherical harmonics

method [24] in the number of channels, Nc, classified according to the orbital

angular momentum of the pair LPair and the spectator lspectator in the triton as the

number of total accumulated channels, NTotal, is increased.

Nc LPair lSpectator NTotal Energy (MeV)

3 Ss 3 Unbound

+2 Sd+Ds 5 –7.0117

+10 Pp 15 –6.4377

+8 Dd 23 –7.4109

+4 Pf+Fp 27 –7.4956

+10 Ff 37 –7.5654

+2 Dg+Gd 39 –7.6178

+8 Gg 47 –7.6502

+4 Fh+Hf 51 –7.6508

+10 Hh 61 –7.6510

The potential usedwasMonte Carlo generated. A horizontal line is drawnwhen the change

in Et is smaller than the statistical uncertainty 1Bt = 15(1) keV.

TABLE 10 | Deuteron static properties compared with empirical/recommended values [115–120] and high-quality potentials calculations, DS-OPE [45], DS-TPE [77],

Nijm I [16], Nijm II [16], Reid93 [16], AV18 [17], CD-Bonn [18].

Emp./Rec. DS-OPE DS-TPE Nijm I Nijm II Reid93 AV18 CD-Bonn

Ed (MeV) 2.224575(9) Input Input Input Input Input Input Input

η 0.0256(5) 0.02493(8) 0.02473(4) 0.02534 0.02521 0.02514 0.0250 0.0256

AS (fm
1/2) 0.8845(8) 0.8829(4) 0.8854(2) 0.8841 0.8845 0.8853 0.8850 0.8846

rm(fm) 1.971(6) 1.9645(9) 1.9689(4) 1.9666 1.9675 1.9686 1.967 1.966

QD(fm
2) 0.2859(3) 0.2679(9) 0.2658(5) 0.2719 0.2707 0.2703 0.270 0.270

PD 5.67(4) 5.62(5) 5.30(3) 5.664 5.635 5.699 5.76 4.85

〈r−1〉(fm−1) 0.4540(5) 0.4542(2) 0.4502 0.4515

We list binding energy Ed , asymptotic D/S ratio η, asymptotic S-wave amplitude AS, mean squared matter radius rm, quadrupole moment QD, D-wave probability PD, and inverse matter

radius 〈r-1〉.
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TABLE 12 | 3N and 4N binding energies for various NN potentials using the

Faddeev equations for 3H and the Yakubovsky equations for 4He

respectively [25, 123].

Potential Exp. SOG-OPE CD Bonn AV18 Nijm I Nijm II Nijm93

3H [MeV] –8.4820(1) –7.660(12) –8.012 –7.623 –7.736 –7.654 –7.668

4He [MeV] –28.2957(1) –24.760(47) –26.26 –24.28 –24.98 –24.56 –24.53

Errors in SOG-OPE are statistical.

line [34], a linear but empirical correlation between the triton and
α-particle binding energies of the form

Bα = aBt + c (88)

where a, c depend on a family of NN potentials which have the
same NN scattering phase shifts and deuteron properties. Thus,
the slope may be schematically be written as a = (∂Bα/∂Bt)|Bd .
This empirical feature [124, 125] comparing between phase-
equivalent potentials has been corroborated bymany calculations
ever since [123, 126, 127]. It is remarkable that such a simple
property has no obvious explanation. One clue would be the
fact that the deuteron binding energy, Bd = 2.2 MeV, is small
compared to the triton and alpha bindings [128]. For small Bd
the alpha binding energy then would scale as Bα = aBt +
bBd + O(B2

d
). The points along this line in the plane (Bt ,Bα)

correspond to potentials with the same phase-shifts, verifying
1Bα = a1Bt The points along a perpendicular line, 1Bα =
−1/a1Bt should correspond to potentials with very different
phase-shifts. In particular the difference may be generated by a
unitary transformation of the NN potential, V2 → UV2U

†, so
that the bindings depend on U but the coefficients a and b do not
depend on U [123]. On the other hand, a unitary transformation
of the two-body potential implies a change in multi-nucleon
forces, V3, V4, etc. and, one may actually fit Et with a suitable
V3 and Eα with a suitable V4 yielding for V4 = 0 in the so-
called on-shell limit the formula Bα = 4Bt − 3Bd which works
well [129, 130].

Phase equivalent interactions produce a Tjon slope which
is typically about 1Bα/1Bt ∼ 5 − 6 both in the Faddeev-
Yakubovsky [126] and in the no-core shell model [131]. For the
Faddeev-Yakubovsky solutions of 3H-4He the results from five
high quality potentials, i.e., with χ2/ν ∼ 1 at their time and
the Granada SOG-OPE, in Table 12 give Bα = 4.73Bt − 5.26Bd.
For a sample of SOG-OPE potentials the statistical bootstrap
analysis with M = 30 gives Bα = 4.8(1)Bt − 5.4(3)Bd,
where the central values reflect the actual scattering data and
the uncertainties reflect the truly phase-inequivalent fluctuations.
The extrapolation predicts the experimental binding of the alpha
particle within uncertainties [25], since

1B2α|stat = (1a)2B2t + (1b)2B2d (89)

so that 1Bα|stat ∼ 1MeV. Interestingly, this suggests a marginal
effect of four body forces, for which independent estimates
using approximate wave functions [132] give similar numbers,
Bα|4N ∼ −100 KeV (see also Epelbaum [133] for a chiral
scheme where this is argued to overestimate the result). Thus,

we see that since Bα|4N ∼ 1Bstatα the four-body force might
be unobservable. While this is good news from the theoretical
point of view, more detailed calculations might be needed to
confirm this feature. Finally, let us also mention that along these
lines, theoretical uncertainties of the elastic nucleon-deuteron
scattering observables have been undertaken [27].

11. EFFECTIVE NUCLEAR INTERACTIONS

11.1. Moshinsky-Skyrme Parameters
Power expansions in momentum space of effective interactions
were introduced by Moshinsky [134] and Skyrme [135] to
provide significant simplifications to the nuclear many body
problem in comparison with the ab initio approach, in which it
is customary to employ phenomenological interactions fitted to
NN scattering data to solve the nuclear many body problem. As
a consequence of such simplifications effective interactions, also
called Skyrme forces, have been extensively used in mean field
calculations [136–139]. Within this framework the effective force
is deduced from the elementary NN interaction and encodes the
relevant physical properties in terms of a small set of parameters.
However, there is not a unique determination of the Skyrme
force and different fitting strategies result in different effective
potentials (see e.g., [140] and [141]). This diversity of effective
interactions within the various available schemes signals a source
of statistical and systematic uncertainties that remain to be
quantified. Fortunately the parameters determining a Skyrme
force can be extracted from phenomenological interactions [88,
142] and uncertainties can be propagated accordingly [54]. At the
two body level the Moshinsky-Skyrme potential in momentum
representation reads

V3(p
′, p) =

∫
d3xe−ix·(p′−p)V̂(x)

= t0(1+ x0Pσ )+
t1

2
(1+ x1Pσ )(p

′2 + p2)

+ t2(1+ x2Pσ )p
′ · p+ 2iW0S · (p′ × p)

+ tT

2

[
σ1 · p σ2 · p+ σ1 · p′ σ2 · p′

−1

3
σ1 · σ2(p′2 + p2)

]

+ tU

2

[
σ1 · p σ2 · p′ + σ1 · p′ σ2 · p− 2

3
σ1 · σ2p′ · p

]

+O(p4) (90)

where Pσ = (1 + σ1 · σ2)/2 is the spin exchange operator with
Pσ = −1 for spin singlet S = 0 and Pσ = 1 for spin triplet
S = 1 states. These parameters correspond to radial moments
of volume integrals of the potentials

∫∞
0 d3xrnVi(r) which are

increasingly insensitive to short distances.
As mentioned above different nuclear data can be used

to constrain the Skyrme potential. The usual approach is to
fit parameters of Equation (90) to doubly closed shell nuclei
and nuclear matter saturation properties [136–139]. In Ruiz
Arriola [142] the parameters were determined from just NN
threshold properties such as scattering lengths, effective ranges
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and volumes without explicitly taking into account the finite
range of the NN interaction; while in Navarro Perez et al. [88]
the parameters were computed directly from a local interaction
in coordinate space that reproduces NN elastic scattering data.
In Navarro Pérez et al. [54] the latter approach was used to
propagate statistical uncertainties into the Skyrme parameters.
The quantification of the systematic uncertainties, which arise
from the different representations of the NN interaction was
discussed in Navarro Perez et al. [87]. The results, summarized
in Table 13 clearly show, again, the dominance of systematic vs
statistical errors.

11.2. Error Estimates for Heavy Nuclei and
Nuclear Matter
Within the Skyrme effective interactions approach one can find
a simple estimate of systematic errors due to the two body
interaction uncertainty using (for a review see [139])

1B

A
= 3

8A
1t0

∫
d3x ρ(x)2, (91)

For nuclear matter at saturation, ρ0 = 0.17fm−3, our 1t0 =
75MeV fm3 implies

1B

A
= 3

8
1t0ρ0 = 2.4MeV. (92)

We may implement finite size effects in light-heavy nuclei by
using a Fermi-type shape for the matter density

ρ(r) = C/(1+ e(r−R)/a) (93)

with R = r0A
1
3 , r0 = 1.1 fm and a = 0.7 fm, Normalizing to

the total number of particles A =
∫
d3xρ(x) we get values in

the range

1BA/A = 0.4− 1.6MeV, (94)

depending on the value of A for 4 ≤ A ≤ 208.

12. COARSE GRAINED POTENTIAL
RESULTS

Besides the aspect of uncertainty quantification which is
the focus of the present work, we believe that the very
idea of coarse graining proves useful in nuclear physics.
This requires that special methods have to be developed
for delta–shells interaction, which in our view are the most
flexible ones which allow for selecting and fitting the largest
NN database to date, but cannot be plugged directly in
conventional computing codes dealing with nuclear structure
and reactions, and hence smooth potentials (such as the
SOG-Granada type potentials) need to be defined after the
data selection process. This is similar to what happened
with the energy dependence needed by the Nijmegen group
which also led to subsequent high quality interactions. We
discuss here some simple examples where delta-shells may be
used directly.

12.1. Repulsive vs. Structural Core
Besides the well-accepted OPE mechanism for long distances
and the mid-range attraction which is needed for nuclear
binding, one of the traditional and well-accepted properties
of the nuclear potential is the existence of a nuclear strongly
repulsive core at about 0.5 fm. While this feature guarantees
the stability of nuclei and nuclear matter against collapse it
also complicates the solution of the many body problem, since
the relative NN wave function must vanish below the core,
therefore introducing a very strong short range correlation. At
a practical level the existence of the core implies a vanishing of
the wave function at about the core location, but something else
is needed to determine the wave function below the core radius.
The question is whether the repulsive core is indispensable
from the analysis of collision experiments. However, in order
to resolve the core in NN elastic scattering one needs a
wavelength which corresponds to energies where there is a
substantial in-elasticity and hence a complex optical potential
is needed in order to deal with the absorption due to inelastic
processes such as NN → NNπ . This point has been analyzed
in Fernandez-Soler and Ruiz Arriola [46] and it has been

TABLE 13 | Moshinsky-Skyrme parameters for the renormalization scale 3 = 400 MeV.

DS-OPE DS-χTPE DS-Born Gauss-OPE Gauss-χTPE Gauss-Born Compilation

t0 –626.8(64) –529.6(53) –509.0(55) –584.4(157) –406.1(289) –521.8(152) -529.6(751)

x0 –0.38(2) –0.56(1) –0.54(1) –0.26(2) –0.71(8) –0.55(4) –0.50(16)

t1 948.1(30) 913.6(22) 900.1(17) 987.4(29) 945.5(18) 941.3(16) 939.3(304)

x1 –0.048(3) –0.074(3) –0.068(3) –0.013(3) –0.047(3) –0.058(2) –0.051(22)

t2 2462.6(56) 2490.0(39) 2462.1(25) 2441.3(56) 2490.1(24) 2466.8(26) 2468.8(187)

x2 –0.8686(6) –0.8750(8) –0.8753(6) –0.8630(8) –0.8729(6) –0.8785(3) –0.872(6)

W0 107.7(4) 100.8(3) 96.2(3) 105.0(5) 109.3(7) 94.3(2) 102.2(61)

tU 1278.6(12) 1260.3(5) 1257.0(4) 1285.6(12) 1254.9(9) 1249.3(3) 1264.3(144)

tT –4220.9(87) –4292.8(23) –4289.0(21) –4385.6(99) –4271.8(51) –4319.5(58) –4296.6(545)

Errors quoted for each potential are statistical; errors in the last column are systematic and correspond to the sample standard deviation of the six previous columns. See main text for

details on the calculation of systematic errors. Units are: t0 in MeVfm
3, t1, t2,W0, tU, tT in MeVfm5, and x0, x1, x2 are dimensionless.
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found that there exist two solutions, one corresponding to
the usual repulsive core and the other one related to the so-
called structural core, reminiscent of the composite character of
the nucleon.

12.2. Coarse Graining Short Range
Correlations
The Bethe-Goldstone equation [143, 144] has been a way to
describe short range correlations between nucleons inside the
nucleus. In the nuclear medium the interaction produces no
scattering due to the Pauli principle. Instead the relative wave
function of a pair is modified in presence of the two-body
interaction, generating high-momentum components above the
Fermi momentum, p > pF . Using the delta-shell potential allows
to simplify the problem of computing these high momentum
components arising in an interacting nucleon pair in nuclear
matter. This coarse graining of the Bethe-Goldstone equation has
been explored in Ruiz Simo et al. [145, 146] for back-to-back
nucleons, with total center of mass momentum equal to zero. The
formalism still has to be extended to other values of the center
of mass.

12.3. Error Analysis of Nuclear Matrix
Elements
The expected errors of harmonic oscillator nuclear matrix
elements coming from the uncertainty on the NN interaction
have been estimated in Amaro et al. [147] for the coarse grained
(GR) interaction fitted to NN scattering data, with several
prescriptions for the long-part of the interaction, including one
pion exchange and chiral two-pion exchange interactions.

12.4. Shell Model Estimates
In a previous calculation [51], we showed how our approach is
competitive not only as a way of determining the phase shifts
but also compared to more sophisticated approaches to Nuclear
Structure [148]. We computed the ground state energy of several
closed-shell nuclei by using oscillator wave functions. In the case
of 4He, 16O, and 40Ca nuclei, our calculation reproduces the
experiment at the 20 − 30%-level provided the phase-shifts are
fitted up to energy E ≤ 100MeV [51]. This is a tolerable accuracy
as we just intend to make a first estimate on the systematic
uncertainties and then compute the change in the binding energy.
For the A = 3, 4 nuclei we use the simple formulas,

1B(3H) =〈1V2〉3H = 3〈1s|1
2

(
1V1S0 + 1V3S1

)
|1s〉, (95)

1B(4He) =〈1V2〉4He = 6〈1s|1
2

(
1V1S0 + 1V3S1

)
|1s〉, (96)

where |1s〉 is the Harmonic oscillator relative wave function
with the corresponding oscillator parameter b fixed to reproduce
the physical charge radius. The factors in front of the matrix
elements are Talmi-Moshinsky coefficients corresponding in
this particular case to the number of pairs interacting through
a relative s-wave. Errors in the potential 1V are computed

by adding individual contributions (1λn)
JS
l,l′ in quadrature. By

propagating the potential errors to Equation (95) we find

1B(3)

3
= 0.07− 0.085MeV (97)

depending on the fitting cut-off LAB energy, 100–350 MeV
respectively, overestimating the Faddeev estimates given above.
For the α−particle Equation (96) yields

1B(4)

4
= 0.10− 0.13MeV. (98)

More generally, for heavier double-closed shell nuclei one has
along the lines of Navarro Perez et al. [51]

1B(A) =
∑

nlSJ

gnlJS〈nl|1V JST |nl〉 (99)

where gnlJS depends on the Talmi-Moshinsky brackets. For 16O
and 40Ca, we find

1B(16O)

16
= 0.26MeV

1B(40Ca)

40
= 0.32MeV. (100)

These systematic estimates using shell model are of the same
order to the ones obtained above in the Skyrme interaction.

13. OUTLOOK

Despite the many years elapsed since the first NN partial wave
analysis in 1957 and the huge theoretical and experimental efforts
carried out, the nuclear force is poorly known still where it is
most needed, namely in the mid-range regime which is relevant
for ab initio calculation of nuclear binding energies. This is the
explanation behind the relatively large uncertainties found in
large scale calculations. During many years there has been a
conformist attitude regarding these uncertainties, and in most
papers a purely computational approach has prevailed, validating
theoretical frameworks just on their numerical performance.
Only in recent years the issue of uncertainties has been taken
seriously, as it is actually the key to establish the predictive
power of the theory. Clearly, the level of ambiguity we are
dealing with in the evaluation of nuclear uncertainties of all sorts,
statistical, systematic, and computational requires a rigorous
treatment. In this work we have reviewed this topic from the
perspective of the impact of the Granada NN database on
the determination of the NN force and its consequences on
nuclear binding.

The main theoretical obstacle has to do with the great
difficulty in providing a unique definition of the nuclear potential
just from data. Quantum field theory at the hadronic level
implies the existence of a long range interaction dominated
by pion exchanges as the lightest particles and reduces the
ambiguity. Lattice calculations of potentials may identify them
with static energies assuming heavy quark-composite sources but
their accuracy is at present not satisfactory. Chiral perturbation
theory provides in addition several schemes based on a power
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counting which, while not fully satisfactory, may be and have
been implemented in the NN sector and extended to multi-
nucleon forces. The consistency among chiral multi-nucleon
forces is theoretically very appealing and the use of potentials is
possibly the only practical path toward a satisfactory solution of
the nuclear many body problem. It should be stressed that the
EFT point of view is the most suitable one since in principle
one gets rid of the model dependence with a priori uncertainty
estimates. However, a more detailed analysis reveals that there are
issues regarding the necessary regularization of the theory, which
effectively model the mid-range regime of the NN interaction.
Moreover, the indispensability of the chiral scheme for NN
scattering data remains to be proven, not to speak about its
suitability for fitting and selecting a NN database itself. At a
phenomenological level at the present stage the determination of
the NN interaction below 1.8 fm (up to a phase equivalent unitary
transformation) remains so far connected to a combination of an
abundance of data in a variety of kinematics and observables with
the corresponding experimental errors.

In our view, this unfortunate situation on the side of the
hadronic theory will likely not necessarily improve neither
with more and better experimental measurements nor with

larger computational facilities, but with a better understanding
on the essence of hadronic interactions and their range
of applicability.
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