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Couplings of a system to other degrees of freedom (that is, environmental degrees

of freedom) lead to energy dissipation when the number of environmental degrees

of freedom is large enough. Here, we discuss quantal treatments for such energy

dissipation. To this end, we discuss two different time-dependent methods. One is to

introduce an effective time-dependent Hamiltonian, which leads to a classical equation

of motion as a relationship among expectation values of quantum operators. We apply

this method to a heavy-ion fusion reaction and discuss the role of dissipation on the

penetrability of the Coulomb barrier. The other method is to start with a Hamiltonian with

environmental degrees of freedom and derive an equation that the system degree of

freedom obeys. For this, we present a new efficient method to solve coupled-channels

equations that can be easily applied even when the dimension of the coupled-channels

equations is huge.

Keywords: open quantum systems, quantum friction, Caldeira-Leggett model, barrier transmission, fusion

reactions

1. INTRODUCTION

Open quantum systems are ubiquitous in many branches of science. In general, a system is never
isolated but couples to other degrees of freedom, which are often referred to as the environment.
The couplings to the environmental degrees of freedom can strongly affect the dynamics of the
system. When the number of environmental degrees of freedom is huge, the couplings lead to
energy dissipation. It has been demonstrated by Caldeira and Leggett that such couplings suppress
the tunneling rate [1, 2], going into a transition from quantum to classical regimes. In nuclear
physics, it has been well known that a large amount of the relative energy and angular momentum
is dissipated during collisions of heavy nuclei at energies close to the Coulomb barrier, known as
deep inelastic collisions [3]. In this case, the dissipation occurs due to the couplings between the
relative motion of two colliding nuclei and nucleonic degrees of freedom in those nuclei. A classical
Langevin equation [4] has been successfully applied to describe such collisions [3]. The Langevin
approach has also been employed in order to discuss fusion reactions for syntheses of superheavy
elements [5–11].

The classical Langevin approach, by definition, is not applicable at energies around the Coulomb
barrier, at which quantum effects play an important role [12, 13]. One can then ask: what is a
quantum model that, in the classical Limit, is equivalent to a classical Langevin equation? There
are two approaches to address this question. One is to use a phenomenological quantum friction
model in which the expectation values of operators obey the classical equation of motion with
friction [14–17]. Recently, we solved such quantum friction Hamiltonians with a time-dependent
wave packet approach in order to discuss the effect of friction on quantum tunneling [18]. The
other approach to a quantum Langevin equation is to start from a system-plus-bath Hamiltonian,
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that is, a Hamiltonian that consists of the system and
the environmental degrees of freedom and eliminates the
environmental degrees of freedom. For instance, one can employ
the Caldeira-Leggett Hamiltonian [1] since the classical Langevin
equation can be derived from it [3, 4]. This approach is more
microscopic, and a computation would thus be more involved
than the quantum friction model. It has been known that, in
the Markovian limit, the time evolution for the reduced density
matrix for the system degree of freedom in general takes the
so-called Lindblad form [19, 20].

In this paper, we discuss both of these approaches for
open quantum systems from the point of view of the time-
dependent method. In the next section, we first discuss the
phenomenological quantum friction models using a time-
dependent wave packet approach. We apply them to heavy-ion
fusion reactions around the Coulomb barrier and discuss a role of
friction in fusion dynamics. In section III. we solve the Calderira-
Leggett Hamiltonian using a time-dependent coupled-channels
approach. Using a quantum damped harmonic oscillator, we
discuss how one can deal with a large number of degrees of
freedom. A summary of the paper is then given in section IV.

2. PHENOMENOLOGICAL QUANTUM
FRICTION MODELS

We first considered a phenomenological approach to quantum
friction. In this approach, one treats the environmental degrees
of freedom implicitly and introduce a phenomenological
Hamiltonian with which the classical equation of motion with
a frictional force is reproduced as expectation values. For this
purpose, several model Hamiltonians have been proposed so
far [14–17]. Among these, we focused in this paper on the one
introduced by Kostin [16].

Consider a particle of mass m moving in a one-dimensional
space q under the influence of a potential V(q). With a friction
coefficient γ , the phenomenological Schrödinger equation in the
Kostin model is given by [16]:

ih̄
∂

∂t
ψ(q, t) =

[

− h̄2

2m

∂2

∂q2
+ V(q)+ γ S(q, t)

]

ψ(q, t), (1)

where S(q, t) is the phase of the wave function, ψ(q, t) =
|ψ(q, t)| exp(iS(q, t)/h̄). From this equation, it is easy to confirm
that one can derive the equation of motion with a frictional force:

d

dt
〈p〉 = −γ 〈p〉 −

〈

dV

dq

〉

, (2)

as is desired. Here, the expectation value of an operator O

is denoted as 〈O〉 =
∫

dqψ∗(q, t)Oψ(q, t), and p is the
momentum operator.

When one simulates an energy dissipation in heavy-ion
collisions by means of friction, a frictional force should be active
only when the colliding nuclei are close to each other. In other
words, one needs to deal with a coordinate-dependent friction
coefficient, γ = γ (q). An extension of the Kostin model along

this line has been proposed in Immele et al. [21], Bargueno and
Miret-Artes [22], with which the modified Schrödinger equation
is given by:

ih̄
∂

∂t
ψ(q, t) =

[

− h̄2

2m

∂2

∂q2
+ V(q)

+
∫ q

dq1 γ (q1)
∂

∂q1
S(q1, t)

]

ψ(q, t). (3)

To apply the phenomenological model to realistic collision
problems, one further needs an extension to a three-dimensional
space, Eq = Eq(r, θ ,φ). To this end, we first must expand
the wave function with the Legendre polynomials Pl(x) as
ψ(Eq, t) = ∑∞

l=0 ul(r, t)Pl(cos θ)/r. One can then modify the
Schrödinger equation for ul(r, t) in the same way as Equation (3)
to incorporate a frictional force,

ih̄
∂

∂t
ul(r, t) =

[

− h̄2

2m

∂2

∂r2
+ h̄2

2m

l(l+ 1)

r2

+V(r)+
∫ r

dr1 γ (r1)
∂

∂r1
Sl(r1, t)

]

ul(r, t), (4)

where Sl(r, t) is the phase of the radial wave function ul(r, t) =
|ul(r, t)| exp(iSl(r, t)/h̄). We have here assumed a spherically
symmetric potential, V(Eq) = V(r). Notice that only the radial
friction is taken into account here, while the angular momentum
dissipation is neglected.

In applying Equation (4) to scattering problems, one needs
to use the time-dependent approach since the Hamiltonian
depends explicitly on time. To this end, we propagate a wave
packet and observe how it bifurcates after it crosses the potential
region. Since a wave packet is a superposition of various energy
waves, one has to choose the initial condition carefully to get
scattering quantities at certain initial energy. Notice that the
energy projection approach [23] is inapplicable for our purpose
since the energy is not conserved.

In the initial condition, the width of the energy distribution
must be small enough to get reasonable results. In this context,
the energy refers to the expectation value of the asymptotic
Hamiltonian,H0. If we restrict to the s-wave scattering, l = 0, and
ifV(r) rapidly vanishes as r → ∞, one can simply take the kinetic
energy operator as H0, that is, H0 = −h̄2/2m

(

∂2/∂r2
)

. The
minimumuncertainty wave packet in this case has been discussed
in Bracher [24], which reads:

umin
0 (r, t = 0) ∝ re−(r−r0)

2/4σ 2r eik0r , (5)

where r0 and σr are related to the mean position and the width of
the wave function in the coordinate space, respectively, and k0 is
related to the mean initial energy.

In heavy-ion collisions, on the other hand, the potential is
a sum of the nuclear potential VN and the Coulomb potential
VC(r) = ZPZTe

2/r with the projectile charge ZP and the
target charge ZT . Since the Coulomb potential is a long range
potential, the asymptotic HamiltonianH0 has to include it:H0 =
−h̄2/2m

(

∂2/∂r2
)

+ VC. Thus, the minimum uncertainty wave
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packet in the form of Equation (5) would not be efficient in this
case. Instead, one needs to construct a wave packet from the
energy distribution, fC(E), of H0 in the presence of the Coulomb
potential. In analogy to the spherical Bessel functions, we find
that this can be achieved as:

uC0 (r, t = 0) ∝
∫ ∞

0
dk F0(η, kr)e

ikr0
√

kfC(E), (6)

with E = h̄2k2/2m, where η = mZPZTe
2/h̄2k is the Sommerfeld

parameter and F0(η, kr) is the regular Coulomb wave function.
With the initial condition given by Equation (6), we compute

the penetrability of the Coulomb barrier for the 16O + 208Pb
system in the presence of friction. For the nuclear potential, we
employ the optical potential in Evers et al. [25]:

VN(r) =
V0

1+ exp ((r − Rv)/av)
+ i

W0

1+ exp((r − Rw)/aw)
, (7)

with V0 = −901.4 MeV, Rv = 8.44 fm, av = 0.664 fm, W0 =
−30 MeV, Rw = 6.76 fm, and aw = 0.4 fm. With this potential,
the Coulomb barrier height VB is 74.5 MeV.

For a friction coefficient γ (r), we employ the surface friction
model [3],

γ (r) = γ0

m

(

VB
dfWS

dr

)2

, (8)

with the Woods-Saxon from factor fWS = 1/(1 + exp ((r −
Rv)/av)). This is a general form of the friction coefficient obtained
perturbatively [26], and it has successfully been applied to the
above barrier fusion reactions and to deep inelastic scatterings
[3]. We arbitrarily set γ0 = 4.7 × 10−23 s/MeV, and this is used
in the classical calculations. We compute the phase of the wave
function in the same way as in Tokieda and Hagino [18].

For the initial energy distribution in Equation (6), we assume
the Gaussian form,

fC(E) =
1

√

2πσ 2
E

e−(E−E0)
2/2σ 2E . (9)

where E0 and σE are the mean and the width of the initial energy
distribution. We have confirmed that σE = 0.5 MeV is sufficient
in the present parameter set.

Figure 1 compares the penetrability obtained with and
without friction. One finds that the penetrability with friction
is shifted to higher energies around the barrier. That is, in
the presence of friction, a particle needs additional energy
to penetrate the barrier, which originates from the energy
dissipation. One can also see that the penetrability does not reach
unity at high energies, but it is almost saturated at around 0.9.
This means that the exit channel is in a quantum superposition
state of absorption and reflection even at sufficiently above-
barrier energies. Notice that, in classical mechanics without a
random force, the penetrability can be only 0 or 1. In this sense,
this is peculiar to the quantum friction model.

For a practical application to fusion reactions, one needs to
take into account explicitly low-lying collective excitations, as

FIGURE 1 | Energy dependence of the penetrability of the Coulomb barrier for

the 16O+208Pb reaction. The dashed line shows the result without friction,

while the solid line is for the result with friction.

they play a crucial role [27]. This can be achieved by extending
the above method to the coupled-channels formalism. In that
treatment, low-lying collective excitations are taken into account
explicitly, while other degrees of freedom, such as non-collective
excitations and nucleon transfers, are treated by means of a
frictional force.

In Tokieda and Hagino [28], we have applied the method
to the 16O+208Pb system. The nuclear potential is the Woods-
Saxon form as Equation (7). For low-lying collective states, the
first excited state of both 16O and 208Pb were taken into account.
The channel-coupling effect was treated in the same way as
the CCFULL code, and the iso-centrifugal approximation was
adopted [29]. The surface friction model was employed for a
friction coefficient [with a replacement ofVB withV0 in Equation
(8)], treating γ0 as an adjustable parameter. See Tokieda and
Hagino [28] and reference therein for details of the parameters.

To compute the penetrability at certain energy, we used the
same initial condition as Equation (9). It has turned out that
σE = 0.5 MeV was sufficient for the employed parameter set.
By taking a sum of the penetrability at each angular momentum,
one could calculate fusion cross sections, which could then be
compared with experimental data.

In Figure 2, we compare the energy dependence of fusion
cross sections. Notice that the present method is reduced to the
conventional coupled-channels method when friction is turned
off. Thus, the no-friction result is nothing but the result of
the conventional coupled-channels approach. To reproduce the
experimental data, we set γ0 = 0.6 × 10−23 s/MeV. In the
left panel of Figure 2, on one hand, one finds that the fusion
cross sections at above barrier energies are suppressed in the
friction model (the solid line) compared to that in the no-friction
model (the dashed line). In the right panel of Figure 2, on the
other hand, one sees that the sub-barrier fusion cross sections in
both the models give almost the same result. Considering overall
energies, the present friction model provided a more consistent
description of fusion reactions around the Coulomb barrier as
compared to the conventional coupled-channels approach. In
this calculation, the same behavior as in Figure 1 has been found,
and this may be a key to achieve a consistent description [28].

In comparison with the classical Langevin approach, the
present method did not contain a random force originating from
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FIGURE 2 | Energy dependence of fusion cross sections for the 16O + 208Pb system. The results with and without friction are shown by the solid and the dashed

lines, respectively, while the experimental data are shown by the circles. The left panel (A) is in the linear scale, while the right panel (B) is in the logarithmic scale. The

experimental data are taken from Morton et al. [30].

thermal fluctuation. For the 16O+208Pb system, the compound
nucleus was formed once the projectile and the target nuclei
touched each other, and the fluctuation played a much more
minor role compared to the massive systems. In that situation,
fusion cross sections were given as an averaged quantity, and it
was expected that the presence of a random force does not change
the result much. However, when one deals with phenomena
in which thermal fluctuation plays a crucial role, such as deep
inelastic scattering or a synthesis of superheavy elements, the
thermal fluctuation should be explicitly taken into account. One
could in fact directly add a random force to the Schrödinger
equation Equation (1) as was done in the original paper [16].
Alternatively, friction and fluctuation will naturally emerge by
explicitly treating environmental degrees of freedom, which we
have discussed in the next section.

3. SYSTEM-PLUS-BATH MODEL

We next considered a more microscopic model for quantum
friction, employing a system-plus-bath model. To be more
specific, we considered the Caldeira-Leggett model [1, 2], whose
Hamiltonian is given by,

Htot = HS +
∑

i

h̄ωia
†
i ai + h(q)

∑

i

di(a
†
i + ai), (10)

≡ HS +HB + Vcoup, (11)

where HS and HB are the Hamiltonians for the system and the
bath degrees of freedom, respectively, while Vcoup is the coupling
Hamiltonian between the system and the bath. Here, the bath
degree of freedom is assumed to be a set of harmonic oscillators,

whose creation and annihilation operators are denoted by an a†
i

and ai. The coupling Hamiltonian is assumed to be separable
between the system and the bath degrees of freedom. In there,
di is the coupling strength, and h(q) is the coupling form factor,
where q is the coordinate of the system.

There are several ways to solve the Calderira-Leggett
Hamiltonian. In Caldeira and Leggett [1, 2], the bath degrees
of freedom were integrated out using the path integral in order
to obtain an effective action for the system degree of freedom
[see also Takigawa and Bertsch [31]]. One can also introduce

the influence functional [32]. Here we discussed the coupled-
channels approach [33].

In the conventional coupled-channels approach [27], one
expands the total wave function in terms of the eigen-wave
functions of HB:

9tot(q, t) =
∑

{ni}
ψ{ni}(q, t) |{ni}〉, (12)

where the basis states |{ni}〉 are given by:

|{ni}〉 =
∏

i

1√
ni!

(

a†
i

)ni |0〉. (13)

Here, |0〉 is the vacuum state defined as ai|0〉 = 0. One can derive
the coupled equations for ψ{ni}(q, t) by evaluating the equation:

〈{ni}|ih̄
∂

∂t
|9tot〉 = 〈{ni}|Htot|9tot〉, (14)

that is,

ih̄
∂

∂t
ψ{ni}(q, t) =

(

HS +
∑

i

nih̄ωi

)

ψ{ni}(q, t)

+
∑

{n′i}
〈{ni}|Vcoup|{n′i}〉ψ{n′i}(q, t). (15)

The coupled-channels equations, Equation (15), can be
numerically solved when the number of the oscillator modes
is not large [27, 29]. However, in general, the number of
the oscillator modes can be huge, or the distribution of the
frequency of the oscillator may even be given as a continuous
function. In that situation, it is almost hopeless to solve the
coupled-channels equations directly. In order to overcome this
problem, we introduced a more efficient basis to expand the total
wave function [33]. To this end, we first expanded the function
exp(−iωt) with a finite basis set as:

e−iωt ∼
K
∑

k=1

ηk(ω)uk(t), (16)

Frontiers in Physics | www.frontiersin.org 4 February 2020 | Volume 8 | Article 8

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Tokieda and Hagino Time-Dependent Approaches to Open Quantum Systems

where uk(t) is a known function such as a Bessel function, and
ηk(ω) is the expansion coefficient. We then introduced a new
phonon creation operator as:

b†
k
=
∑

i

di

h̄
ηk(ωi)a

†
i . (17)

Notice that the number of k is finite, k running from 1 to K, even
though the number of i may be infinite. We then constructed

the basis states using the operators b†
k
and expanded the total

wave function with them. That is, instead of Equation (12), we
expanded the total wave function as:

9tot(q, t) =
∑

{ñk}
ψ̃{ñk}(q, t) |{ñk}〉, (18)

with,

|{ñk}〉 =
K
∏

k=1

1
√

ñk!

(

b†
k

)ñk |0〉. (19)

One can then obtain the coupled-channels equations similar to
Equation (15):

ih̄
∂

∂t
ψ̃{ñk}(q, t) = HS ψ̃{ñk}(q, t)

+
∑

{ñ′
k
}
〈{ñk}|HB + Vcoup|{ñ′k}〉 ψ̃{ñ′

k
}(q, t). (20)

We once again emphasize that the dimension of the coupled-
channels equations, Equation (20), is much smaller than that of
the original equations, Equation (15).

The structure of the coupled-channels equations, Equation
(20), becomes simple when the basis functions uk(t) satisfy the
following two conditions.

1. The matrix D defined as:

Dkk′ ≡
1

h̄2

∑

i

d2i ηk(ω)η
∗
k′ (ω), (21)

is diagonal with respect k and k′. That is,Dkk′ = λkδk,k′ . Notice
that the matrix D can be expressed also as:

Dkk′ ≡
1

h̄

∫ ∞

−∞
dω J(ω)ηk(ω)η

∗
k′ (ω), (22)

with the spectral density given by:

J(ω) = 1

h̄

∑

i

d2i δ(ω − ωi). (23)

2. The basis function uk(t) is closed under differentiation:

duk(t)

dt
=

K
∑

k′=1

Ckk′uk′ (t). (24)

Notice that Bessel functions satisfy this condition since the
following relation holds,

d

dx
Jk(x) = −1

2
Jk+1(x)+

1

2
Jk−1(x), (25)

(with J−k(x) = (−1)kJk(x) for an integer value of k).

See Equation (31) in Tokieda and Hagino [33] for the explicit
form of the coupled-channels equations, Equation (20). Tokieda
and Hagino [33] also provides an alternative derivation of the
coupled-channels equations, which used the influence functional
of the path integral method. This allows one to extend the present
formalism to finite temperatures.

Before the present method is applied to heavy-ion collisions,
we should make sure that it works in principle. To this end,
we considered a damped harmonic oscillator in which the exact
solution can be obtained easily [33]. The Hamiltonian for the
system, HS in Equation (10), is now given by:

HS =
p2

2M
+ 1

2
Mω2

Sq
2 + h2(q)

∑

i

d2i
h̄ωi

, (26)

where M and ωS are the mass and the frequency of the system,
respectively, and the last term represents the so-called counter
term. In the following, we measured the length of the system
in units of the oscillator length qS defined by qS ≡

√

h̄/MωS,
and took the coupling form factor, h(q), to be h(q) = q/qS. We
assumed that the bath oscillators are distributed according to the
spectral density (see Equation 23) as:

J(ω) = VI
ω

�

√

1−
(ω

�

)2
. (27)

In the numerical calculations shown below, we took h̄ωS = 2 eV,
VI = 1 eV and h̄� = 4 eV.

At t = 0, we assumed that ψ̃{ñk}(q, t = 0) = 0 for N ≡
∑K

k=1 ñk 6= 0. For N = 0, that is, for ñk = 0 for all k, we assumed
that the wave function is given by:

ψ̃N=0(q, t = 0) = 1

4

√

2πσ 2
0

e−(q−q0)
2/4σ 20 eip0q/h̄, (28)

with q0/qS = −1, σ0/qS = 1/
√
2, and p0qS/h̄ = 0.

Figures 3, 4 show the time evolution. The upper panel of
Figure 3 shows the norm for each phonon state N as a function
of ωSt. Here, the norm is defined as:

NN(t) ≡
∑

{ñk}

∫

dq |ψ̃{ñk}(q, t)|2δ∑k ñk ,N
. (29)

To draw this figure, we took Bessel functions, Jk(�t), for uk(t) in
Equation (16) with K = 20. A new basis was then constructed by
diagonalizing the matrix D in Equation (21). With this basis, we
solved the coupled-channels equations by including the phonon
states with N ≤ 5. The expectation value of the norm was also
shown in the lower panel. As is expected, the number of phonons
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FIGURE 3 | (A) The norm for each phonon number, N =∑K
k=1 ñk . The solid

line with squares, triangles, inverted triangles, diamonds, pentagons, and

circles are for N = 0, 1, 2, 3, 4, and 5, respectively. These are obtained by

solving the coupled-channels equations with the phonon states up to

Nmax = 5, for which the phonon operators are defined with the Bessel function

basis with K = 20. (B) The expectation value of the number of phonon.

in the bath gradually increases as a function of time. Notice that
the contribution of the 5-phonon states is small in the whole
time range shown in the figure. This justifies the truncation at
Nmax = 5 for the present parameter set. One can also see that the
contribution of each phonon reaches its equilibrium at around
ωSt = 6.

Figure 4 compares the results of the present method with
the exact solution for the quantum damped harmonic oscillator.
To this end, we evaluated the expectation values for the
following four quantities: ξq ≡ 〈q〉 /qS, ξp ≡ 〈p〉 qS/h̄, ξqq ≡
〈
(

q− 〈q〉
)2〉 /q2S, and ξpp ≡ 〈

(

p− 〈p〉
)2〉 q2S/h̄2. We carried out

the calculations with three different values of Nmax, that is, Nmax

= 3, 4, and 5, and compare them with the exact results shown
by the solid lines. One can see that all of the calculations with
Nmax = 3, 4, and 5 reproduce the exact results up to ωSt ∼ 5, for
which J20(�t) is negligibly small, and the expansion in Equation
(16) with Bessel functions up to K = 20 [that is, up to J19(�t)]
is therefore reasonable. The deviation from the exact results
becomes significant for larger values of ωSt, especially for the
second ordermoments, ξqq and ξpp. This is a natural consequence
of the fact that the larger number of phonon states are required
to describe the finer structures.

We would like to make a few comments on an application
of the present method to heavy-ion collisions. Unlike the
phenomenological quantum friction models discussed in the
previous section, the total energy conservation was assured
with the Hamiltonian given by Equation (10). Therefore, one
can utilize the energy projection method [23] to calculate
the penetrability for a given energy. In the present method,

FIGURE 4 | Comparison between the present method and the exact results for the expectation values of several quantities, that is, (A) ξq = 〈q〉/qS, (B) ξp = 〈p〉qS/h̄,
(C) ξqq = 〈(q−〈q〉)2〉/q2S, and (D) ξpp = 〈(p−〈p〉)2〉q2S/h̄2. The solid lines show the exact results, while the solid lines with squares, triangles, and circles are the

results of the present method with Nmax = 3, 4, and 5, respectively.
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the number of Nmax required to achieve convergence was an
important parameter that controlled the numerical cost. We
expected that Nmax was small for collision problems since the
system-bath coupling was active only while a wave packet
overlapped with the potential region. Another issue in an
application to heavy-ion collisions was that one needs to model
properly the environmental degrees of freedom. Note that they
are described solely by the spectral density (see Equation 23) in
the Caldeira-Leggett model. That is, one needs tomodel a suitable
spectral density for heavy-ion collisions. A similar problem
has already been discussed in the linear response approach to
heavy-ion collisions [34] as well as to fission reactions [35]. We
anticipate that these approaches provide a useful means for our
future works of an application of the presentmethod to heavy-ion
reactions.

4. SUMMARY

We have discussed two time-dependent methods for quantum
friction. The first method was based on an effective Hamiltonian,
which was constructed so that expectation values of operators
obey a classical equation of motion with friction. Such
Hamiltonian is in general time-dependent, and we have solved it
with a time-dependent wave packet method. The other method
is to start with a total Hamiltonian with both the system and
the environmental degrees of freedom and then eliminate the
environmental degree of freedom to derive an equation that the
system degree of freedom obeys. For this approach, we have
presented a new efficient basis for coupled-channels equations.
These two methods were complimentary to each other. In the

first method, whereas several parameters had to be determined
phenomenologically, a required computational time was much
shorter than the second method. On the other hand, the second
method was based on a more microscopic Hamiltonian, and
fewer empirical inputs were thus required even though the
computational timemay have been large. By combining these two
approaches appropriately, one may be able to achieve a quantum
description of heavy-ion deep inelastic collisions as well as fusion
reactions to synthesize superheavy elements.
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