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The biological world is composed of folded linear molecules of bewildering topological

complexity and diversity. The topology of folded biomolecules such as proteins and

ribonucleic acids is often subject to change during biological processes. Despite intense

research, we lack a solid mathematical framework that summarizes these operations in a

principled manner. Circuit topology, which formalizes the arrangements of intramolecular

contacts, serves as a general mathematical framework to analyze the topological

characteristics of folded linear molecules. In this work, we translate familiar molecular

operations in biology, such as duplication, permutation, and elimination of contacts,

into the language of circuit topology. We show that for such operations there are

corresponding matrix representations as well as basic rules that serve as a foundation for

understanding these operations within the context of a coherent algebraic framework.

We present several biological examples and provide a simple computational framework

for creating and analyzing the circuit diagrams of proteins and nucleic acids. We expect

our study and future developments in this direction to facilitate a deeper understanding

of natural molecular processes and to provide guidance to engineers for generating

complex polymeric materials.

Keywords: topology, matrix representation, protein folding, protein engineering, permutation,

duplication, elimination

1. INTRODUCTION

Topology is a mathematical concept that refers to specific properties of objects that remain
invariant under continuous operations like stretching, bending, or shrinking [1]. Objects that
transform to each other by such continuous deformations fall into the same topological class.
For instance, circles and triangles are topologically alike since they can interconvert by bending or
stretching. There is a close relationship between the functional and physical properties of molecular
structures and their topological features [2, 3]. Moreover, topology provides elementary rules that
help us to engineer molecules in a desired way and to synthesize new structures [4–6]. Emergent
properties may be seen in such synthetic molecules that have no counterpart in the biochemical
world [7, 8].

In chemistry there are general frameworks, such as group theory, that aid in investigating
the topological and geometrical properties of molecules. In biology, however, we lack similar
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frameworks. The diversity and complexity of biological
molecules make it difficult to reduce the structural and
functional properties of molecules to simple rules of symmetry.
Consequently, creating a topological language for biochemistry
and biochemical engineering is an interesting scientific
challenge. Such a framework would be a powerful tool
for unifying the diversity of molecules within a coherent
closed theory. Many applications can be envisioned, as the
relation between topology and biomolecular function or
dysfunction has been addressed frequently in health and
disease [9, 10]. Topological approaches have already been
implemented in powerful machine learning algorithms to
correctly predict protein-ligand binding affinities, mutation
induced globular protein folding free energy changes, and
mutation induced membrane protein folding free energy changes
[11, 12].

Biological circuit topology is a mathematical approach that
describes the relationships between intramolecular contacts
within a folded molecule [13–20]. In this framework, pairwise
relations between contacts can be defined using the logic
rules of set theory [13, 14]. Irrespective of the kind of
molecule or its complexity, two contacts may have one of a
few general symmetry relations with one another. For binary
contacts, they might be in parallel, in series, or in cross
arrangement, or in corresponding concerted arrangements if two
contacts share a site. Figure 1 demonstrates these arrangements
and the associated matrices showing connectivity of sites.
Completeness of these relations can be proved [13], and they
can be considered as necessary and sufficient to describe
the topology of folded molecules (formed by di- or multi-
valent contacts). Circuit topology forms a set of rules that
can be used to find unknown topological relations between
contacts from known relations. In this approach, topology is
represented in matrix forms, and equivalent topologies are
inferred from identical matrix representations. Biological circuit
topology makes it possible to determine the topology of a more
complex molecule resulting from the combination of simpler
molecules. The folding rates and number of unfolding paths
of a macromolecule can be estimated using circuit topology
rules [14].

The circuit topology of biomolecules is subject to changes
during folding/unfolding and biochemical reactions as well as
during evolution. Here we ask how the topology changes
upon basic molecular operations such as permutation
of contacts, duplication, or elimination. We develop a
simple algebraic formalism to describe the effect of these
operations. Briefly, each topological state can be described
by a connectivity matrix, and topological changes can be
described as transformations of the matrix, for which linear
algebra already provides all the necessary tools. We show
that the outcome of operations on molecules with complex
topologies can be readily predicted from this approach. Our
results are relevant to understanding the evolution and structural
similarities of proteins and other biological molecules, and
they may help provide a guideline to molecular engineers
interested in engineering folded molecules, active materials, and
smart structures.

2. CIRCUIT TOPOLOGY AND MOLECULAR
OPERATIONS

We will introduce here a new way of describing both the
topological state of a folded linear polymer and molecular
operations on the structure. Both the topological state and
changes to this state are represented using permutation matrices
(representations of Sn) and are connected with the well known
tools of matrix multiplication.

2.1. Circuit Topology
In the following, we redefine basic concepts of circuit topology
to allow for the ability to use simple algebraic operations, rather
than relying on combinatorical algorithms. In this generalized
approach, we show that any structure of a linear molecule can
be uniquely represented by a permutation matrix S and a vector
d, called the connectivity matrix and backbone, respectively.

A mathematic permutation is an exchange of elements. The
abstract map is often denoted with a greek letter (we will often
use π) and maps an integer onto another integer π(i) = j. If and
only if a permutation exchanges only two elements it is called a
transposition. The abstract permutation can be represented by a
permutation matrix. A permutation matrix exchanges elements
of a vector according to the permutation. It has only entries of 1
and 0, and the sum of each row and the sum of each column is
1. In the case of circuit topology not any permutation matrix can
be used. First of all, S must be symmetric, i.e., it consists only of
commutating transpositions. The matrix

S =





0 1 0
1 0 0
0 0 1



 (1)

for example, exchanges element 1 with 2 and leaves the element
3 unchanged [it is often represented as (12) (3) or (12)]. In
biological circuit topology this represents a connection between
the element 1 and 2 of the backbone d.

The backbone d is a vector that holds the information of the
underlyingmolecular structure. It may consist of the indices of all
the aminoacids in a protein or nucleotides in a DNA sequence, or
it can be the length of the string/chain up to a particular point
di. d need not be complete (i.e., it need not contain the whole
array of indices), for example d = (2, 5, 20, 21) is a valid backbone
vector. In addition the values need not be unique. Thismeans e.g.,
d = (1, 2, 2, 3) is also acceptable and in some cases even required.
If the elements of d are distances, then di can be any real number,
e.g., d = (1.23, 1.938, 5.392). If an element is not exchanged by
the connectivity matrix (for example the element 3 in Equation 1)
then it can safely be eliminated from the representation without
changing the state of the molecule:

S =

(

0 1
1 0

)

(2)

When changing the pair (S , d) in this way, the molecule itself
is not changed, but the representation is minimalized. A more
detailed discussion on transformations can be found in the
next section.
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FIGURE 1 | The five types of circuit topology relations representes as a

connectivity matrix S and the corresponding graph.

The pair (S , d) defines a state of a linear molecule (e.g.,
protein, DNA), where d defines the bonding sites and S the
connectivity of these bonding sites. Figure 1 shows a two-bond
system with all possible relations. The possible relations are series
(S), cross (X), and parallel (P). Two special connectivity relations
(concerted parallel and concerted series) are discussed below.
Note that only P is non-reflexive and has an inverse relation P−1,
for more detailed information see Mashaghi et al. [13].

For most of the connectivity relations the connectivity map S

is identical to the contact map, however two special connectivity
relations lead to different matrices: concerted parallel (CP) and
concerted series (CS). For a contact with residue 1 and 2 and
contact 2 with 3 (CS) the contact map is given by

S =





0 1 0
1 0 1
0 1 0



 (3)

This is however not a permutation matrix and therefore
forbidden as a connectivity matrix. In order to represent this
system in the circuit topology framework d must contain the
contact site 2 twice, one of which being in contact with 1 and
the other with 3. One might think of it as fictionally separating
the site 2 into two separate and distinct sites, 2 and 2’, forming

the connection and then bringing them together by 2 = 2′. The
correct connectivity matrix and backbone for CS are therefore

S =









0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0









d =









1
2
2
3









. (4)

Figure 1 also shows the correct representation for CP.
The demand for uniqueness requires additional restrictions

on d and S . If d only contains each value once, then ordering
is sufficient for uniqueness; however if this is not the case, then
several equivalent arrangements of d will lead to different S (for
example, swapping index 2 with 3 in Equation 4). We define the
ordered state therefore as follows: for all i and jwith i < jwe have
di ≤ dj and if di = dj then it follows that π(i) < π(j), where π is
the permutation that is represented by S . For example,

S =









0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0









d =









1
2
2
3









(5)

is the same state as in Equation (4), however for d2 = d3 but
4 = π(2) 6< π(3) = 1, therefore the only correct representation
is in Equation (4).

In addition we also impose the rule that there can not be
contact between identical sites and that any bond can occur at
most once. This means that a contact like

S =

(

0 1
1 0

)

d =

(

1
1

)

, (6)

is never allowed.With these restriction (d is ordered, S is ordered
for di = dj and no contacts between equal sites) S is said to
be reduced. This gives uniqueness and the ordering is consistent
with previously defined orders [20]. For the complete proof see
Supplementary Information.

Finally, we introduce the relations matrix [13]. The relations
matrix is a n×n-matrix that contains the relation between bonds,
where n is the number of contacts. The relations are the known
X, P, P−1, S . . .. This representation is mostly for the purpose of
display, because it is smaller than S and the relation between
bonds can immediately be read out.

Finally we will propose a simple way of comparing
different states:

• identical: d = d′ and S = S ′

• partially equivalent: S = S ′ and both d and d′ are ordered
in a similar way, where S and d exclude any elements
without connections.

• non-equivalent: otherwise.

The description of the topological state of a protein using the
pair (S , d) provides a powerful tool to perform transformations
using algebraic operations which are well-known and readily
available. The various types of transformations are discussed in
the next section.

Frontiers in Physics | www.frontiersin.org 3 January 2020 | Volume 8 | Article 5

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Schullian et al. Circuit Topology for Protein Engineering

2.2. Molecular Operations
2.2.1. General

A molecular operation is any map such that T :(S , d) 7→ (S ′, d′).
We can loosely classify these operations as rearrangements or as
operations where the topological state of the molecule is changed
(molecular operation), or as a combination of both types. Clearly,
we are interested in the molecular operations where both the pre-
image and the image are ordered and reduced. The restriction
is necessary because it will conveniently directly lead to a
unique map that describes the change explicitly [without any
additional combinatorial (re)arrangements]. We first describe
three types of transformations, that give the transformations a
clear interpretation.

The first set of transformations are type-0 transformations.
Type-0 deformation do not change the topological state of the
molecule, and form a group that consist of reordering, extending
and reducing of d.

The first subgroup consists of the ordering transformations. If
d is not ordered, then one can order it using a permutationmatrix
O, which swaps the corresponding elements in d. This must
lead to a change in S for the system to remain unchanged. The
change is described by S ′ = OSO−1. In summary, the pair (S , d)
and (S ′, d′) = (OSO−1,Od) describe the same state, but are
different representations. Visually it can be thought as relabeling
the residues in a protein, without changing the sequence or
the connectivity.

For example, we consider the state where residue 1 with 2,
as well as residue 3 and 4 share a connection. The system is
described by the following S and d

S =









0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0









d =









1
3
2
4









. (7)

d is however not ordered, which might lead to confusion,
as S could be mistaken for a X state. Redordering demand
that the element d2 and d3 are exchanged. The corresponding
permutation matrix O is given by

O =









1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1









(8)

and we can calculate the transformed d′ and S ′

d′ = O









1
3
2
4









=









1
2
3
4









, (9)

S
′ =









1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

















0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

















1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1









−1

(10)

=









1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

















0 1 0 0
0 0 0 1
1 0 0 0
0 0 1 0









(11)

=









0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0









(12)

The pair (S ′, d′) clearly describe the same state, however the fact
that d is ordered, makes it easier to interpret and prevents reading
errors. This is especially of importance when transformations of
other types (see below) produce an unordered d that might be
not noticed.

The other group of transformations of type-0 increase or
decrease the length of d but do not change the topological state
of molecule. The reduction, for example, can be used to eliminate
unbound contact sites, to give a smaller S still containing all the
necessary information. The extension does the opposite. It may,
for instance, add another entry in d so that additional bonds can
be formed, or it may reintroduce whole blocks of the protein
which were disregarded because they might not have been of
importance. An example for a type-0 transformation is given by

S =





0 1 0
1 0 0
0 0 1



 7→ S
′ =

(

0 1
1 0

)

. (13)

The molecular operations that literally change the molecule
can be separated into (i) transformations that change the
contacts (Type I), and (ii) transformations that change the
backbone (Type II).

1. Type-I transformations lead to a change of the contacts. This
means that either new contacts are formed (creation), existing
contacts are broken (annihilation), or both. Both operations
are performed with the same operator, which is a permutation
matrix which transposes the elements that are affected. The
operator matrix is multiplied to the S matrix, but one must
be careful to perform the annihilation(s) first. In some cases
the final state is unordered and must be reordered again.
Reordering is a type-0 transformation and requires (S ′, d′) =
(OSO−1,Od). For the simple case of S = (23) where the bond
(23) is broken and a bond (12) is created we use

S
′ = T(12)T(23)

S

=





0 1 0
1 0 0
0 0 1









1 0 0
0 0 1
0 1 0









1 0 0
0 0 1
0 1 0





=





0 1 0
1 0 0
0 0 1



 (14)

If, on the other hand, the initial and final states are known
the total transformation matrix can directly be calculated with
T = S ′S−1 = S ′S . This also gives the shortest path from
S to S ′ because any transposition is its own inverse. For
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example, the transformation (12)(34)(56) 7→ (12)(36) will
give T = (12)(36) · (12)(34)(56) = (12)(12)(34)(56)(36) =

(12)(12)(36)(34)(56) = (36)(34)(56). This shows that at the
most three operations need to be performed. (The same result
would be obtained using matrices).
As mentioned already, if the resulting state is unordered, it
must be reordered again. Otherwise operations might arise
that do not actually change the system. This is only the case
if d contains a value multiple times. For example, consider
d = (1, 2, 2) and S = (12). Annihilation of (12) and creation
of (13) would give S ′ = (13). This is not ordered however
because for i = 2 < 3 = j will give d2 = 2 = d3 but
π(2) = 2 > π(3) = 1 which is contrary to the assumption
of (S , d) being ordered. Reordering will give S ′′ = OS ′O−1 =

(23)(13)(23) = (12) = S , so the same as the initial state.
The transformation described is therefore actually only the
unity map.

2. Type-II transformations: these types of transformation
literally change the backbone of the molecule. The map acts
therefore mostly on d which afterwards must be ordered
again. For simple categories as below, simple transformations
are readily available but in theory almost any map on d is
possible. For example when a part is cut out reattached then:
d = (1, 2, 3, 4) 7→ d = (1, 2, 4, 3). This d however has
to be reordered with O = (34) and in turn S ′ = OSO−1

also changes.

The biological difference of type-I and type-II is clear, however
from a mathematical perspective they may be equivalent.
As long as the same resulting state appears the map is
mathematically identical and interchangeable. If a type-I and a
type-II transformation are equivalent, and one might be much
more complex to perform, it can easily be reproduced with
the other transformation. This is comparable to coordinate
transformation: one can either rotate a point in space with respect
to a fixed coordinate system or rotate the coordinates and leave
the point fixed. Both transformations yield the same result but the
mathematical procedure is different. The same can be said about
type-I and type-II transformations.

In the following, we redefine the most important molecular
operations using the logic of circuit topology. Specifically, we
treat circular and standard permutation, inversion, duplication,
and elimination. These operations are of much relevance to
biomolecular evolution, conformational dynamics and folding,
and structural comparison. We discuss these operations in
detail in the context of biological circuit topology, and we
demonstrate specific applications to the analysis of protein and
RNA structure. In the Supplementary Information, we present
the complete mathematical framework, citing specific examples
in the main text.

2.2.2. Permutation

Permutation changes contacts through restructuring or
reordering, resulting in a new structure with different
connectivity. Mathematically it can either be a type-I or
type-II molecular operation, it is however simpler to treat
this transformation as a type-II molecular operation. This

FIGURE 2 | (A) Standard permutation takes place when two nearest neighbor

sites are exchanged. aP−1b, where a and b are abstract notations for bond a

and bond b means that b is in parallel with a. Here, colors red, black, and blue,

each stand for a specific bond. Relationships between bonds are represented

by a letter, as described in the text. (B) Concerted parallel (CP) and concerted

series (CS) are depicted. (C) Circular permutation occurs by rotating the

endpoint of the molecule. It can transform a series relation to parallel and vice

versa depending on the position of the ending point.

does not necessarily imply that biologically it is a type-II
transformation, it is just simpler to calculate it as such. That
such changes have relevance to biomolecules is well-established,
and algorithmic approaches have even been proposed for
the detection of permutation [21–23]. Here, we focus on
two types of permutation, namely standard permutation and
circular permutation.

2.2.2.1. Standard permutation
In standard permutation, two sites are swapped (replaced with
each other), while preserving other aspects of connectivity.
Figure 2A demonstrates a standard permutation in which sites
i and m are swapped, thereby transforming a cross relation
into a series relation. Following the specific example shown in
Figure 2A, permutation takes place between the middle sites
of (1) and (3) which are in cross arrangement. The resulting
symmetry of the two contacts in the new molecule will be
series. The symmetry relations of contact (2) and other contacts
remain unchanged, i.e., in parallel with (1) and in series with (2)
as before.
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The matrix formalism for standard permutation is described
in the previous section. In the case of the example discussed
above, the original arrangement of contacts is given by the
connectivity matrix (which in this instance is identical to the
contact map).

S =

















0 0 0 0 1 0
0 0 1 0 0 0
0 1 0 0 0 0
0 0 0 0 0 1
1 0 0 0 0 0
0 0 0 1 0 0

















(15)

For instance, the first site is bonded to the fifth, and so there is a 1
at column 5 of the first row, and so on. There are three contacts,
each containing unique sites, so the size of the contact matrix is 6
× 6, and the matrix is of course symmetric (if 2 contacts 3, then 3
will contact 2). By definition, no site is in contact with itself. The
permutation matrix for exchange of sites 4 and 5 is given by

O =

















1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 1 0 0
0 0 0 0 0 1

















(16)

Then we have S ′ = OSO−1 which is equal to

S
′ =

















0 0 0 1 0 0
0 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0

















(17)

Table 1 summarizes all possible results of standard permutation
for a system containing two contacts. For instance, a cross, series,
or parallel relation can be converted into any other of the three
relations by application of the appropriate transformation. In the
context of biological molecules, two contacts may share a contact
site, resulting in concerted parallel (CP) or concerted series
(CS) relations, as shown in Figure 2B. The effect of standard
permutation on these relations is summarized in Table 2, where
each “site” represent, for instance, a secondary structural element
or nucleotide. For two contacts, there are four sites: two adjacent
inner sites and two outer sites; sites may either be neighboring or
non-neighboring.

Inversion can be understood in terms of standard permutation
operations and is discussed in the Supplementary Information.

We further illustrate the concept of standard permutation
using an example from protein structure. For details of the
computational approach for diagram generation (see Figure S2).
In this and other examples, we assume some familiarity with
biomolecular structure; for readers less familiar with this field,
excellent introductions can be found in references [24, 25].

The simple circuit diagram of an eight-stranded beta barrel
protein is shown in Figure 3A (color added to help visualize

TABLE 1 | Result of standard permutation between each pair of sites within two

contacts.

Init. Middle Outer Mid., term. N. Mid., term. N.N.

P P P X S

X S S P X

S X X S P

Contacts begin in parallel (P), cross (X), or series (S) relation. Shown are the initial

symmetry and result of permutation between middle sites, outer sites, middle and terminal

neighboring sites, and middle and terminal non-neighboring sites.

TABLE 2 | Result of standard permutation, starting from concerted parallel (CP) or

concerted series (CS) relations.

Init. symmetry Mid., shared Mid., unshared Term.

CP CS CP CP

CS N/A CP CS

The shared terminal site refers to the site common to the two contacts in concerted

parallel relation.

the effect of permutation), with the protein structure shown in
Figure 3C. Each strand is connected to the next strand in the
sequence, and the last strand is connected to the first. Note
that here we depict reduced diagrams, with each beta strand
corresponding to a node of the diagram. A standard permutation
of sites 4 and 8 of the beta barrel diagram yields the greek
key barrel (Figure 3B, protein structure shown in Figure 3D).
Permutation clearly changes the contact map (Figures 3E,F) and
also affects the map of relations (Figures 3G,H), increasing the
number of parallel and cross relations relative to series. Our
framework thus illustrates detailed properties of a structural
relation between two well-known protein folds.

2.2.2.2. Circular permutation
In circular permutation, the two ends of the molecule are joined,
and a single cut is made elsewhere in the molecule, resulting
in a topology with identical contacts, but, in general, different
relations between them. For a molecule with two contacts, this
can be pictured easily as shown in Figure 2C. Hence, circular
permutation can transform a parallel relation to a series relation
and vice versa depending on the position of the ending point
of circulation. The resulting symmetry ultimately depends on
the location of this ending point with respect to the positions
of the contact sites. Topology can be determined according
to the following rules, using the points-on-a-line visualization
of Figures 1, 2A,B. If the two contacts are initially in series,
then placing the new endpoint within the interval of either
contact leads to parallel symmetry; otherwise series symmetry is
preserved. If the two contacts are in parallel, then placing the
endpoint within the interval of one contact but not the other leads
to series symmetry; otherwise parallel symmetry results. CP and
CS relations can be treated as parallel and series above. If the two
contacts are in cross relation, any circular permutation will result
in cross relation.
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FIGURE 3 | Circuit diagram examples. Diagrams were calculated with

distance cutoff 3.5 Angstroms and number cutoff 6 (see explanation in

Figure S2). Maps were reduced such that each contacting site represents a

node (1, 2, 3, 4, etc.) and non-bonded sites were excluded. (A) Beta barrel

(pdb ID 1rbp) diagram. Sites and contacts involved in (4, 8) standard

permutation are shown in green and magenta. (B) Greek key beta barrel (4cv7)

diagram. (C) Beta barrel structure. (D) Greek key barrel structure. (E) Contact

map of the beta barrel structure. Axes denote beta strand number, with

contacts shown in white. (F) Contact map of the greek key barrel structure. (G)

Relations between contacts of the beta barrel, numbered as shown in (A). (H)

Relations between contacts of the greek key barrel, numbered as shown in (B).

The example in Figure 2C contains just four contact sites. The
original matrix, depicting two contacts in parallel is

S =









0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0









(18)

and the permutation matrix for a single clockwise rotation of the
endpoint is

O =









0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0









(19)

FIGURE 4 | Elimination corresponds to the deletion of contacts. In the

simplest case only one contact is removed. The resulting matrix form is

obtained by omitting the row and column of the eliminated contact. A matrix

formalism for the elimination processes can be found in the

Supplementary Information.

Then S ′ = OSO−1 is

S
′ =









0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0









(20)

Standard and circular permutation are relevant to protein
evolution [26, 27], as discussed in Figure S3 and the
corresponding discussion.

2.2.3. Elimination

Elimination is the deletion of a contact or set of contacts.
Elimination does not change the symmetry relations between
remaining contacts. Figure 4 shows a simple example, where we
begin with four contacts and contact (4) is eliminated. Matrix
representations before and after elimination are depicted. To
find the final representation after elimination we omit the row
and the column that (4) belongs to. The matrix framework for
elimination can be found in the Supplementary Information.

We illustrate elimination in Figure 5, showing that
elimination of four contacts within the eight-stranded beta
barrel topology leads to the fundamental topology of tRNA.
Figures 5A,B show that the basic tRNA topology (apparent from
visual inspection of hydrogen bonding patterns) can be deduced
by starting from the beta barrel topology and introducing four
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FIGURE 5 | tRNA topology (PDB ID 4kr2). (A,B) Elimination of contacts within

the beta barrel motif (A) leads to the tRNA motif (B). Topologically equivalent

capacitor schematic shown in the inset. (C) Relations matrix for (B). (D)

Contacts between ribonucleotides of tRNA, PDB ID 4kr2. Cutoffs: 3.5, 6. Color

and dashes added for emphasis. (E) tRNA structure, colored as shown in (D).

eliminations, shown as dotted lines in Figure 5A. This structure
contains no concerted relations, and in fact it is possible to draw
a simple analogy to electronic circuits, with the topologically
equivalent capacitor schematic depicted in the inset of Figure 5B.
Figure 5C confirms that contacts 2, 3, and 4 are in parallel with
contact 1, while contacts 2, 3, and 4 are in series with each other
(each contact is in parallel with itself by definition). Our heavy-
atom contact analysis procedure (Figure 5D) demonstrates that
the diagram in Figure 5B is indeed the basic topology of the
example tRNA structure.

2.2.4. Addition

Addition, the reverse of elimination, can be accomplished by
either adding one or more contacts between (potential) contact
sites, as occurs in protein folding, or by insertion: the splicing of
a new molecule (backbone and contacts) into the backbone of
an existing one. In the case of insertion, relations within each
molecule are unchanged. Relations between the new molecule
and the one into which it is spliced will be either in series or in
parallel, depending on the location of insertion.

2.2.5. Duplication

We define duplication as the attachment of a copy of the original
molecule in series with the molecule itself. Clearly, relations
between the contacts within the original molecule or its copy do
not change, while all contacts between the original and copied

FIGURE 6 | Serial duplication: Part of a molecule is duplicated and inserted

outside the original, at position h. Symmetry relations between duplicated and

original contacts are series.

molecule are in series (see Figure 6). In other words,

S
′ = S ⊕ S =

(

S 0

0 S

)

(21)

In biological polymers, the two linked molecules may be
connected by a “linker” region, and new contacts between the
two molecules, or between either molecule and the linker, may
form. Consider the Greek key barrel diagram, shown again
in the inset of Figure 7C, and perform the two eliminations
indicated in magenta. The result is the beta/gamma crystallin
diagram, present in the protein Nitrollin (Figure 7C, picture
in Figure 7A). Duplication (plus elimination and addition of
a contact) leads to the beta-B1 crystallin diagram shown in
Figure 7D (picture in Figure 7B). In fact, evolutionarily, the
beta/gamma crystallins emerged from an ancestral single-domain
protein [28].

2.2.6. Additional Discussion

Domain swapping is a protein-protein interaction that involves
exchange of contacts between proteins, such that contacts
disrupted in the original protein chain are reformed with
the corresponding portion of the other protein. A simpler
representation is to consider each swapped segment as a node,
in which case the standard permutation of the second and
fourth nodes of two contacts in series leads to two contacts in
parallel (Figures 7E,F). Consider such a simplistic representation
of beta/gamma crystallin, where each domain consists of two
contacting subdomains. Imagine a domain swap between N-
terminal domains, a standard permutation between nodes 2 and
6 (Figures 7E,F). Say the molecules are connected in a single
molecule pulling experiment, and the C-terminal domain is
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FIGURE 7 | Crystallin and nitrollin diagrams. (A) Nitrollin. (B) Beta-B1

crystallin. (C) Circuit diagram for Nitrollin (3ent), calculated with cutoffs: 3.6, 5.

Inset: Greek key barrel with eliminations leading to the nitrollin diagram shown

in magenta with gray slashes. (D) Beta-B1 crystallin (1oki), with cutoffs 3.6, 5,

and bridge beta sites included. (E) Simplified representation of a crystallin

molecule. Here std stands for standard permutation. (F) Simplified

representation of hypothesized intramolecular domain swap. Color added for

emphasis in all diagrams.

less mechanically resilient. Then, upon application of a force
pulling at the two ends, we would expect unfolding of the second
C-terminal domain first, followed by the swapped N-terminal
domains, sequentially, followed by the first C-terminal domain.
This is exactly the model proposed by Garcia-Manyes et al.
in a recent publication [29], based on single molecule force
spectroscopy experiments. Biological circuit topology provides a
simple illustration of this prediction, also illustrating how our
framework may be applied to provide insights relevant to the
interpretation of experiment.

It is apparent from Figure 6A that, starting from the crystallin
motif, loss of just a single contact can lead to a topologically
isolated N-terminal hairpin, i.e., a single contact between beta
strands, not bound to the rest of the protein. In fact, detachment
of the N-terminal hairpin of gamma-D crystallin is an early
event in Monte Carlo unfolding simulations of this protein
[30]. Analysis of biological circuit topology may help to identify
possible unfolding mechanisms [14] and structural weaknesses
that can lead to unfolding and aggregation in biological proteins.
The high content of parallel and cross relations in the crystallin
motif may be a reason for its high stability in many proteins.

In summary, we believe that our method represents a useful
and intuitive approach to circuit diagram generation, providing
insights into key properties of biomolecular structures and the

relations between them. We plan to extend and improve our
approach to allow for more automated bioinformatic analyses.
While we apply our approach to biological structures in the
Protein Data Bank, we note that it could also be used in
conjunction with Molecular dynamics and analysis tools to
study dynamic transitions in biomolecules, including transient
structure in intrinsically disordered proteins.

The complete code and documentation is available online.

3. CONCLUSION

In this article, we developed a framework that can be used
to describe, compare, and predict the topological properties
of a molecule that is subject to specific molecular operations.
More specifically, we considered several generic operations,
namely permutation, duplication, inversion, addition/insertion,
and elimination. We used examples from structural biology
to demonstrate how relationships between molecules can be
understood in terms of the biological circuit topology framework,
and we introduced a simple toolset for drawing, analyzing,
and manipulating circuit diagrams of proteins. Altogether, we
present a mathematical approach to the analysis of protein and
nucleic acid structure and structural changes that may also
be applied to other linear polymers. We expect the formalism
extended here and future developments to be relevant to the
process of engineering and manipulating molecules according
to symmetry rules between their constituents, and we believe
our methods and insights could help foster interdisciplinary
collaboration and learning in mathematics, chemistry, biology,
and related disciplines.
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