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A great deal of experimental effort is currently being devoted to the precisemeasurements

of the cosmic microwave background (CMB) sky in temperature and polarization.

Satellites, balloon-borne, and ground-based experiments scrutinize the CMB sky at

multiple scales, and therefore enable to investigate not only the evolution of the early

Universe, but also its late-time physics with unprecedented accuracy. The pipeline

leading from time ordered data as collected by the instrument to the final product is

highly structured. Moreover, it has also to provide accurate estimates of statistical and

systematic uncertainties connected to the specific experiment. In this paper, we review

likelihood approaches targeted to the analysis of the CMB signal at different scales, and

to the estimation of key cosmological parameters. We consider methods that analyze the

data in the spatial (i.e., pixel-based) or harmonic domain. We highlight the most relevant

aspects of each approach and compare their performance.

Keywords: CMB, likelihood function, data analysis - methods, parameter estimation, CMB statistics

1. INTRODUCTION

After 71 years from its first predictions, and after 55 years from its first observational evidences,
the cosmic microwave background (CMB) is nowadays one of the most important probes in
cosmology. During the past decades, theoretical efforts have elucidated the physics leading to
the pattern of anisotropies in temperature and polarization (see e.g., [1] for a review on CMB
physics and [2] for an exhaustive review on early Universe physics). Quantum fluctuations in
the early universe generate metric perturbations. Scalar perturbations are converted into matter
perturbations and radiation anisotropies that evolve in the expanding universe according to a set
of coupled Einstein, Boltzmann and fluid equations. Matter perturbations eventually grow into
galaxies and galaxy clusters. Primary CMB anisotropies are frozen at the time of matter-radiation
decoupling, and subsequently modified during the propagation through evolving structures from
the last scattering surface to the observer. Scattering between free electrons and CMB photons
in two distinct epochs (recombination and reionization) further enriches the CMB structure with
the addition of a polarization “curl-free” (E-mode) pattern in the CMB radiation. Gravitational
lensing of the CMB due to the propagation of CMB photons throughout large-scale structures (LSS)
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generate a polarized “divergence-free” (B-mode) patter from the
distortion of the CMB E-modes. Perhaps more elusive, though of
paramount importance, is the primordial B-mode signal sourced
by tensor perturbations to the metric (gravitational waves).

On the other hand, observational efforts have progressively
lead the field to the current stage of precision cosmology.
Observations of the CMB sky from spacemissions [3–5], balloon-
borne experiments [6–8], and from ground-based telescopes [9–
13] provided measurements of CMB anisotropies in temperature
and polarization over a wide range of angular scales. While
we are writing this review, the Planck collaboration [14] is
preparing the final public release of the Planck legacy products,
which will likely represent the state of the art of CMB
measurements from a single experiment for the next decade
and more. Current observations [3] are in agreement with the
standard cosmological model of a homogeneous and isotropic
Universe at large scales, based on General Relativity and on the
standard model (SM) of particle physics, complemented with
a mechanism for the generation of primordial perturbations,
i.e., the inflationary paradigm. When interpreted in this 3CDM
framework, cosmological data point to a spatially flat Universe
composed by baryons (�bh

2 = 0.02237 ± 0.00015, ∼ 5% of the
total density), dark matter (�ch

2 = 0.1200 ± 0.0012, ∼ 25%),
and dark energy (�3 = 0.6847 ± 0.0073, ∼ 70%), a component
that behaves like a cosmological constant, and is responsible for
the present accelerated expansion, plus photons (a few parts in
105) and light neutrinos. Further advances in CMB observations
are still to come. Planned upgrades of existing ground-based and
balloon experiments are ongoing [15–18]. The next generation of
CMB observatories is under construction and is paving the way to
the “stage IV” experiments targeting the ultimate measurements
of the CMB polarization field [19–23].

The long run that lead from the pivotal observations of
Penzias and Wilson [24] to the Planck legacy release has
seen the dramatic improvement of the sensitivity to key
cosmological parameters. Planck 2018 data provides sub-percent
constraints on the base-3CDM parameters1 [3]. Moreover,
advances in experimental cosmology over the past decades made
cosmology itself a new avenue to the investigation of fundamental
physics properties complementary to laboratory searches. A
clear example is given by the possibility to constrain neutrino
properties, such as their number Neff and the sum of their masses
∑

mν . Indeed, the combination of Planck 2018 data and LSS
information (in the form of measurements of baryon acoustic
oscillations, BAO) can exclude at 95% c.l. the presence of light
thermal relics decoupling after the QCD phase transition (T <

100MeV) and provides a bound on the sum of the neutrino
masses of

∑

mν < 0.12 eV at 95% c.l.2 [3].
In this context, a key ingredient is the suitable choice of the

likelihood function to compare observed data with theoretical

1The base 3CDM parameters are: the angular size of the sound horizon at
recombination θ∗, the amplitudeAS and tilt ns of the spectrum of primordial scalar
perturbations, the reionization optical depth τ , the energy density in baryonic
matter �bh

2 and in cold dark matter �ch
2.

2Constraints derived in the context of minimal extensions of the standard
3CDMmodel.

predictions in order to constrain the model parameters. In the
standard cosmological model of the early universe, primordial
perturbations are Gaussian distributed, and so are CMB
fluctuations. Therefore, all relevant physical information in the
CMB field are contained in the variance of the distribution. This
is the reason why the full-sky power spectra of CMB fluctuations
are a sufficient statistics. The power spectra of observed data
also provide an unbiased estimator of the ensemble averaged
variance of the CMB fluctuations. In the simple case of full-sky
observations and isotropic and mode-uncorrelated experimental
noise, the likelihood function can be derived analytically. In
particular, for correlated temperature and polarization field, the
probability of the data given the theoretical model (i.e., the
likelihood L) is given by a Wishart distribution.

However, this simple case does not capture the properties of
realistic observations. Depending on the experimental platform
(satellite, balloon, ground), each telescope has access to fractions
of the sky fsky of different size. As an example, compare
the almost full-sky observations of the Planck satellite [14]
with the fsky ∼ 1% sky coverage of the ground-based BICEP-2
experiment [11]. Even in the case of full-sky observations, only
a certain fraction of the sky can be retained for cosmological
analysis. Foreground emissions from astrophysical and galactic
sources should be masked if particularly bright contaminants. In
addition to limited access to the sky coverage, a particular choice
of the observational (or scanning) strategies of the sky can break
the assumption of isotropic noise, due to repeated visits to the
same part of the sky. As an example, consider the Planck scanning
strategy featuring a longer integration time in the proximity of
the Ecliptic poles (i.e., at lower Galactic latitudes, where galactic
foreground contaminations are smaller).

In general, complications to the simple case of full-sky and
isotropic noise arising from realistic experimental conditions
require a different likelihood analysis. First of all, specific
estimators of the power spectra should be defined in the
partial-sky regime, which take into account spurious correlations
between fields induced by the incomplete sky coverage. Secondly,
the use of a Wishart distribution as a likelihood function is
no longer possible. Either the new estimators are no longer
distributed according to a Wishart, and therefore this choice is
not exact anymore. Or, the use of the exact likelihood is unfeasible
as one moves to the analysis of smaller scales (larger multipoles)
and higher-resolution maps, due to the huge computational cost
of inverting large covariancematrices. At large scales and for low-
enough angular resolutions, the exact likelihood in pixel space
can still be adopted.

In all the above situations, approximate forms of the likelihood
functions have been developed. At small scales, the central limit
theorem allows to approximate the Wishart distribution as a
Gaussian in the power spectra. In general, quadratic forms
in some functions of the CMB spectra have been adopted as
approximate likelihood functions, with various choices of the
covariance matrix. To conclude this long introduction, it has to
be stressed that the choice of the likelihood strongly depends
on the characteristics of the experiment at large, i.e., on the
observational strategy, on the range of scales probed, on the noise
properties, etc.
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The aim of this manuscript is to review the basics of likelihood
analysis in CMB experiments. This goal is motivated by the fact
the we are at a crucial point in the history of observational
CMB cosmology. The level of maturity and complexity reached
by current CMB experiments boosted the theoretical efforts in
finding smart solutions to the issue of identifying a suitable
likelihood choice. A rich literature has been produced in this
sense, although an exhaustive overview of the topic is not
available, to the best of our knowledge. This review would fill the
gap. Such a review could also serve as a good starting point for
those who are approaching the field of CMB data analysis today
or in the next future, and would be ideally contributing to the
advances of CMB science in the next decades.

The structure of the manuscript is as follows. Section 2 is
devoted to the statistics of the CMB fields. The approach to the
topic is pedagogical, in a sense that we begin with a discussion
in the single-field, temperature-only regime and introduce the
basic statistical properties of CMB fluctuations. Then, wemove to
the more general case of correlated T,E,B fields. The discussion
is carried over in the full-sky regime, with no distinction made
between applications to large- and small-scales. We conclude
section 2 with the introduction of the exact likelihood in
full sky. Specific approximations to the exact likelihood are
presented in section 3 (applications to the small-scale regime)
and in section 5 (applications to the large-scale regime). In
both sections, attention is devoted to complications due to
partial-sky coverage and noise contamination. The inclusion
of physical late-time Universe effects on the CMB photons in
terms of gravitational lensing is detailed in section 4, whereas
the important issues related to the presence of foreground
emissions are described in section 6. The discussion of the various
likelihood approaches in terms of computational cost (where
applicable) and robustness with respect to the ability to provide
unbiased estimations of cosmological parameters is detailed in
section 7. Our conclusions are summarized in section 8. Some
useful tools that will be mentioned throughout the main text
are further discussed in Appendix. In particular, in Appendix A,
we review the basic notions of statistics needed to develop the
formalism of CMB statistics. In Appendix B, we discuss the
construction of power spectrum estimators, including pseudo-
Cℓ, the “pure” formalism, and quadratic maximum likelihood
(QML) estimator.

2. STATISTICS OF THE COSMIC
MICROWAVE BACKGROUND

Wenow introduce some basic aspects of the statistics of the CMB.
The basic object that we are interested in is the likelihood function
L, i.e., the probability of the observed data d given a model,
regarded as a function of the model itself. If the model is defined
in terms of a vector of parameters θ , we thus have:

L(θ) = p(d|θ). (1)

The notation used throughout this review is presented in
Appendix A, were we also recall some basic notion of probability
and statistics.

We first derive the exact likelihood function for the CMBfields
in harmonic space. The main statistical concepts are introduced
in the limit of single field (section 2.1), i.e., temperature only,
for the sake of simplicity. We then generalize these main
findings in the case of joint temperature and polarization analysis
(section 2.2). The exact likelihood in real space are derived
in section 2.3.

We assume an ideal scenario of full-sky observations
with infinite angular resolution and absence of noise and
foreground contaminations. Obviously, this scenario is highly
idealized. Nevertheless, it allows to easily derive the basic
concepts of CMB statistics. Modifications to this picture
arising from realistic observational issues (limited sky coverage,
masked sky, experimental noise, finite angular resolution) are
introduced in section 3.3. Foregrounds are briefly discussed in
section 6. We also assume that the temperature and polarization
fluctuations are Gaussian, thus neglecting any non-Gaussianity,
either of primordial origin (which are anyway bounded to
be small [25]), or coming from unresolved systematics (e.g.,
foreground residuals).

A final remark concerns the physical, late-time-Universe
effects on the CMB fields due to the propagation of CMB photons
from the last-scattering surface to the observer throughout the
evolving large-scale structures. Weak gravitational lensing due
to the gravitational potential of cosmological structures deflects
CMB photons and modifies the observed statistics of CMB
anisotropies with respect to the pattern arising at decoupling. In
what follows, we will implicitly consider unlensed CMB fields,
i.e., we will ignore the effects of gravitational lensing for the
sake of simplicity. The non-trivial modifications induced by the
gravitational potential will be discussed later in section 4.

2.1. Statistics of CMB Temperature
Field—Exact Likelihood in Harmonic Space
The CMB temperature field T(Ex, n̂, τ ) = T̄(τ )

[

1+ 2(Ex, n̂, τ )
]

observed3 in a given direction n̂ is defined at every point (Ex, τ )
in space and time. The field has been decomposed in an isotropic
background value T̄(τ ) and a small perturbation, the anisotropy
field 2(Ex, n̂, τ ) = (T − T̄)/T̄. Anisotropies are assumed to be the
result of a Gaussian random process originated from quantum
fluctuations in the early Universe. The observed temperature field
generated by scalar fluctuations is a linear operator acting on
three-dimensional perturbation fields:

2(n̂) =
∫

d3Ek ξ (Ek)
∫ τ0

0
dτ ei(k̂·n̂)(τ0−τ )S

(s)
T (k, τ ) (2)

where ξ (Ek) is the primordial curvature perturbation, and the

source function S
(s)
T for scalar temperature fluctuations is a

linear combination of the cosmological perturbation fields (see
[26] for the explicit expression). A similar expression holds for
temperature fluctuations generated by tensor perturbations [26].

3In this section, “observed” stands for what would be observed in the idealized
situation considered here, i.e., negligible instrumental noise and absence of
contaminants of any kind. A more proper term would be “realized,” but in this
context we avoid to use it as we reserve it for simulated CMB sky signals.
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In Equation (2), we have suppressed the τ and Ex dependence
in 2 as we are implicitly assuming that the temperature field is
observed in a given position at a fixed point in time.

Assuming a given cosmological model, we cannot directly
predict the particular realization of the temperature field. Instead,
we shall infer statistical properties of the observed perturbation
field. It is useful, to this purpose, to decompose the angular
dependence of the temperature anisotropy field in spherical
harmonics Yℓm(p̂)

2(Ex, p̂, τ ) =
∞
∑

ℓ=1

ℓ
∑

m=−ℓ

aℓm(Ex, τ )Yℓm(p̂) (3)

where the harmonic Yℓm corresponds to an angular
scale θ ∼ π/ℓ with (2ℓ + 1) m-modes for each multipole
ℓ. Low multipoles (low-ℓ) in the expansion correspond to large
angular scales in the sky, whereas high multipoles (high-ℓ)
correspond to small scales. Since 2 is real, the decomposition
coefficients aℓm have to satisfy the reality condition

a∗ℓm=aℓ−m (4)

All the information about the Ex and τ dependence of 2 is now
encoded in the aℓm’s.

We are interested in extracting information about the
statistical properties of the aℓm’s from the observations. In
the standard cosmological model, aℓms follow a Gaussian
distribution, with vanishing average (〈aℓm〉 = 0, since the aℓm

are expansion coefficients of the anisotropy field, whose mean
vanishes), and covariance

〈aℓma
∗
ℓ′m′〉 = δℓℓ′δmm′Cℓ (5)

where the constraints imposed by the two Dirac delta functions
follow from the aℓm being independent random variables
(diagonal covariance). Moreover, statistical isotropy ensures that
the variance does not depend onm (rotational invariance of Cℓ).
TheCℓ’s are the angular power spectrum of the CMB temperature
field. The power spectrum is related to the two-point correlation
function of the field C(θ) = 〈2(n̂1)2(n̂2)〉 observed at two
directions n̂1 and n̂2 in the sky such that n̂1 · n̂2 = cos θ :

C(θ) =
∑

ℓ

2ℓ + 1

4π
CℓPℓ(cos θ), (6)

where Pℓ is the Legendre polynomial of order ℓ.
If a random variable is Gaussian distributed, all the statistical

properties are encoded in its mean and variance, which are the
only momenta of the distribution we need to know. In fact, for a
Gaussian distribution, odd momenta vanish and even momenta
beyond the second can be recast as a function of the variance
(Wick’s theorem). Thus, the power spectrum Cℓ, or equivalently
the two-point correlation functionC(θ), completely characterizes
the statistical properties of the anisotropy field.

Since the aℓm’s follow a Gaussian distribution with zero mean
and variance Cℓ, we can readily write the probability density
function p(aℓm|Cℓ) of the aℓm’s conditioned by the Cℓ’s:

p(aℓm|Cℓ) =
1√
2πCℓ

exp

(

−|aℓm|2
2Cℓ

)

. (7)

Given the observed temperature field and the corresponding
aℓm’s, this expression already provides the likelihood function for
the theoretical (model) Cℓ’s. However the information contained
in the aℓm’s can be further compressed, as we shall see in
the following.

Statistical isotropy of the Cℓ’s allows us to rewrite
Equation (5) as:

Cℓ =
1

2ℓ + 1

ℓ
∑

m=−ℓ

〈|aℓm|2〉 (8)

Some considerations are in order at this point. The average
operation defined with the symbol 〈...〉 in Equations (5) and (8)
is an ensemble average. As noted above, the CMB field is a
realization of a random process and statistical information about
the outcome of such a process should be obtained by averaging
over all possible realizations. In practice, however, we can only
observe a single realization of the CMB field. A way out is
provided by the statistical omogeneity and isotropy of the CMB
fluctuations, that in principle allows to substitute the ensemble
average in Equation (5) with an average over different positions
and directions. According to this ergodic hypothesis, different
regions that are widely separated in the sky are statistically
independent from each other and can be considered as different
statistical realizations of the same stochastic process. Since we
only have access to the CMB field observed at Ex0 and τ0, i.e., the
CMB field here and now, what we are really left is the average
over different directions, or equivalently over different values of
m. In other words, for a given ℓ, all the aℓm are drawn from the
same distribution, which can be therefore sampled by measuring
all the 2ℓ + 1 coefficients. We are thus led to define an estimator
of the observed power spectrum

Ĉℓ =
1

2ℓ + 1

∑

m

|aℓm|2 , (9)

with the property 〈Ĉℓ〉 = Cℓ. Note that in Equation (9) the
ensemble average does not appear: we are forced to measure
Cℓ only with a limited number of values. This induces an
intrinsic source of inaccuracy due to replacing the true variance
Cℓ with the observed power Ĉℓ (i.e., by replacing the ensemble
average with the average over directions). This effect is known as
cosmic variance:

〈(

Ĉℓ − Cℓ

Cℓ

)2〉

= −1+ 1

(2ℓ + 1)2C2
ℓ

∑

mm′

〈

aℓma
∗
ℓmaℓm′a∗ℓm′

〉

= −1+ 1

(2ℓ + 1)2C2
ℓ

[

∑

m

〈

aℓma
∗
ℓmaℓma

∗
ℓm

〉
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+
∑

m,m′ 6=m

〈

aℓma
∗
ℓmaℓm′a∗ℓm′

〉





= −1+ 1

(2ℓ + 1)2C2
ℓ

(

3C2
ℓ(2ℓ + 1)

+ 2ℓC2
ℓ(2ℓ + 1)

)

= 2

2ℓ + 1
(10)

where the third equality follows fromWick’s theorem.
Cosmic variance is an irreducible source of uncertainty in

cosmological measurements of the CMB power spectrum, and
one of the major sources of uncertainties especially at the
largest scales (low-ℓ), where we have only a limited number
of coefficients aℓm to average over with respect to the small-
scale (high-ℓ) regime. Equation (10) is valid provided full-sky
observations. However, in real data analysis, even if we are
able to observe the full sky (e.g., with space missions), we are
nevertheless forced to mask a certain fraction of the sky, e.g.,
to avoid foreground contamination. An approximate estimate
of the increase is given by a factor 1/fsky, where fsky but see
e.g., [27] for a careful counting of the degrees of freedom available
in cut-sky regimes. Current experiments like the Planck satellite
are ideally cosmic-variance-limited up to very high multipoles,
i.e., ℓ ∼ 1500.

To derive the distribution of the observed Cℓ’s, we note that
the sum of ν = (2ℓ + 1) standard Gaussian variables follows
a χ2 distribution with ν degrees of freedom. If we define Ŷℓ =
∑

m(|aℓm/
√
Cℓ|2), this new variable has a χ2 distribution:

p(Ŷℓ|Cℓ) =
Ŷ

ν/2−1
ℓ

Ŵ(ν/2)2ν/2
exp

(

− Ŷℓ

2

)

(11)

The estimator (hereafter observed) Ĉℓ is a multiple of Ŷℓ: Ĉℓ =
CℓŶℓ/(2ℓ+ 1), and multiples of χ2-distributed variables follow a
Gamma distribution:

p(Ĉℓ|Cℓ) ∝ C−1
ℓ

(

Ĉℓ

Cℓ

)ν/2−1

exp

(

−ν

2

Ĉℓ

Cℓ

)

(12)

The previous expression is the probability of the observed power
spectrum given the fiducial power, and for fixed data it can be
still regarded as a likelihood L(Cℓ), in which the role of the
data is not played by the aℓm’s as in Equation (7), but by the
Ĉℓ. The mean and variance of the distribution of the Ĉℓ’s are
E[Ĉℓ] = Cℓ and Var[Ĉℓ] = 2C2

ℓ/ν. The maximum of the
distribution is in (ν − 2)/νCℓ, that does not coincide with the
mean of the distribution. As such, the distribution of observed
Ĉℓ is skewed. However, in the limit ν → ∞, the distribution in
Equation (12) tends to a Gaussian distribution with same mean
and variance, according to the central limit theorem. Note that
the variance of the distribution is exactly the cosmic variance
introduced in Equation (10). This further stresses the meaning
of the cosmic variance as an irreducible source of uncertainty
due to the limitation of having access to a single realization of
the Universe (i.e., the limitation due to estimating the true power
spectrum Cℓ with the observed power spectrum Ĉℓ).

2.2. Statistics of Joint CMB Temperature
and Polarization Fields—Exact Likelihood
in Harmonic Space
The above treatment has to be generalized in the case of the joint
analysis of temperature and polarization fields T,E,B. In analogy
to the temperature case, we can define two sets of spherical
harmonics coefficients for E and B:

aEℓm ≡ −1

2
(+2aℓm +−2 aℓm) (13a)

aBℓm ≡ i

2
(+2aℓm −−2 aℓm) (13b)

where ±2aℓm are the expansion coefficients of the combinations
of Stokes parameters describing the polarization state of the CMB
signal—(Q ± iU)—in spin-2 spherical harmonics ±2Yℓm (see
e.g., [28] for a derivation of the formalism).

The variable Xa = (aTℓm, a
E
ℓm, a

B
ℓm) is distributed according to

a Gaussian multivariate distribution with covariance matrix

cov [Xa,Xa] ≡ 〈XaX
†
a〉 − 〈|Xa|〉2 (14a)

≡ Vℓ =











CTT
ℓ CTE

ℓ 0

CTE
ℓ CEE

ℓ 0

0 0 CBB
ℓ











, (14b)

where it is explicitly seen that the temperature and the E-
polarization fields are correlated, whereas the parity-even fields
(T and E) are uncorrelated with the parity-odd field B (although
this is strictly true only in the standard cosmological model when
parity violation processes are forbidden in the early Universe).

In analogy to Equation (9), the estimators for the observed
power spectra are given by the following matrix:

Sℓ =
1

2ℓ + 1

∑

m

XaX
†
a =











ˆCTT
ℓ

ˆCTE
ℓ

ˆCTB
ℓ

ˆCTE
ℓ

ˆCEE
ℓ

ˆCEB
ℓ

ˆCTB
ℓ

ˆCEB
ℓ

ˆCBB
ℓ











, (15)

where the observed cross-correlations TB and EB may be non-
vanishing as well.

The probability of Xa at each ℓ can therefore be expressed as:

− 2 ln[p(Xa|Vℓ]) = X†
aV

−1
ℓ Xa + ln det[2πVℓ] (16a)

= (2ℓ + 1)trace[SℓV
−1
ℓ ]+ ln det[Vℓ]+ const.

(16b)

Note that Sℓ represents sufficient statistics for this likelihood
function: in the full-sky regime, Equation (16a) only depends
on the data through Sℓ and therefore information on the CMB
sky can be losslessly compressed to a set of power spectrum
estimators Sℓ = Sℓ(ĈXY

ℓ ), X,Y = T,E,B.
The probability of Sℓ given Vℓ = Vℓ(CXY

ℓ ) is obtained by
properly normalizing (Equation 16a). In the previous section, we
have seen that the single-field Ĉℓ is Gamma-distributed. It is easy
to understand that the full set of observed power spectra Sℓ has
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aWishart distribution, i.e., a multi-dimensional generalization of
the Gamma distribution, with ν = (2ℓ + 1) degrees of freedom
in p = 3 dimensions:

p(Sℓ|Wℓ) = L(Wℓ) =
|Sℓ|(ν−p−1)/2 exp

[

−trace(W−1
ℓ Sℓ/2)

]

2pν/2|Wℓ|ν/2Ŵp(ν/2)
(17)

whereWℓ = Vℓ/ν. For given ĈXY
ℓ ’s, Equation (17) represents the

exact expression of the likelihood function of the CXY
ℓ .

Since Vℓ is separable in the two blocks TE and B, we
can simplify the problem and consider two separate Wishart
distributions for the block TE and for the block B:

L(Wℓ) = L(WTE
ℓ )L(WB

ℓ ) (18)

The latter is further simplified since it reduces to the one-
dimensional Gamma distribution, as described in details in the
previous section. The distribution for the TE block can be fully
expanded as:

L(WTE
ℓ ) ∝

( ˆCTT
ℓ

ˆCEE
ℓ − ( ˆCTE

ℓ )2
)(ν−3)/2

(

CTT
ℓ CEE

ℓ − (CTE
ℓ )2

)ν/2
(19a)

× exp







−ν

2





CTT
ℓ

ˆCEE
ℓ + ˆCTT

ℓ CEE
ℓ − 2 ˆCTE

ℓ CTE
ℓ

CTT
ℓ CEE

ℓ − (CTE
ℓ )2











The marginal distribution of each individual diagonal element of

STEℓ can be obtained by integrating p(Sℓ|Wℓ)TE over
ˆCTE
ℓ and the

other diagonal element, and it is again a Gamma distribution as
we expect it to be, in analogy to discussion in the previous section.

However, the marginal distribution of the off-diagonal terms ˆCTE
ℓ

is not a Gamma distribution, and it is interesting to note that
it depends on CTT

ℓ and CEE
ℓ in addition to CTE

ℓ (see [29] for a
detailed calculation).

In the limit ν → ∞, the Wishart distribution of X̂C =
(Ĉℓ

TT
, Ĉℓ

TE
, Ĉℓ

EE
) tends to a multivariate Gaussian distribution

with covariance matrix:

cov[XC ,XC] ≡ 〈XCX
†
C〉 − 〈XC〉2 ≡ C (20a)

= 1

2ℓ + 1











2(CTT
ℓ )2 2CTT

ℓ CTE
ℓ 2(CTE

ℓ )2

2CTT
ℓ CTE

ℓ CTT
ℓ CEE

ℓ + (CTE
ℓ )2 2CTE

ℓ CEE
ℓ

2(CTE
ℓ )2 2CTE

ℓ CEE
ℓ 2(CEE

ℓ )2











,

(20b)

The variance of Ĉℓ
TT

and Ĉℓ
EE

is the same of the single-field

limit, whereas the variance of the cross-correlation Ĉℓ
TE

reflects

the different marginalized distribution of Ĉℓ
TE

itself.

2.3. Statistics of Joint CMB Temperature
and Polarization Fields—Exact Likelihood
in Real Space
The discussion in sections 2.1 and 2.2 refers to the CMB statistics
in harmonic space, i.e., the space in which the CMB fields are

expanded in spherical harmonics and the physical information
are encoded in the expansion coefficients aℓm. In this subsection,
we will review the basics of CMB statistics in real space.

The starting point are the observed CMB maps of the three
Stokes parameters T, Q, and U. These maps can be discretized
into N pixels and arranged in N-dimensional vectors T, Q, and
U. As discussed in the previous section, the statistical properties
of these objects are fully encoded in the auto- and cross- power
spectra CXY

ℓ , with X,Y = {T,E,B} for temperature, E-mode and
B-mode polarization.

The exact likelihood function in real space (also called the
pixel-based likelihood) is defined as

L(Cℓ) = p(m|Cℓ) =
1

2π |M|1/2 exp
(

−1

2
mTM−1m

)

, (21)

where m is the vector with 3N elements built from the
justaxposition of T, Q, and U, and M is the total covariance
matrix. The matrix M depends only on the angle between two
directions in the sky n̂i,j

M(n̂i · n̂j) =











〈TiTj〉 〈TiQj〉 〈TiUj〉
〈TiQj〉 〈QiQj〉 〈QiUj〉
〈TiUj〉 〈QiUj〉 〈UiUj〉











. (22)

The (3 × 3) entries in Equation (22) for any given pair of
pixels ij depend on the Legendre polynomial Pℓ and the fiducial
power spectra. As a straightforward example, the entry 〈TiTj〉 is
the expression

〈TiTj〉 =
∑

ℓ

2ℓ + 1

4π
Pℓ(r̂i · r̂j)CTT

ℓ . (23)

where Pℓ(r̂i · r̂j) = 4π
2ℓ+1

∑

m Yℓm(r̂i)Y∗
ℓm(r̂j). A detailed

description of the full procedure to obtain the covariance matrix,
together with the expressions of the (3× 3) entries, can be found
in appendix A of Tegmark and de Oliveira-Costa [30].

It should be noted that the pixel-based likelihood in
Equation (21) is exact even in the case of partial sky coverage;
this not the case for the likelihood in harmonic space in
Equation (17). Note however that it is still possible to derive an
exact form for the harmonic-space likelihood even for partial sky
coverage [31]. The pixel-based approach ensures mathematical
rigor in the evaluation of the likelihood function. Nevertheless,
it is highly expensive from a computational point of view.
Indeed, the number of pixels needed to retain the information
in the first ℓmax multipoles of the power spectrum scales as ℓ2max
and therefore the Cholesky decomposition required to evaluate
the inverse of the covariance matrix in Equation (21) scales
roughly as ℓ6max, where ℓmax is the highest multipole retained
in the analysis. The computational cost is therefore driven by
the evaluation of inverse matrix and determinants and becomes
prohibitive for ℓmax larger than few hundreds. For this reason,
this exact approach is feasible only to study large angular scales,
where the information is contained in a relatively small number
of multipoles.
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3. LIKELIHOOD
APPROACHES—SMALL-SCALE REGIME

The exact likelihood of the observed CMB ĈXY
ℓ as a function of

the underlying fiducial CMB CXY
ℓ is given by Equation (17) in

case of full-sky observations:

p(Sℓ|Wℓ) = L(Wℓ) =
|Sℓ|(ν−p−1)/2 exp

[

−trace(W−1
ℓ Sℓ/2)

]

2pν/2|Wℓ|ν/2Ŵp(ν/2)
.

(24)
However, complications arise in real analysis that make it
necessary to replace Equation (17) with a suitable approximation.
Complications usually include time-consuming evaluations of
Equation (17) due to the inversion of large covariance matrices
for each theoretical model.

A standard approach is to develop an approximation of
Equation (17) in the full-sky regime that is quadratic in some
function of CXY

ℓ , and that can be easily generalized to the cut-sky
regime with a proper estimate of the covariance matrix:

− 2 ln p(X̂C|XC) ≡ −2 lnL(XC) ∝
[

(ZC − ẐC)
TY−1(ZC − ẐC)

+ ln |Y|
]

(25)

where ZC (ẐC) is the vector containing functions of Cℓs (Ĉℓs) and
Y is a suitable choice of the covariance matrix.

In what follows, we introduce a list of the most common
approximate forms among those proposed in the literature (see
e.g., [29, 32–36]). We further quantify the goodness of the
approximation in the full-sky regime following the approach in
Percival and Brown [29]: we expand the exact likelihood and the
approximate forms along the standard axes (TT, TE, EE) around
the maximum XC = X̂C, and compare the expansion coefficients
up to a certain order.

As already commented in the previous section, the analytic
comparison of the various approximations is carried in absence
of noise contaminations and in the limit of infinite angular
resolution. We also implicitly assume that the CMB spectra are
unlensed, i.e., they are the spectra as they would be observed in
absence of gravitational lensing effects on the CMB photons. The
inclusion of experimental noise, experimental angular resolution,
and gravitational lensing effects will be discussed in sections 3.3
and 4.

Before moving to the list of the most common approximate
likelihood functions, we would like tomention that it is not trivial
to construct an unbiased estimator of the true Cℓ in the cut-
sky regime. We don’t have access to the full-sky set of aℓm and
therefore we cannot directly construct Ĉℓ. In the case of cut-sky
maps, appropriate algorithms have been developed to derive the
unbiased estimator Ĉℓ to be used in the likelihood analysis. For
example, pseudo-Cℓ power spectra C̃ℓ can be defined from cut-
sky harmonic coefficients ãℓm, see section B for further details
and references. The pseudo-Cℓ are related to the true Cℓ in
ensemble average as

〈C̃ℓ′〉 =
∑

ℓ

Mℓ′ℓ〈Cℓ〉 (26)

where Mℓ1ℓ2 is a coupling matrix that encodes the geometrical
effects of cut-sky observations. From Equation (26), it is possible
to operatively define an estimator for the Cℓ in the cut-sky
regime as:

Ĉℓ =
∑

ℓ′
M−1

ℓℓ′ C̃ℓ′ . (27)

The interested reader can find a detailed discussion in
Appendix B, where we also report alternative methods adopted
to construct estimators for the BB spectrum B.2, and for power
spectra at large scales via the quadratic maximum likelihood
(QML) approach B3. A final remark on the cut-sky case: the
compression of information from CMB maps (∼ (Npix × Npix)
pixels) to CMB spectra (∼ (ℓmax − ℓmin) bandpowers) is lossless
in the full-sky regime, i.e., the power spectra represent sufficient
statistics. In the cut-sky regime, the compression is partly lossy,
as the masked regions induce correlations between multipoles
which have to be taken into account (see e.g., discussion
in Appendix B).

3.1. Approximate Forms
The most common approximations are given by
quadratic/Gaussian expressions in CXY

ℓ with different choices
for the covariance matrix. Alternatively, quadratic expressions
involving more complicated functions f = f (CXY

ℓ ) ≡ ZC, as well
as ad-hoc combinations of various approximations have been
developed to match the exact likelihood up to a certain order in
the perturbative regime (see section 3.2).

• Symmetric Gaussian. This approximation is quadratic in
ZC = CXY

ℓ , with covariance matrix given by the curvature of
the Wishart, see Equation (29):

−2 lnL(XC) ∝ (X̂C−XC)
TY−1

C (X̂C)(X̂C−XC)+const. (28)

The inverse of the covariance matrix YC is the curvature
of the Wishart distribution in Equation (19a), i.e., Y−1

ij =
d2(−2 ln p)ij|Cℓ=Ĉℓ

, computed in XC = X̂C:

Y−1
ℓ = ν

2
[

Ĉℓ
TT

Ĉℓ
EE − (Ĉℓ

TE
)2
]2 (29)

×











(Ĉℓ
EE
)2 −2Ĉℓ

TE
Ĉℓ

EE
(Ĉℓ

TE
)2

−2Ĉℓ
TE
Ĉℓ

EE
2[Ĉℓ

TT
Ĉℓ

EE + (Ĉℓ
TE
)2] −2Ĉℓ

TE
Ĉℓ

TT

(Ĉℓ
TE
)2 −2Ĉℓ

TE
Ĉℓ

TT
(Ĉℓ

TT
)2











,

• Improper Gaussian. This approximation is similar to the
Symmetric Gaussian in Equation (28), with the covariance
matrix that appears in the first term replaced by Y = Y(CXY

ℓ );
i.e., the covariance matrix is given in terms of the model CXY

ℓ .
This approximation is an improper Gaussian in a sense that
there is no determinant term:

− 2 lnL(XC) ∝ (X̂C − XC)
TY−1

C (XC)(X̂C − XC) (30)

• Determinant Gaussian. The expression in Equation (30)
can be slightly modified to provide a better fit to the
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exact likelihood approach (see section 3.2). The modification
consists in the addition of a CXY

ℓ -dependent determinant term:

−2 lnL(XC) ∝ (X̂C−XC)
TY−1

C (XC)(X̂C−XC)+ ln |YC(XC)|
(31)

• Fiducial Gaussian. This approximation is similar to
Equations (28) and (30), with a constant determinant
term (as in Equation 28) and the covariance matrix computed
for a given fiducial model (as in Equation 30). The fiducial
model for the covariance matrix is however kept fixed, and
assumed to be smooth and a close approximation to the
underlying model under scrutiny:

− 2 lnL(XC) ∝ (X̂C − XC)
TY−1

C (XC,fid)(X̂C − XC)+ const.
(32)

The fiducial Gaussian approximation is used in the official
analyses of the Planck [37, 38], ACT [9], and SPT [10]
collaborations.

• Log-normal. This approximation is quadratic in a peculiar
function of theoretical and observed spectra, i.e., ZC =
ĈXY

ℓ ln(CXY
ℓ ), with fixed covariance matrix YC = YC(ĈXY

ℓ ):

−2 lnL(XC) ∝ (ẐC−ZC)
TY−1

C (X̂C)(ẐC−ZC)+const. (33)

• Offset log-normal. This approximation is a generalization of
Equation (33). The data vector is generalized to ZC = (1 +
aXY )ĈXY

ℓ ln(CXY
ℓ + aXY Ĉ

XY
ℓ ), with aXY a suitable real offset

coefficient that may or may be not be the same for every
XY pair. The covariance matrix is again as in Equation (33)
(YC = YC(ĈXY

ℓ )):

−2 lnL(XC) ∝ (ẐC−ZC)
TY−1

C (X̂C)(ẐC−ZC)+const. (34)

• One-third-two-thirds. We briefly mention this
approximation as an example of combined likelihood
appositely built to match the exact likelihood up to the third
order. It is a weighted combination of the improper Gaussian
in Equation (30) (with weight 1/3) and of the log-normal
approximation in Equation (33) (with weight 2/3). Note that
the approximation was explicitly built for the single-field
TT-only WMAP analysis [39]:

lnL(CTT
ℓ ) ∝ 1

3
ln
[

Limproper(C
TT
ℓ )

]

+ 2

3
ln
[

Llognorm(C
TT
ℓ )

]

(35)
• Hamimeche-Lewis. In Hamimeche and Lewis [32],

Hamimeche & Lewis (HL) have developed a form of the
likelihood for correlated Gaussian fields (CMB temperature
and polarization) that coincides with the exact likelihood in
full sky. The authors show with simulations that it provides a
very good approximation to the exact likelihood in the cut-sky
regime at small scales4 (ℓ ≥ 30). The form of the likelihood
is quadratic in some peculiar function of the observed,
fiducial, and theoretical Cℓ, as we shall see in section 3.2. The
covariance matrix is precomputed for a fixed fiducial model.

4One of the assumptions is that the matrix of the estimators Ĉℓ is positive definite.
This assumption may break up at large scales.

The dependence on the fiducial model is negligible. Moreover,
should the fiducial fail in matching the true sky, the likelihood
is still exact in full sky. The HL likelihood was used in the
analysis of the BICEP2/KECK data [11].

In the HL formalism, the likelihood in cut-sky can be
approximated as:

− 2 lnL(XC) ≃ XT
gℓM

−1
f ℓ

Xgℓ (36)

where Xg is a vector of a specific function of the observed,
fiducial, and theoretical Cℓ, and Mf is the fiducial model
covariance block matrix

[Mf ]ℓℓ′ = 〈(X̂ℓ − Xℓ)(X̂ℓ′ − Xℓ′ )
T〉f (37)

with n(n + 1)/2 × n(n + 1)/2 blocks (n is the number
of fields), labeled by ℓ and ℓ′, i.e., we explicitly take into
account the possibility that either the cut-sky or anisotropic
noise can induce correlations between different multipoles
(non-diagonal covariance).

The derivation of Equation (36) is provided in section 3.2,
where we will show that it is equivalent to the exact likelihood
in the full-sky regime. For more details and a thorough
definition of the notation, see Hamimeche and Lewis [32]

3.2. Comparison With the Exact Likelihood
in the Full-Sky Regime
In this section, we comment on the goodness of the
approximations listed in the previous section. The goodness is
defined in terms of the ability to match the exact likelihood in
the full-sky regime up to a certain order, when both the exact
likelihood and the approximate form are expanded around
the maximum. This approach is described in Percival and
Brown [29].

Let’s start by expanding the Wishart distribution in
Equation (19a) along the TT direction. In particular, we write

Equation (19a) with the following substitutions: CTE
ℓ → Ĉℓ

TE
,

CEE
ℓ → Ĉℓ

EE
, CTT

ℓ → (1 + ǫ)Ĉℓ
TT

. We further expand in ǫ.
We obtain:

− 2 lnL(CTT
ℓ ) = ν

(r̂2 − 1)2

[

ǫ2

2
+ 2

3(r̂2 − 1)
ǫ3 +O(ǫ4)

]

(38)

where r̂ = Ĉℓ
TE

/

√

Ĉℓ
TT

Ĉℓ
EE

and ν = 2ℓ+1. It is straightforward
to show that the expansion along the EE axis provides the same
form of Equation (38) for−2 ln[L(CEE

ℓ )].
Let’s now expand along the TE axis with the following

substitutions: CTT
ℓ → Ĉℓ

TT
, CEE

ℓ → Ĉℓ
EE
, CTE

ℓ → (1 + ǫ)Ĉℓ
TE
.

The expansion is:

− 2 lnL(CTE
ℓ ) = 2r̂2(r̂2 + 1)ν

(r̂2 − 1)2

[

ǫ2

2
− 2r̂2

3(r̂2 − 1)
ǫ3 +O(ǫ4)

]

(39)
Equation (39) reflects again the difference in the marginal
distribution of the cross-correlation spectrum TE with respect to
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the distributions of the auto-spectra TT and EE (see discussion
in section 2.2).

Let’s now move to expand each of the approximations
reported in section 3.1.

• Symmetric Gaussian. The expansion of Equation (28) is of the
same form along each of the standard axes TT, TE, EE, with
a different normalization factor in the case of the expansion
along TE:

− 2 lnL(CTT
ℓ ) ∝ ν

(r̂2 − 1)2

(

ǫ2

2

)

(40a)

−2 lnL(CEE
ℓ ) ∝ ν

(r̂2 − 1)2

(

ǫ2

2

)

(40b)

−2 lnL(CTE
ℓ ) ∝ 2r̂2(r̂2 + 1)ν

(r̂2 − 1)2

(

ǫ2

2

)

(40c)

Note that the expansion is truncated at the second order on
ǫ. This result is an exact expansion and it is expected, given
the initial form (symmetric Gaussian) of the approximate
likelihood. If we compare Equation (40a) with the expansion of
the Wishart in Equations (38)– (39), we observe what follows.
Firstly, the Symmetric Gaussian matches the Wishart only up
to the second order on ǫ. Secondly, the approximate form is,
by definition, symmetric in ǫ and therefore fails in capturing
the skewness of the exact likelihood. Finally, it is biased low
along the TT, EE axes in a sense that −2 ln(Lgaussian(ǫ)) <

−2 ln(Lexact(ǫ)) for ǫ > 0 (i.e., for Cℓ > Ĉℓ). For the opposite
reason, it is biased high along the TE axis.

• ImproperGaussian. The expansion of Equation (30) along the
standard axes are as follows:

− 2 lnL(CTT
ℓ ) ∝ ν

(r̂2 − 1)2

(

ǫ2

2
+ ǫ3

(r̂2 − 1)
+O(ǫ4)

)

(41a)

−2 lnL(CEE
ℓ ) ∝ ν

(r̂2 − 1)2

(

ǫ2

2
+ ǫ3

(r̂2 − 1)
+O(ǫ4)

)

(41b)

−2 lnL(CTE
ℓ ) ∝ 2r̂2(r̂2 + 1)ν

(r̂2 − 1)2

(

ǫ2

2
− r̂2(r̂2 + 3)ǫ3

(r̂2 − 1)

+O(ǫ4)
)

(41c)

With respect to the symmetric Gaussian, the improper
Gaussian approximation is skewed in the same direction of
the Wishart. However, it is still a correct match only up
to the second order. With respect to the exact likelihood,
Equation (41a) show that the improper Gaussian is biased
high along the TT, EE directions, where−2 ln(Limproper(ǫ)) >

−2 ln(Lexact(ǫ)) for ǫ > 0 (i.e., for Cℓ > Ĉℓ). For the opposite
reason, it is biased low along the TE direction.

• Determinant Gaussian. In this case, it is clear from
Equation (31) that the likelihood is biased at each multipole
ℓ as the Cℓ-dependent determinant term implies that the
minimum value for this approximate form is not in ǫ = 0.
Indeed, the expansions of Equation (31) along the standard
axes include a term of order ǫ:

− 2 lnL(CTT
ℓ ) ∝ 1

(

r̂2 − 1
)2

[

−3ǫ(r̂2 − 1)+ (ν − 3)ǫ2

2

+ ǫ3

(r̂2 − 1)
+O(ǫ4)

]

(42a)

−2 lnL(CEE
ℓ ) ∝ 1

(

r̂2 − 1
)2

[

−3ǫ(r̂2 − 1)+ (ν − 3)ǫ2

2

+ ǫ3

(r̂2 − 1)
+O(ǫ4)

]

(42b)

−2 lnL(CTE
ℓ ) ∝ 2r̂2

(

r̂2 − 1
)2

[

3ǫ(r̂2 − 1)

+ (ν − 3)(r̂2 + 1)ǫ2

2

− (ν − 1)r̂2(r̂2 + 1)ǫ3

(r̂2 − 1)
+O(ǫ4)

]

(42c)

However, it can be shown that this approximation, although
biased at each individual ℓ, is unbiased “on average”, i.e.,
reproduces the correct result with reasonable accuracy when
summed over a wide-enough range of multiples (see HL).

• Fiducial Gaussian. The expansion of Equation (32) is
equivalent to the expansion in Equation (40a), only with a
different normalization factor. Indeed, the covariance matrix
in Equation (32) is fixed to that of a given fiducial model, and
therefore the approximation is quadratic in ǫ. Note however
that, although the form of the expansion is similar at any ℓ

between the symmetric Gaussian and the fiducial Gaussian, the
latter provides a better approximation of the exact likelihood
when summed over a range of multipoles (see discussion in
Hamimeche and Lewis [32]).

• Log-normal. In this case, we have:

ZC =











Ĉℓ
TT

ln[CTT
ℓ ]

Ĉℓ
TE

ln[CTE
ℓ ]

Ĉℓ
EE

ln[CEE
ℓ ]











, (43)

in Equation (25), with YC = YC(ĈXY
ℓ ) being the curvature

matrix. The expansions along the auto- and cross-spectra
directions can be easily obtained up to normalization factors:

− 2 lnL(CTT
ℓ ) ∝ ν

(r̂2 − 1)2

(

ǫ2

2
− ǫ3

2
+O(ǫ4)

)

(44a)

−2 lnL(CEE
ℓ ) ∝ ν

(r̂2 − 1)2

(

ǫ2

2
− ǫ3

2
+O(ǫ4)

)

(44b)

−2 lnL(CTE
ℓ ) ∝ 2r̂2(r̂2 + 1)ν

(r̂2 − 1)2

(

ǫ2

2
− ǫ3

2
+O(ǫ4)

)

(44c)

Regardless of the normalization factors, a comparison between
Equations (44a)–(44c) and Equations (38) and (39) shows that
the log-normal distribution provides a good approximation
to the exact likelihood up to the second order in the
expansion around the maximum. The two distributions have a
different shape starting from the third-order term in the series
expansion. It is also interesting to note that, normalization

Frontiers in Physics | www.frontiersin.org 9 February 2020 | Volume 8 | Article 15

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Gerbino et al. Likelihood Methods for CMB Experiments

factors aside, the expansions along the standard axes are
identical. This is a further difference with respect to the case
of the Wishart distribution.

• Offset log-normal. The log-normal distribution can be slightly
modified in a way that it could approximate the exact Wishart
distribution up to third order. The modified log-normal, or
offset log-normal, is quadratic in:

ZC =











Ĉℓ
TT

(1+ aTT) ln[CTT
ℓ + aTTĈℓ

TT
]

Ĉℓ
TE
(1+ aTE) ln[CTE

ℓ + aTEĈℓ
TE
]

Ĉℓ
EE
(1+ aEE) ln[CEE

ℓ + aEEĈℓ
EE
]











, (45)

where the offset factors aTT, aTE, aEE can be adjusted to match
the Wishart distribution up to the third order. The covariance
matrix is again assumed to be YC = YC(ĈXY

ℓ ). Expanding the
offset log-normal in the usual way, one gets:

− 2 lnL(CTT
ℓ ) ∝ ν

(r̂2 − 1)2

(

ǫ2

2
− ǫ3

2(1+ aTT)
+O(ǫ4)

)

(46a)

−2 lnL(CEE
ℓ ) ∝ ν

(r̂2 − 1)2

(

ǫ2

2
− ǫ3

2(1+ aEE)
+O(ǫ4)

)

(46b)

−2 lnL(CTE
ℓ ) ∝ 2r̂2(r̂2 + 1)ν

(r̂2 − 1)2

(

ǫ2

2
− ǫ3

2(1+ aTE)
+O(ǫ4)

)

(46c)

A comparison between Equations (44a)–(44c) and
Equations (38, 39) makes it clear that the offset log-
normal distributions is a good approximation to the
Wishart distribution up to the third order in the expansion,
provided that

aTT = aEE = −1

4
(1+ 3r̂2), aTE = −1

2

(

2+ 3(r̂4 − 1)

2r̂2(r̂2 + 3)

)

(47)
• One-third two-thirds. Comparing the TT expansion in

Equation (41a) and in Equation (44a) with the TT expansion
of the exact likelihood in Equation (38), it is clear that the
weighted sum of the improper Gaussian and the lognormal
distribution with weights 1/3 and 2/3, respectively matches
the Wishart distribution up to the third order in ǫ:

− 2 lnL(CTT
ℓ ) =

[

1

3
(−2 lnLimproper)+

2

3
(−2 lnLlognorm)

]

∝ ν

[

ǫ2

2
− 2ǫ3

3
+O(ǫ4)

]

(48)

• Hamimeche-Lewis. By construction, this likelihood
approximation matches exactly the Wishart distribution
in the full sky regime. Indeed, the true power of this
approximation stands in the fact that the exact quadratic
form derived from the full-sky exact likelihood result is
assumed to be valid also in the cut-sky regime and at
high multipoles, where it is faster to evaluate than the
exact calculation.

We show here the equivalence between the exact likelihood
in Equation (17) and the Hamimeche-Lewis formalism in full
sky. In what follows, we make use of the matrix notation
adopted in Hamimeche and Lewis [32]. This notation is
somehow different from the formalism used in the previous
examples. However, it is a more suitable choice to better
appreciate the H&L approximation. We assume the matrix of
the estimators Ĉℓ to be positive definite. In the full-sky limit,
given n gaussian fields, the likelihood function is defined as in
Equation (16a)

− 2 lnL(Cℓ) = (2ℓ + 1)×
[

trace[ĈℓC
−1
ℓ ]− ln |C−1

ℓ Ĉℓ| − n
]

(49a)

= (2ℓ + 1)×
[

trace[C−1/2
ℓ ĈℓC

−1/2
ℓ ]

− ln |C−1/2
ℓ ĈℓC

−1/2
ℓ | − n

]

(49b)

= (2ℓ + 1)
n
∑

i

[

Dℓ,ii − ln(Dℓ,ii)− 1
]

. (49c)

where5, with respect to Equation (16a), Sℓ → Ĉℓ and Vℓ →
Cℓ. In passing from Equations (49a) to (49c), we consider that
the symmetric form is defined using the Hermitian square

root and C
−1/2
ℓ ĈℓC

−1/2
ℓ = UℓDℓU

T
ℓ , for orthogonal Uℓ

and diagonal Dℓ. In other words, we diagonalize the matrix

C
−1/2
ℓ ĈℓC

−1/2
ℓ .

In order to generalize Equation (49c) to the cut sky,
we want to reshuffle it in such a way that it resembles a
quadratic form:

− 2 lnL(Cℓ) = 2ℓ + 1

2

∑

i

[g(Dℓ,ii)]
2 (50a)

= 2ℓ + 1

2
Tr[g(Dℓ)

2] . (50b)

where the function g(x) is defined as

g(x) ≡ sign(x− 1)
√

2(x− ln(x)− 1) , (51)

and [g(Dℓ)]ij = g(Dℓ,ii)δij.
In order to transform Equation (50b) in a form that is

quadratic also in the matrix elements, we exploit the following
matrix identity 6:

2ℓ + 1

2
Trace[(C−1/2

f ℓ
CgℓC

−1/2
f ℓ

)2] = XT
gℓM

−1
f ℓ

Xgℓ , (53)

5In passing from Equations (49a) to (49b), we have made use of the properties of
the trace[] operator.
6Using the invariance of Tr[A] under diagonalization of A, one has that

Trace[g(Dℓ)] = Trace[Ug(Dℓ)U
T] (52a)

= Trace[C−1/2
ℓ ĈℓC

−1/2
ℓ ] (52b)

= Trace[C−1/2
f ℓ

C
1/2
f ℓ

(

C
−1/2
ℓ ĈℓC

−1/2
ℓ

)

C
1/2
f ℓ

C
−1/2
f ℓ

] (52c)

= Trace[C−1/2
f ℓ

CgℓC
−1/2
f ℓ

] (52d)
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where Xgℓ is the vector of Cgℓ ≡ C
1/2
f ℓ

Uℓg(Dℓ)UT
ℓ C

1/2
f ℓ

elements for a given fiducial model Cf ℓ, with dimension n(n+
1)/2, and Mf ℓ is the covariance of X̂ evaluated at Cℓ = Cf ℓ.
Therefore, Equation (50b) can be rewritten as

− 2 lnL(Cℓ) = 2ℓ + 1

2
Trace[(C−1/2

f ℓ
CgℓC

−1/2
f ℓ

)2] (54a)

= XT
gℓM

−1
f ℓ

Xgℓ . (54b)

We stress that this formulation is exact in the full sky regime,
as it has been obtained by means of matrix identities and no
approximations have been adopted so far.

3.3. Including the Effects of Noise and
Beam Smearing
The signal observed with a real CMB experiment is affected by
various sources of experimental contaminations. Here, we focus
on twomain classes of experimental effects: the noise bias and the
beam smearing.

The noise bias is due to the instrumental noise from detectors
that adds up to the cosmological signal. It has to be characterized
and subtracted from the (overall) signal (an alternative approach
posits in cross-correlating different detectors and assuming their
individual noise to be uncorrelated, see section 3.4). In the
simple case of isotropic noise in real space, the noise level is
independent from the direction. This translates in a diagonal
noise in harmonic space, i.e., the noise power spectrum Nℓ is
an additive bias for the CMB power spectrum. A very simple
example is the case of isotropic and homogenous noise in real
space, i.e., the noise level is the same in each pixel. This translates
in a “white noise” in harmonic space, i.e., Nℓ is constant in ℓ.
A usual assumption is also to consider the noise in temperature
and polarization to be uncorrelated. If the noise is anisotropic
(i.e., it changes from pixel to pixel) for example because of
a particular scanning strategy that induces anisotropic sky
coverage, it may induce correlations between aℓm, and different
considerations apply.

The beam smearing is due to the fact that the instrument has
a finite angular response. The signal observed along a certain
direction takes contributions from all angular directions. These
contributions are weighted with the angular response of the
instrument. In real space, this effect is described as a convolution
of the observed signal with the angular response (hereafter beam)
of the instrument 2(θ ,φ) ∝

∫

d�′B(θ − θ ′,φ − φ′)2(θ ′,φ′).
In harmonic space, the convolution becomes a product between
the harmonic expansions of the CMB fields and the beam a′ℓm =
bℓmaℓm. In the simple case of gaussian beam of width σFWHM =
2
√
2 ln 2σ , the harmonic expression of the beam is independent

from m and takes the simple form of bℓm → Bℓ ≡ exp[−ℓ(ℓ +
1)σ 2] = exp[−ℓ(ℓ + 1)σ 2

FWHM/(8 ln 2)].The beam smearing is a
multiplicative bias for the CMB power spectrum.

In presence of noise and beam smearing, the observed signal
is dℓm = Bℓaℓm + nℓ, and the estimator in Equation (9) becomes

Ĉℓ → D̂ℓ ≡
1

2ℓ + 1

∑

m

dℓmd
∗
ℓm = B2ℓĈℓ + N̂ℓ (55)

From Equation (55) it is clear that D̂ℓ is a biased estimator of
the true power spectrum Cℓ, 〈D̂ℓ〉 = B2ℓCℓ + Nℓ. In addition,
the variance of the estimator takes an additional contribution. In
presence of noise and beam effects, the variance becomes

var[Ĉℓ] ≡ 〈(Cℓ − Ĉℓ)(Cℓ − Ĉℓ)〉 =
2

2ℓ + 1

(

Cℓ +
Nℓ

B2ℓ

)2

(56)

The variable D̂ℓ ≡ Ĉℓ + N̂ℓ/B
2
ℓ still has a Ŵ distribution,

and all the considerations made for the Ĉℓ estimator still apply
to the (slightly) more general case of noise and beam biases,
provided that Ĉℓ is replaced with D̂ℓ. More in detail, when
both temperature and polarization are considered, the matrix of
estimators Sℓ still has a Wishart distribution [see Equation (17)]
with a revisedWℓ = Vℓ/(2ℓ + 1) matrix7

Wa =
1

2ℓ + 1











CTT
ℓ + NT

ℓ /(BTℓ )
2 CTE

ℓ 0

CTE
ℓ CEE

ℓ + NP
ℓ /(BPℓ )

2 0

0 0 CBB
ℓ + NP

ℓ /(BPℓ )
2











,

(57)
where we have allowed for different (and uncorrelated) noise
levels in temperature and polarization, and for different beam
sizes in temperature and polarization.

The covariance matrix of the estimators D̂ℓ is equivalent to
that of Ĉℓ in Equation (20a), provided that CTT

ℓ , CEE
ℓ are replaced

with the power spectra corrected for noise and beam.

3.4. Multi-frequency Analysis
The results presented so far have been discussed assuming the
special viewpoint of a single-frequency experiment. In reality,
CMB experiments often rely on multi-frequency observations to
better characterize the cosmological signal and extract it from
the multi-component sky-signal observed (see discussions in
e.g., [37, 40]). Moreover, multiple detectors sharing the same
central frequency are always available, so that the final signal at a
certain frequency can be effectively thought as a weighted average
of the signals observed with multiple detectors.

In general, if n maps are available, there are n − 1
combinations that are independent from the signal (if two maps
share the same signal and have different noise properties, their
difference is independent from the common signal). There is one
independent combination defined as the weighted average of the
n available maps

aNWℓm =
n
∑

i

wia
i
ℓm (58)

where wi are the noise weights associated to each of the n
maps. In the simple scenario of isotropic noise Nℓ for each
map, the weights can be defined as wi = (Ni

ℓ)
−1/

∑

i(N
i
ℓ)
−1.

The noise-weighted map is a sufficient statistics for the CMB
field, and therefore all the considerations above about the

7We are dropping the BB part of the distribution, as we have seen that the
full Wishart in full-sky is separable into a T − E and B component. For the B

component, all considerations in the single-field regime apply.
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choice of the likelihood also apply to the combined map. An
estimator for the power spectrum can be constructed from the
noise-weighted map.

Another possibility is to build estimators Ĉ
ij
ℓ = (1/(2ℓ +

1))
∑

m aiℓm(a
j
ℓm)

∗ from pairs of maps and then define a weighted

estimator ĈNW
ℓ = ∑

ij wijĈ
ij
ℓ , where the weights wij depend

on the noise levels in the individual maps. It can be shown
that the latter solution is equivalent to estimating the observed
power spectrum from the noise-weighted map, and again all the
considerations about the likelihood choice apply to this case as
well (see discussion in Hamimeche and Lewis [32], appendix C).

Regarding the latter solution, a more robust choice is to build
the noise-weighted estimator Ĉℓ from cross-spectra only, i.e.,
from pairs (ij) with i 6= j. If the noise in the individual maps
is uncorrelated, to take cross-spectra is safe with respect to the
introduction of possible biases in the final estimator due to
unaccounted errors in the noise model8. However, the statistics
of the estimator obtained from cross-spectra ĈCS

ℓ may differ
from that of the generic noise-weighted estimator. In particular,
the cross-spectra might not be positive-definite. Therefore, in
principle one should use a distribution for ĈCS

ℓ other than the
Wishart. However, it can be demonstrated (see e.g., appendix C
in Hamimeche and Lewis [32]) that, in the limit of many maps
available, the distribution of ĈCS

ℓ approaches that of ĈNW
ℓ , and

hence one can use the same approximations developed in the case
of the generic noise-weighted estimator.

Before concluding this subsection, a note on the covariance
matrix. When multiple maps are available and the estimators are
build from a combination of those maps, the expression for the
covariance matrix can be generalized as follows:

Cov
[

ijCXY
ℓ1

, abCWZ
ℓ2

]

=
〈

ijCXY
ℓ1

× abCWZ
ℓ2

〉

−
〈

ijCXY
ℓ1

〉

〈

abCWZ
ℓ2

〉

(59)

where ij, ab denote all possible combinations of pairs of maps,
XY ,WZ are pairs of fields T,E,B, and we have explicitly taken
into account the possibility of mode-coupling between ℓ1, ℓ2
(e.g., in the cut-sky regime). In the simple case of single-map in
full-sky, Equation (59) reduces to Equation (20a).

4. GRAVITATIONAL LENSING

In the discussions so far, we have implicitly assumed that the
CMB fields are unlensed. This is not the case in the reality.
CMB photons traveling from the last scattering surface to the
observer feel the gravitational effects of the evolving structures
in the Universe. This effect is analogous to the weak lensing
effect observed in galaxy surveys, where images of source galaxies
are distorted and magnified by foreground structures acting as
gravitational lenses. In the CMB case, the CMB as emitted at the
last scattering surface is the source and the whole distribution of
total (cold and baryonic) matter along the line of sight acts as
the foreground lens. In practice, this means that the anisotropy

8If aiℓm = siℓm + niℓ, with noise ni uncorrelated for any map i = 1, ..., nmaps and

signal si, then
∑

m |aiℓm(a
j
ℓm)

∗| =∑

m |siℓm(s
j
ℓm)

∗ + niℓm(n
j
ℓm)

∗| = (2ℓ + 1)Ĉ
ij
ℓ .

fields observed at a certain direction in the sky are displaced with
respect to the original direction of emission:

X(n̂) = Xunl(n̂+ ∇φ(n̂)) (60)

where X = T,E,B and φ is the lensing potential. The gradient
of the lensing potential gives the deflection angle α = ∇φ.
The typical deflection that CMB anisotropies undergo is of order
2.5 arcmin [41]. The lensing potential is given by the integrated
contribution of the gravitational potential along the line of sight9:

φ(n̂) = −2

∫ χ∗

0
dχW(χ)9(n̂) (61)

where 9 is the (Weyl) gravitational potential, χ is the conformal
distance andW(χ) is a geometrical kernel.

Gravitational lensing preserves the total variance of the CMB
fields, being a bare displacement of the anisotropy distribution.
Very roughly speaking, if we extracted the CMB power spectra
from small patches of the sky10, we would observe the acoustic
peaks to shift to either smaller or larger scales with respect
to the full sky average (see discussion in e.g., [42]). The net
effect is a smoothing of the acoustic peak structure in the CMB
power spectra that can be as high as 20% in the case of the
sharper structure in the EE power spectrum with respect to
the unlensed case. Another important effect is the generation
of spurious (i.e., not primordial) B-modes from the lensing of
primordial E-modes, with a power spectrum that resembles a
white noise contribution with noise level of ∼ 5µKarcmin at
ℓ < 100, representing a serious contaminant for searches of
primordial B-modes.

A detailed description of the effects of gravitational lensing on
the CMB spectra is beyond the scope of this manuscript, and can
be found in the excellent review by Lewis and Challinor [41].
Here, it is relevant to stress that gravitational lensing modifies
the statistical properties of the primary CMB fields in two
ways. First, let’s consider a fixed lensing potential realization
and ensemble average over the CMB realizations. If we Taylor-
expand Equation (60), take the harmonic expansion coefficients
and compute the covariance of two fields X,X′ = T,E,B, we
get [43, 44]

〈xℓmx
′
ℓ′m′〉|lens = Cxx′

ℓ δℓℓ′δm−m′ (−1)m

+
∑

LM

(−1)M





ℓ ℓ′ L

m m′ −M



 f αℓLℓ′φLM (62)

where the term in brackets is the Wigner-3j and f α is a weight of
different xx′ pairs depending on the unlensed power spectra and
on geometrical factors (a full list can be found in Okamoto and
Hu [43]). TheCℓ in the first term of the RHS are the lensed power
spectra. From Equation (62), it is clear that gravitational lensing
not only modifies the structure of the primary CMB spectra

9The unperturbed line of sight in the Born approximation.
10Small enough that the convergence and shear components of the deflection field
can be assumed constant in the patch.
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by smearing the acoustic peaks, but also induces off-diagonal
covariance terms (the second term in the RHS). Therefore, for
a fixed lensing realization, the CMB field becomes anisotropic.
This property can be exploited to construct an estimator for the
lensing potential φ.

The lensing power spectrumC
φφ
L = (2L+1)−1∑

M〈φLMφ∗
LM〉

(where we are now taking the ensemble average over the
lensing realizations as well) is related to the 4-point correlation
function of the primary CMB fields, as it is clear by inspecting
Equation (62). In other words, the second modification to the
CMB statistics induced by lensing, when the ensemble average
is taken over both the CMB and the lensing realizations, is a
certain amount of non-Gaussianity measurable from the 4-point
function. This property is exploited to construct an estimator for
the lensing power spectrum.

The presence of gravitational lensing effects represent a
pernicious contaminant for searches for primordial GW. In this
case, “delensing” procedures (see e.g., [41] and references therein
for a description of delensing procedures) aimed to remove the
lensing contamination from the measured CMB sky are crucial
to allow for the possibility to detect the primordial tensor BB
signal. On the other hand, the presence of gravitational lensing
also enriches the amount of information that we can extract
from the observations of the CMB sky. As an example, since
the gravitational lensing is induced by forming structures, it
carries information about the late time evolution of the Universe
and can be exploited to constrain those cosmological parameters
that govern those stages of the Universe expansion, such as
massive neutrinos.

There are two ways in which the information encoded in
the gravitational lensing signal can be accessed from CMB
measurements. One can exploit the anisotropy and non-
Gaussianity properties of the lensed CMB fields to construct
estimators for the gravitational potential and for the lensing
power spectrum, and use those observables directly in a
likelihood analysis. This is what is done e.g., by the Planck
collaboration [45], ACT [46], SPT [47], POLARBEAR [48],
and this is the goal of future CMB experiments that will be
able to reconstruct the lensing signal over a large range of
angular scales with exquisite sensitivity (CORE [49], Simons
Observatory [20], CMB-S4 [19], PICO [23]). Concerning the
choice of the likelihood function for the lensing signal itself, it
has been shown [50] that a quadratic expression in the observed
lensing power spectrum with a non-diagonal fiducial covariance
matrix provides satisfying results.

As seen in Equation (62), cosmological information carried
by the gravitational lensing signal are also encoded in the
CMB power spectra. In fact, the lensing contribution modifies
the primary acoustic structure as emerged from last scattering.
Current generation of Boltzmann solvers usually employed in
cosmological analysis, such as CAMB [51] and CLASS [52],
carefully compute the lensing effect when constructing the
theoretical spectra to be compared with the measured spectra
in the likelihood analysis. In general, when lensed spectra are
considered, the likelihood analysis should reflect the different
statistical properties of the lensed CMB. First of all, the
non-Gaussian distribution of the lensed field may require to

build a different likelihood function for the lensed fields. Even
if the Gaussian approximation can be retained given the current
experimental sensitivity, the covariance matrix may still need
to reflect the presence of off-diagonal correlations induced by
the lensing signal [53]. It has been shown that ignoring such
correlations can still be safe for the sensitivity level of Planck
[53, 54], but it will become relevant for the next generation of
experiments [55, 56].

A final remark concerns cosmological analysis employing
the combination of CMB power spectra and the lensing power
spectrum. These two data sets are usually treated as independent.
However, they are extracted from the same map and, as such,
there is a certain level of correlation between the two. As
pointed out in Schmittfull et al. [50], there are two sources
of correlations: cosmic variance in the CMB field, which may
affect the lensing reconstruction; cosmic variance in the lensing
field, which affects not only the lensing reconstruction, but can
propagate to the lensed CMB power spectra. An alternative
solution that might reduce the correlation between fields is the
joint analysis of the lensing power spectrum and unlensed CMB
spectra. The reconstructed lensing signal—either from CMB
observations themselves or from tracers of large-scale structure
correlated with the lensing signal such as the cosmic infrared
background (CIB)—can be used to delens the primary CMB
spectra. This procedure is not only key to unveil the primordial
BB tensor spectrum, but it can also improve the sensitivity to
those cosmological parameters that are mostly constrained via
measurements of the high-ℓ damping tail in the TT,TE,EE
spectra, such as Neff [19, 57].

All the above concerns will become much more significant
for the next generation of experiments, when more sensitive
polarization-based reconstructions will be available.

5. LIKELIHOOD
APPROACHES—LARGE-SCALE REGIME

In this section, we review the basics of the likelihood approaches
at large scales (low multipoles). We consider two generic
classes of likelihood methods: pixel-based and simulation-
based. When the focus of the likelihood analysis is the
sky at large angular scales, the resolution of the map to
be analyzed is low enough to make a pixel-based approach
computationally feasible. Alternative approaches exploit the
information encoded in harmonic space, and build the likelihood
function from a simulation-based method or component-
separation based method (Blackwell-Rao). For large scale studies
the Hamimeche-Lewis likelihood can be also considered, [58, 59],
for completeness we will explore later the performance of such
likelihood compared with other approximations.

5.1. Pixel-Based Approach
The great advantage of the pixel-based approach lies in the
fact that the likelihood function so defined is always exact (see
section 2.3), including in the cut-sky regime. Equation (21) can be
easily generalized in the presence of (Gaussian-distributed) noise,
by defining the data vector asm = s+n, where s is the signal per
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pixel in temperature and polarization (s = (T,Q,U)) and n is
the instrumental noise. We report here the likelihood function in
pixel space for convenience:

L(Cℓ) = P(m|Cℓ) =
1

2π |M|1/2 exp
(

−1

2
mTM−1m

)

, (63)

The full covariance matrix M in Equation (63) is consequently
generalized to the sum of the signal and noise covariancematrices
M = S+ N. Furthermore, the effect of beam smearing discussed
in section 3.3—and also relevant for the large-scale data—is now
taken into account when constructing the full covariance matrix
in terms of the beam-weighted sum of Legendre polynomial
(see Equation (23)). For example, the explicit expression for the
weight PTTℓ for temperature becomes

(PTTℓ )i,j =
2ℓ + 1

4π
B2ℓ Pℓ(n̂i · n̂j) (64)

where n̂i is the unit vector pointing toward the ith pixel, Bℓ

is given by the product of the instrumental beam Legendre
transform and the (HEALPix [60]) pixel window 11, and Pℓ is the
Legendre polynomial of order ℓ.

As already noted above, the actual feasibility of this
mathematically rigorous approach only applies to the very
large scales. Even so, massive parallel coding and memory
requirements could still be a necessary ingredient. As an example,
the Planck collaboration employed this approach in the low-ℓ
likelihood analysis in temperature and polarization for the 2015
data release [37]. The map resolution was fixed at Nside = 16
(for comparison, the analysis conducted by the WMAP team
employed Nside = 8 maps) to accommodate the ℓ < 47
multipoles in the analysis, resulting in Npix = 3 × 3072 =
9216 total number of pixels, further reduced by the application
of the analysis mask. In evaluating the likelihood function in
Equation (63), the data vector and the noise covariancematrix are
fixed, while the signal covariance matrix is recomputed for any
given cosmological model to be compared against data, following
Equation (23). In practice, only a subsection of S is recomputed,
in particular that subsection corresponding to ℓ < 30. The
portion of S corresponding to multipoles 30 ≤ ℓ < 47 is
precomputed from a fixed fiducial model. The choice of the
fiducial model does not affect the performance of the likelihood.
In fact, at the resolution employed in the large-scale analysis, the
sensitivity to multipoles above ℓ ∼ 30 is strongly suppressed.

In 2013, a hybrid approach coupling a MonteCarlo-
based approach in temperature (Blackwell-Rao estimator, see
section 5.2) to a pixel-based approach in polarization for ℓ < 23
was adopted [40]. In order to speed up the evaluation of the fully

11The signal in each pixel is the average over the signal at each point within the
surface area of the pixel �p, fp =

∫

d�wpf (�), where wp = 1/�p is the weight
inside the pixel and zero otherwise. The harmonic transform of the weight wp is
the pixel window function. Including the full dependence of the window function
on m, ℓ can be computationally demanding. However, if the size of the pixel is
small compared to the angular resolution of the experiment, the m-dependence
can be neglected and the m-averaged window function wℓ can be defined. The
power spectra computed from the pixelised maps C

p
ℓ are related to the unpixelised

spectra Cℓ via C
p
ℓ = w2

ℓCℓ.

pixel-based likelihood function for the 2015 release at any given
cosmological model, the “brute-force” approach described here
has been optimized with the implementation of the Sherman-
Morrison-Woodbury formula, described below.

5.1.1. Sherman-Morrison-Woodbury Formula
The computational cost required by the pixel-based approach can
be dramatically reduced if one consider that only a portion of
the signal covariance matrix is reconstructed at any evaluation
of the likelihood function. The full covariance matrix can then
be decomposed into a varying part, which is function of the
theoretical Cℓ (i.e., the power spectra of the theoretical models
to be compared against data), and a fixed part given by the
fiducial S and the noise covariance matrix. The following step
is to further decompose the varying part of the covariance as
S = VTAV , via a transformation V that effectively reduces
the dimension of the actual evaluation cost from a Npix × Npix

inversion to a nλ × nλ inversion, where nλ = 2ℓ + 1 is the
dimension of the transformed matrix A. The latter is the only
matrix that depends on the theoretical Cℓ and, therefore, it
is the only matrix to be recomputed and inverted. The fixed
portions of the covariance matrix as well as the transformation
matrix V can be pre-computed and stored. For the Planck 2015
data release, the application of such mathematical formalisms
allowed to speed-up the likelihood evaluation by an order of
magnitude. The mathematical details leading to the application
of the Sherman-Morrison-Woodbury formula can be found in
Aghanim et al. [37] (appendix B.1) and Hinshaw et al. [61]
(appendix A.1).

5.2. Blackwell-Rao Estimator
An alternative approach to the likelihood evaluation that
overcomes the computational cost of an exact likelihood
evaluation in pixel space is provided by the combination of the
Gibbs sampling method with the Blackwell-Rao estimator. The
Gibbs sampling is a MCMC method applied to the estimation
of the observed CMB signal from a raw map containing
signal, noise, and foreground contamination in a Bayesian
framework [62–64]. The crucial output for the subsequent
construction of the likelihood estimator is a set of samples
of the CMB sky, or more precisely, a set of sample variances
of the sky samples obtained with the Gibbs algorithm. The
Blackwell-Rao estimator is then built as an average over the set
of sample variances.

Let’s assume that the observed map m is composed by the
CMB signal s and noise n (the following procedure can be
generalized to the case in which foreground f also contribute
to the total signal, see e.g., [65]). What we really want to
evaluate is the joint probability of having a certain s with a
certain Cℓ given the observed sky m, i.e., we want to evaluate
P(s,Cℓ|m). A brute force evaluation by computing a grid
of s and Cℓ is computationally prohibitive (it is even more
prohibitive once one considers the inclusion of foreground
into the equation). Another approach is to sample directly
from the distribution via specific algorithms. Although it is
again computationally unfeasible to sample directly from the
joint distribution, as it would require inverting large and
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dense covariance matrices, it has been proved that the joint
distribution can be reconstructed by iteratively sampling over
the conditional distributions P(s|Cℓ,m) and P(Cℓ|s,m). In fact,
the conditional distributions are known. They are a multivariate
Gaussian (posterior distribution of aWiener filter) forP(s|Cℓ,m)
and an inverse Gamma distribution for P(Cℓ|s,m). As for the
foregrounds, their marginal distribution does not usually have
an analytic representation. However, it can be reconstructed
numerically [65]. The iterative sampling is obtained with the
implementation of a specific MCMC sampling algorithm, the
Gibbs sampling, and follows these steps (we omit foregrounds
for simplicity):

• i) start from a guess power spectrum C0
ℓ ;

• ii) draw a sample s1 from P(s|C0
ℓ ,m);

• iii) draw a sample C1
ℓ from P(Cℓ|s1,m);

• iv) cycle over step ii) and iii) until convergence is reached.

This algorithm lays the ground for the subsequent evaluation
of the posterior P(Cℓ(θ)|m), where θ is a set of cosmological
parameters of a theoretical cosmological model. In principle,
one could reconstruct a histogram of the sampled Cℓ from
the Gibbs sampling and use the histogram to interpolate for a
given theoretical model. However, this procedure is not efficient.
Luckily, the Gibbs sampling allows to construct an efficient and
arbitrarily exact estimator of the likelihood function, the so called
Blackwell-Rao estimator. The basic idea [64, 66] is to note that
the Cℓ only depend on the CMB signal and not on the total sky
signal (i.e., once we know the CMB sky, there is no additional
information coming from the knowledge of other components),
P(Cℓ|s,m) ∝ P(Cℓ|s). In addition, the Cℓ depend on the CMB
signal only through its variance, i.e., P(Cℓ|s) ∝ P(Cℓ|Ĉℓ), where
Ĉℓ is the power spectrum of the sample CMB map s. Note
that we are already familiar with the probability distribution
P(Cℓ|Ĉℓ) (see Equation (17)). At this point, we can write down
the following chain of equivalent probability integrals (we omit
the dependence of Cℓ from θ for brevity):

P(Cℓ|m) =
∫

P(Cℓ, s|m)ds (65a)

=
∫

P(Cℓ|s,m)P(s|m)ds (65b)

=
∫

P(Cℓ|Ĉℓ)P(Ĉℓ|m)dĈℓ (65c)

∼ 1

NGibbs

NGibbs
∑

i

P(Cℓ|Ĉi
ℓ) (65d)

where NGibbs is the number of Gibbs samples evaluated in the
component separation analysis, and Ĉi

ℓ is the power spectrum of
the i-th sample. In other words, the posterior on the cosmological
parameters of interest given the observed data can be obtained by
averaging the individual posteriors over the Gibbs samples, that
can be stored during the Gibbs implementation. The evaluation
can be made more accurate by increasing the number of samples.
It has to be noted that one only needs to store the variance of
the sampled CMB maps si up to a given multipole ℓmax, i.e.,

it is not necessary to store the much more memory-demanding
samples themselves.

The accuracy of the Blackwell-Rao estimator depends on the
number of samples required to reach convergence. The number
of samples grows very steeply with the ℓmax considered in the
analysis [66]. This limitation makes the Blackwell-Rao estimator
more suited for the likelihood analysis of CMB large scales (low
multipoles). Modified version of the Blackwell-Rao estimator
have been proposed that allow to reduce the number of samples
required for convergence, and therefore allow to extend the
viability of this approach to higher ℓmax [67].

The Gibbs method has been employed by the Planck
collaboration as a component separation method to obtain
maps of the CMB temperature signal and foreground
contaminants [68–70]. The Blackwell-Rao estimator, based
on the Gibbs samples so obtained, has been employed by the
Planck collaboration as an alternative likelihood method for the
analysis of the temperature data at large scales [37, 40]. It has
been employed by the WMAP collaboration for the likelihood
analysis of the large-scale (ℓ < 32) temperature data [4, 71].

5.3. Simulation-Based Approach
In some cases accurate estimate of the noise are not available
and/or the probability distribution of residual systematic
effects, in map space, is not perfectly Gaussian, and therefore
the probability distribution, in map or harmonic space,
cannot be expressed analytically and it needs to be learned
from simulations.

We describe in this section a simulation-based approach to
evaluate the likelihood function in the low-multipole regime. The
likelihood distribution is evaluated through realistic simulations
of CMB, noise and possible residual systematics. We report here
the main steps:

• the initial step is the simulation of n theoretical auto- or cross-
power spectra, related to n different cosmological models,
represented by a set of cosmological parameters θj.

• For each theoretical power spectrum Cth,i
ℓ , m CMB maps are

produced, including noise and other residual contaminants.
• For eachmap, the corresponding power spectrum is evaluated.

Therefore, k = n × m new simulated power spectra Csim,k
ℓ

are obtained.
• By histogramming the k simulated power spectra ℓ-by-ℓ and

θj by θj, the probability P(Csim
ℓ |Cth

ℓ ) is built empirically. In
evaluating this probability, it is necessary to interpolate it
with a suitable function, in order to smooth the scatter due
to the limited available number of simulations. In particular,
one can define a low-order polynomial interpolation function
f iℓ(C

sim
ℓ ,Cth

ℓ ) of the logarithmic of the Csim
ℓ histogram for each

i-th initial power spectrum, such that

f iℓ(C
sim
ℓ ,Cth

ℓ ) ≃ logP(Csim
ℓ |Cth

ℓ ) . (66)

• Starting from this approximation, the likelihood function for
the observed power spectra Cdata

ℓ can be finally evaluated. The

n couples (Cth,i
ℓ , f iℓ(C

th
ℓ ,Cdata

ℓ )) can be considered as a tabulated

version of the log of the joint probability logP(Cdata
ℓ ,Cth

ℓ ).
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The joint probability can then be interpolated with a suitable
low-order polynomial (as done above) for each multipole,
gℓ(Cdata

ℓ ,Cth
ℓ ), such that

gℓ(C
data
ℓ ,Cth

ℓ ) ≃ logP(Cdata
ℓ |Cth

ℓ ) . (67)

The sum in the multipole range provides the approximation
for the log-likelihood, up to a constant,

logL(Cth|Cdata) ≃
ℓmax
∑

ℓ=ℓmin

gℓ(C
data
ℓ ,Cth

ℓ )+ cost (68)

This approach has been used in the latest analysis of the
Planck collaboration [3, 38, 59] to evaluate the low-multipoles
polarization likelihood.

We note that this likelihood approach requires the data to
be provided in harmonic space as power spectra Cdata. A good
estimator for the power spectrum at large scales is obtained via
the quadratic maximum likelihood (QML) method. We provide
a description of the method in section B.3.

As a final remark, we note that the simulation-based
approach is very similar in spirit to the class of methods
known as Approximate Bayesian Computation (ABC). ABC
methods have been initially employed in various fields as a
way to bypass the evaluation of the likelihood function with
the use of simulated data [72–81]. Recent applications to
astrophysics and cosmology include [82–86]. Similarly to ABC,
the simulation-based approach approximates the likelihood by
comparing simulated data with observed data using the QML
approximations to the ML points of the spectra as a distance
metric. However, while the likelihood approximation in ABC
is usually done by discarding mismatching simulations, the
simulation-based approach described here does so by fitting the
constructed histogram and then slicing.

6. FOREGROUND CONTAMINATION:
MODELING AND COMPONENT
SEPARATION

We have neglected so far the possibility that the microwave
sky contains more components than the CMB. In realistic
observations, one has to take into account the fact that the
observed signal at a given frequency is a combination of the
CMB signal plus additional emissions from so called foreground
contaminants. For the range of wavelengths of interest to CMB
observations (from few tens to few hundreds GHz), the most
relevant contaminants are atmospheric emission (for ground-
based experiments in particular) and astrophysical foreground
emission. The latter includes Galactic dust, synchrotron and free-
free emission and extragalactic contaminants such as clustered
and Poisson CIB emission, radio point sources, molecular lines;
see e.g. [87, 88] for a description of the multi-component
microwave sky and way to create synthetic maps, and [89] for
a concise review. The temperature sky is much more composite
than the polarization sky. Nevertheless, CMB temperature signal
is the dominant component over a wide range of frequencies

and angular scales. On the other hand, polarized foreground can
easily dominate over the cosmological signal, especially in the
case of CMB B-modes.

To reduce the contamination from atmospheric emission,
ground-based CMB experiments are usually placed in specific
sites, at high altitudes (to reduce the thickness of the atmosphere
above the telescope) and dry locations. Residual contamination
can be further removed either by detector pair-differencing
(see e.g., [11]) or by modulation of the signal (see e.g., [90]).
Balloon-borne and especially satellite missions are less or not
at all concerned with atmospheric contaminations. Emission
from foreground sources is instead a common issue to all CMB
observatories. Of course, it is necessary to account for such
foreground contaminations in a proper likelihood analysis, i.e.,
to decompose the observed map into the individual components.
This process is called component separation; various component
separation methods exist. They differ for the domain of
applicability (pixel space, harmonic space, wavelet space), and for
the way data are described. For example, CMB and foregrounds
can be parametrized as frequency spectra (parametric methods),
can be separated imposing certain conditions to the various
components modeled as arbitrary templates (non-parametric),
can be separated with no a-priori knowledge of the individual
components (blind). A rather complete list of component
separation methods can be found in the LAMBDA archive 12.
Here, we cite a few examples that have been also applied to
the Planck analyses [91]: ILC [92] (pixel space, internal linear
combination of frequency components), SEVEM [93] (pixel
space, template-based), NILC [94] (needlet space, internal linear
combination), COMMANDER [95] (map domain, parametric),
SMICA [96] (harmonic space, non parametric).

After component separation, the cleaned CMB maps may
still be affected by residual contamination, which have to be
further taken into account. At small scales, this is achieved in
various steps, see e.g., the Planck analysis [37]. First, regions
of the sky that show an excess contamination from foreground
emission are masked away from the analysis. Secondly, the
residual contamination in the remaining areas can be modeled
at the power spectrum level via specific templates. In other
words, one can exploit the fact that the harmonic shape of the
foreground is different from the CMB power spectra, and the
fact that the spectral dependence of the foreground emission
is also different from the CMB spectral dependence. The data
vector to be fed in the likelihood function would therefore
contain both the CMB signal and the residual contamination, as
obtained from observations of the real sky. At the same time, the
theoretical spectra to be compared with the data would be given
by the sum of the theoretical CMB spectra and the foreground
templates. It is crucial that multi-frequency channels are available
in order to efficiently fit for both the CMB and the foreground
contaminants simultaneously.

The above prescription implicitly assumed that all the
information about foreground emission in harmonic space is
fully captured by their power spectrum. However, there is no

12Component separation methods and related references can be accessed at the
following url: https://lambda.gsfc.nasa.gov/toolbox/tb_comp_separation.cfm
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reason to believe that foreground are Gaussian distributed, and
indeed they are not. The assumption that is usually made is
that most of the non-Gaussian contribution is removed from
the maps once the foreground-saturated regions are masked
away. The non-Gaussianity of the remaining contaminations
can be (and actually are) neglected at the likelihood level.
This assumption is demonstrated to be reasonably accurate via
dedicated simulations (see e.g., discussions in Aghanim et al. [37]
and Ade et al. [40]) for the current generation of cosmological
surveys. At the same time, a huge effort is devoted to the study of
the propagation of uncertainties in the foreground modeling and
removal to the final constraints on cosmological parameters in
the context of the high-sensitivity next generation CMB surveys
(see e.g., [19]).

Foreground contaminations are of course present at large
angular scales as well, and must be taken into account when
realistic data are analyzed. Taking the results from the Planck
collaboration as an example [37, 40], the foreground treatment at
large scales is somehow different from the prescription described
in the case of small scales. At low multipoles in temperature,
the cleaned CMB map is obtained via Gibbs sampling (see
section 5.2) implemented in COMMANDER and the bright
region along the Galactic plane is further masked for likelihood
analysis ( 7% of the sky). In polarization, the foreground-cleaning
is implemented via template-fitting. Residual contamination can
be taken into account in the construction of the noise covariance
matrix to be employed in the likelihood function.

To conclude this section, we would like to emphasize that
the topic of foreground modeling and component separation
is extremely wide and the list of references reported in
this manuscript is far from being exhaustive. The interested
reader is encouraged to consider these references as a mere
starting point. Further details can be accessed from the specific
collaboration papers that describe the corresponding data
processing, and from the overview papers of science forecasts by
upcoming collaborations that describe their simulated pipelines
of data reduction.

7. COMPARING LIKELIHOOD
PERFORMANCE

In this section, we compare the performance of various likelihood
approaches introduced in section 3 for the high-ℓ regime and in
section 5 for the low-ℓ regime. In particular, we are interested
in testing the different likelihood performance with respect to
the ability to produce unbiased constraints on cosmological
parameters. Where relevant, we also compare the different
performance in terms of computational costs. In what follows,
we first discuss the comparison of likelihood approaches in
the small-scale regime (section 7.1), and then move to the
presentation of the results in the large-scale regime (section 7.3).

7.1. Small-Scale Regime–Full Sky
In this section we test the performance of the different likelihood
approximations at high-ℓ on simulated data and compare the
results with the assessment presented in section 3.2, which was
based on analytic arguments. We mainly want to show whether

adopting a particular power spectrum likelihood approximation,
when estimating cosmological parameters, may introduce a bias
in the parameters recovered values or/and a misestimation of
their associated error bars. In the following, we neglect the impact
of foregrounds, and we consider CMB plus noise full-sky maps,
for which we derive the temperature and polarization angular
power spectra following Equation (15).

The simulated dataset consists of CMB plus noise maps.
Specifically, we generate a set of 1000 maps of the CMB sky,
m = (T,Q,U), drawn as Gaussian random realizations of fiducial
temperature and polarization power spectra, that correspond to
a set of given cosmological parameters. The full-sky maps are
generated at a resolution of 3.4 arcmins (Nside = 1024 in the
HEALPix scheme [60]) and smoothedwith a symmetric Gaussian
beam of FWHM 10 arcmins 13. To each of these maps we add a
simulated realization of white isotropic noise corresponding to
a noise level in polarization of σn = 1µK arcmin, which is in
the ballpark of what is expected from future CMB experiments.
In this way temperature anisotropy maps are signal dominated
across almost all the multipoles that are relevant for primary
anisotropies, up to ℓ . 2000, compatibly with present and
forthcoming measurements.

7.1.1. Temperature-Only Results
Focusing on temperature alone, we adopt the different likelihood
approximations of section 3 to estimate the cosmological
parameters from the power spectra of the simulations. For
simplicity we only fit for two parameters, specifically As and ns,
that are respectively the amplitude and the spectral index of the
power spectrum of primordial density fluctuations. We generate
a grid of model Cℓ ’s keeping all the other 3CDM parameters
fixed, while letting As and ns vary in a broad range of values
around the input fiducial model, Cf ℓ. Given the angular power

spectrum of each simulation, Ĉℓ, we evaluate the likelihood of
the models at each multipole, L(Cℓ), accounting for the noise
contribution as described in section 3.3. Since here we are
considering the small scale regime, the total likelihood for the set
of cosmological parameters θ = (As, ns) is obtained by summing
the log-likelihoods over the range of multipoles ℓ = [30, 2000]:
lnL(θ) ∝∑

ℓ lnL(Cℓ).
Once we have the total likelihood, assuming flat priors on

parameters, we can estimate the expectation value of each
parameter following Equation (78). By building histograms of
the parameter values obtained from the 1000 simulated maps, we
can reconstruct the posterior distribution of each parameter in
a “frequentist” fashion. In particular, since the simulations input
parameters are known, we can study the distribution of the biases
in the estimated parameters, defined as the shifts with respect
to the input fiducial values, normalized to the 1 σ marginal
error of the posterior distribution. For each simulation, the bias
reads 1p = (p̂ − pin)/σp, where p can be either As or ns. The
distributions we derived are shown in Figure 1 for the different
likelihood approximations. They should be centered in zero, if

13Roughly speaking, the resolution identifies the level of the discretization (i.e., the
number of pixels). The beam smoothing simulates the angular resolution of the
experiment, and exponentially suppresses the scales below the beam width. Note
that the beam width is larger than the size of the pixel.
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there is no bias in the mean recovered parameters value, and they
should have unit variance, if σp, as derived from the standard
bayesian analysis, is consistent with the true error.

Consistently with what has been presented in section 3.2,
we find that the Log-Normal together with the symmetric
and improper Gaussian approximations show significant bias
in the recovered parameters. The bias is due to the fact that
the approximations fail in capturing the correct skewness of
the likelihood function. The symmetric Gaussian approximation
appears to be the one with the largest associated bias and the
wider distribution. For this approximation the covariance is
proportional to the measured power spectrum squared, Ĉ2

ℓ . This
means that the uncertainties turn out to be larger than they
should be if Ĉℓ fluctuates upward with respect to the input
fiducial model, and viceversa if Ĉℓ has a downward fluctuation.
As a consequence, upward fluctuations are given less weight
in the likelihood than downward fluctuations. This translates
into an overall downward bias on the amplitude of the power
spectrum, and thus on As, as it can be easily seen in Figure 1. The
one-third-two-third approximation is a good match to the exact
likelihood at third order, as shown in Figure 2, and it appears
to provide unbiased parameter results. This is the likelihood
approximation adopted by the WMAP team for the analysis of
the temperature anisotropies on small angular scales [39]. The
offset-lognormal also results in unbiased constraints (bottom
left panel in Figure 1), as expected since the offset aTT =
−1/4 has been chosen to match the exact likelihood up to
third order in the expansion, see section 3.2. Also the fiducial
and determinant Gaussian approximations provide unbiased
cosmological parameter estimates, despite having a wrong shape
at each single ℓ with respect to the exact likelihood. This is
because at each particular ℓ the shape of the likelihood can
randomly be wrong upwards or downwards with respect to
the true Cℓ (see Figure 2), so when integrating over the entire
range of multipoles there is negligible bias left. An obvious
advantage of the fiducial Gaussian approximation with respect
to the determinant Gaussian is that the covariance matrix can
be pre-computed, inverted, and then kept fixed while sampling
the parameter space. Aside from speeding up the computations,
this makes it easier to account for additional uncertainties, non-
Gaussianities and correlations in the data by simply adding
extra terms in the pre-computed covariance matrix. The fiducial
Gaussian approximation is the one used for the official small-
scale likelihood analysis of the Planck data [40], and it has also
been adopted for the cosmological analysis of data collected by
the ground-based experiments ACT [97] and SPT [98]. Note,
however, that this approximation works well if the models we
are trying to fit are smooth, and if the fiducial model used
to build the covariance matrix is sufficiently close to the true
model. In the tests presented here the fiducial model entering the
covariance matrix actually coincides with the truemodel, i.e., the
power spectrum from which the simulated maps are generated.
Obviously, in this case the covariance matrix is an optimal
description of the simulated data. However, when dealing with
real data we are not in the same fortunate position, since the
true power spectrum underlying the observed sky is unknown
and is exactly what we indent to estimate. In a real situation

we can only deduce a fiducial model for the covariance at the
best of our knowledge from both theory and observations. We
can also try to improve the accuracy of a first guess covariance
matrix by iterating the cosmological parameter extraction a few
times, upgrading the covariance matrix at each iteration. Note
that, we did not include the Hamimeche-Lewis approximation in
the tests, the reason being that on the full-sky it coincides with
the exact likelihood.

In order to perform an even more stringent validation of
the likelihood approximations, we can estimate the bias of the
mean of the recovered parameters from all the simulations:
(〈p̂〉 − pin)/(σp/

√
Nsims), where the shift with respect to the

input is normalized by the standard deviation of the mean, and
Nsims = 1000. This test confirms, at high-significance level, that
Log-Normal, symmetric and improper Gaussian approximations
provide biased results, while the other approximations are
unbiased. For the latter likelihood approximations we find that
the estimated uncertainties on parameters, σp, agree with those
derived from the exact likelihood at the sub-precent level.
Furthermore, we find that the standard deviation of the values
of (p̂ − pin)/σp is consistent to 1, with a precision well within
the accuracy allowed by the finite number of simulations, i.e.,
1/
√
2Nsims = 0.022. This means that the uncertainties estimated

from the bayesian analysis, σp, are consistent with the scatter of
the parameters of the simulations.

7.1.2. Temperature and Polarization Joint Results
For the fiducial Gaussian approximation, we repeat the test
of parameters recovery from the full-sky simulated maps also
including the polarization power spectra. As we have already
commented, this likelihood approximation works well provided
that the fiducial power spectra used to build the covariance
matrix are close enough to the true power spectra. In order to
investigate the impact on the final parameters of misestimating
the covariance matrix, we change the fiducial model entering
the likelihood with power spectra at the edge of the grid of
models introduced above. These power spectra correspond to
parameters more than 10 σ away from the input parameters. As
expected, results show some sensitivity to the choice of themodel,
however not for the bias, but rather for the parameters marginal
error bars. In fact, using the “wrong” covariance matrix leaves
parameters estimates unbiased. This can be noticed in Figure 3,
where we show the biases on As and ns estimated from the
simulations, both using the covariance matrix with the correct
fiducial model and the one with the modified model. The latter
covariance matrix, however, does not match exactly the signal
in the simulated dataset, and as a consequence the estimated
1 σ marginal error bars on the cosmological parameters do not
agree with the standard deviation from the simulations, showing
a∼ 15% mismatch.

7.2. Small-Scale Regime—Cut-Sky Tests
We repeat the above analysis introducing some further level of
complication, specifically we assume to work with partial-sky and
anisotropic noise data.We generate noise simulations which have
a different level of noise variance for each pixel, thus mimicking
the effect of a realistic scan strategy for which some regions of the
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FIGURE 1 | 2D histograms of the biases on the parameters expectation values estimated from 1000 simulated full-sky maps of CMB temperature plus noise. As

described in more detail in the text, the biases are computed with respect to the input parameter values and normalized to the 1 σ uncertainty associated to the

parameter, 1p = (p̂− pin)/σp, where p can be either As or ns. The blue circle indicates a null bias, while the red square is the center of the distribution. Note that for

the cases plotted in the first row the two almost completely overlap.

FIGURE 2 | Comparison of some of the likelihood approximations for different multipole regimes, as marked in the plots, where the x-axis corresponds to

Dℓ = ℓ(ℓ + 1)Cℓ/(2π ).
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FIGURE 3 | Histograms of the biases for the parameters expectation values estimated from the power spectra of 1000 simulated full-sky maps of CMB temperature

and polarization, plus white isotropic noise. Biases are defined with respect to the input parameter values and normalized to the 1 σ uncertainty on the parameter,

1p = (p̂− pin)/σp, where p can be either As or ns. We adopt the fiducial Gaussian likelihood approximation, in green the case in which the fiducial model entering the

covariance matrix matches the input model of the simulations, whereas in blue a case in which the two models differ as explained in the text.

FIGURE 4 | Histograms of the biases for the parameters expectation values estimated from the power spectra of 1000 simulated partial-sky maps of CMB

temperature anisotropies plus anisotropic noise. Biases are defined analogously to Figure 3. We compare results from the fiducial gaussian and the

Hamimeche-Lewis likelihood approximations.

sky are observed more often than others. To the simulated CMB
plus noise maps we then apply a galactic sky mask, that removes
the region of the galactic plane where the emission of foregrounds
is expected to dominate over the CMB signal. For the sake of
this test, we focus on temperature alone and we use a galactic
mask that leaves for the analysis 73% of sky. The mask has been
apodised with a Gaussian taper that smooths sharp edges and,
thus, it helps in localizing the mask power in multipole space.
The angular power spectra of the cut-sky maps are extracted
using an estimator that corrects for the loss of modes due to
the masking and which is based on the pseudo-Cℓ formalism.
For completeness the estimator is described in Appendix B. The
covariance matrix associated to these power spectra has been
estimated using the analytic approximation given in Efstathiou
[27], and assuming as fiducial model the same model from which
the simulations have been generated.

For the parameters recovery test on the cut-sky we
explore the fiducial gaussian and Hamimeche-Lewis likelihood
approximations. The latter in the single field regime reduces to:

− 2 lnL ≃
∑

ℓℓ′

[

g(Ĉℓ/Cℓ)Cf ℓ

][

M−1
f

]

ℓℓ′
[

g(Ĉℓ′/Cℓ′ )Cf ℓ′
]

, (69)

where the function g(x) has been introduced in Equation (51),
and

[

Mf

]

ℓℓ′ is the covariance matrix of the Ĉℓ evaluated for Cf ℓ.
Following the same procedure described in the previous

subsection, we fit for the cosmological parameters As and ns.
We find that, also under more realistic conditions, the recovered
parameters for the fiducial gaussian are unbiased well within
the precision allowed by the finite number of Monte Carlo
simulations. For the Hamimeche-Lewis approximation, instead,
we detect a small bias at the level of 20 and 11% of the sigma on
the parameter for As and ns respectively, see Figure 4. For both
likelihood approximations, however, we find that the parameters
marginal errors from the bayesian analysis are consistent with the
standard deviation of the simulations, and thus they appear to be
a good description of the true uncertainties.

Despite the small average bias, the Hamimeche-Lewis
approximation is expected to be more robust against the choice
of the fiducial model entering the likelihood, see [32]. In order
to verify this point, when computing the likelihood and the
covariance matrix of the Ĉℓ, we use a fiducial model Cf ℓ

that corresponds to parameters about 10 σ away from those
used to generate the simulations. As we have already shown
in the previous subsection, in this case the fiducial Gaussian
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FIGURE 5 | Histograms of the recovered values of τ for the three likelihoods

considered: pixel based (blue), simulation based (orange), and

Hamimeche-Lewis (green).

approximation provides still unbiased results, but the bayesian
error bars on the parameters are not a good description of the
true uncertainties. They differ from the standard deviation of the
parameters from the simulations by about 14% on As and 11% on
ns, respectively. On the contrary, estimates with the Hamimeche-
Lewis approximation still show the same level of average bias,
but the uncertainties on the parameters are better characterized
and they are in agreement with the standard deviation from
the simulations.

Furthermore, since it is customary to assess the goodness of
the parameters fit with the chi-square statistics, we may use the
value of the likelihood at the best-fit to define an effective chi-
square as χ2

eff
= min[−2lnL(θ |Ĉℓ)]. If we now compare the

values we get for each likelihood approximation when simply
varying the fiducial model, we find1χ2

eff
of order a few hundreds

for the fiducial Gaussian approximation, and 1χ2
eff

of a few tens

for the Hamimeche-Lewis. As a consequence, trying to assess the
goodness of the fit with the latter likelihood can surely provide
more stable results, regardless of the fiducial model. However,
it is worth stressing that in the present test we used a Cf ℓ that
deviates significantly from themodel behind the simulations, had
we chosen a model closer to the simulations, also the fiducial
Gaussian approximation would have provided sensible results.
For further discussion of this topic refer to the appendix B

of Hamimeche and Lewis [32].

7.3. Large-Scale Regime
In this subsection, we focus on the comparison of different
likelihood approaches devoted to the analysis of large-scale CMB
data. We limit the comparison of large-scale likelihoods to the
polarization signal only, since this is the main target of future
CMB missions [99]. Moreover, the standard approaches used in
temperature, i.e., pixel-based and Blackwell-Rao (see section 5.2)

likelihoods, have been extensively characterized and validated by
the Planck Collaboration, see e.g., [37, 38].

We consider three approaches: pixel-based (see section 5.1),
HL (see Equations 49a-54a) and simulation-based (see section
5.3) likelihood. As we did for the small scale regime, we show
whether adopting a particular likelihood approximation when
estimating cosmological parameters may introduce a bias, either
in the recovered values of the parameters or on their associated
error bars.

We start by generating a set of 1000 maps of the CMB
sky drawn as Gaussian random realizations of a single fiducial
power spectrum corresponding to a set of known cosmological
parameters. The full sky maps are generated on a Nside = 16
HEALPix grid, which roughly corresponds to a resolution of 3.7
degrees, smoothed with a cosine window function [38, 100]. To
each of these maps we add a realization of white isotropic noise
corresponding to σN = 0.01µK2 on a pixel at our resolution.
We choose this particular noise level since it is small but not
completely negligible with respect to the typical peak-to-peak
CMB signal in a model with a reionization optical depth τ =
0.055, that would be roughly ∼ 0.5µK. We do not include
foreground and systematics effect residuals in our simulations.
We process the maps through a QML code computing the auto
spectra of all our simulations.

To test the performance of the likelihood approximations, for
simplicity, we only fit the reionization optical depth τ parameter
keeping fixed the overall amplitude of the perturbations as
parametrized through As exp (−2τ). For each realization we
compute the mean value of τ . The histograms of the τ values,
recovered using the three different approximations, are shown
in Figure 5. The distributions all show a bias smaller than
5% of σ (τ ), perfectly compatible with the resolution of 1000
simulations, (i.e., 1/

√
1000 ∼ 3%). The Hamimeche-Lewis

likelihood and the simulation-based likelihood, both built on the
QML estimates, perform similarly and are substantially unbiased.
Likewise, the pixel-based likelihood results unbiased as it should,
as also already extensively demonstrated by both the WMAP
[101] and Planck [37] collaborations. The comparison with the
pixel-based likelihood allows also to validate the width of the
distributions for the other two likelihood approximations, which
are compatible with the pixel based at the 2% level, within the
resolution of the Montecarlo (i.e., 1/

√
2× 1000 ∼ 2%).

8. CONCLUSIONS

CMB science is nowadays a mature yet still flourishing
branch of physics. The ultimate results from the Planck
satellite and from large-aperture ground-based experiments
(ACT and SPT) fully characterize the CMB temperature field
with great accuracy up to very small angular scales, where the
contaminations from Galactic and extra-Galactic foreground
emissions become dominant. In addition, they have just
scratched the surface of the rich information contained in
the CMB polarization fields, also the target of small-aperture
telescopes (BICEP/Keck, POLARBEAR/Simons Array, SPIDER).
A large number of upcoming CMB surveys (Simons Observatory,
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CMB-S4, LiteBIRD) will continue the journey toward the
understanding of the early phases of our Universe and its
subsequent evolution.

In the highly sophisticated process that aims to efficiently
compress the information contained in the raw observed data
into maps, spectra, and eventually constraints on cosmological
parameters, a key ingredient is the likelihood function L(d|θ),
i.e., the probability of observing a certain data collection d

given a certain model θ (see section A). In the context of CMB
analysis, d can be either a CMB map or CMB spectra, while
θ can be the set of cosmological parameters describing the
cosmological model under scrutiny. In the simple case of full-sky
observations, in absence of foreground contaminations and late-
time-Universe effects on the CMB distribution, an exact form of
the likelihood function in both real (multivariate Gaussian) and
harmonic space (Wishart distribution) can be easily derived, see
section 2. Complications arising from realistic observations and
data analysis, such as complicated noise properties, foreground
obscuration, limited sky coverage, computational costs, etc,
may spoil the assumptions on which the derivation of the
exact likelihood functions mentioned above is based, or may
limit the actual evaluation of the exact functions. Therefore,
realistic analysis employ appropriate approximations of the exact
likelihood functions, see sections 3, 5. The choice of the likelihood
depends on multiple factors, such as sky-fraction retained,
data resolution, computational costs, signal-to-noise properties.
For example, it may (and actually did) happen that a certain
likelihood approximation could work for a certain experiment
given its sensitivity, and yet it could turn out to provide biased
results for another, more sensitive experiment.

In this review, we have summarized the basics of CMB
statistics (section 2) that lead to the definition of the exact
likelihoods in real and harmonic space. Then, we have moved to
the descriptions of the most common likelihood approximations
employed by various CMB collaborations. For the sake of
simplicity, we have separated the approximations better suited to
the analysis of small angular scales (higher harmonic multipoles)
in section 3 and those that better represent the data at large
angular scales (lower multipoles) in section 5. Although we have
mostly assumed an idealized scenario of isotropic instrumental
noise, Gaussian beam, unlensed CMB spectra, and absence
of foreground for pedagogical reasons, we have commented
about the impact of realistic deviations from the aforementioned
scenario, in such a way that the reader is aware of their
existence and of the extensive effort devoted to their mitigation.
In particular, non-trivial modifications to the primary CMB
statistics induced by the gravitational lensing of CMB photons
by the evolving large-scale structure in the Universe have
been discussed in section 4. In section 6, we have briefly
discussed the main foreground contaminants in the microwave
sky and mentioned methods of component separation aimed
to disentangle the cosmological signal from Galactic and extra-
Galactic emissions.

In order to provide concrete examples of the different
performance of various likelihood methods, we have reported

results of the comparison between different likelihood
approximations in section 7. In particular, we have tested
the property of the likelihood function to be unbiased, i.e., to
produce a posterior distribution of cosmological parameters
that matches the true cosmology (the input values, in the
case of simulated data) both in terms of the mean and of the
variance of the distribution. Again, we have distinguished
between approximations at small scales (section 7.1) and at large
scales (section 7.3).

InAppendix, the interested reader can findmore details about
some basics of statistical inference (section A) and about themost
commonmethods adopted to estimate CMB power spectra in the
(realistic) cut-sky regime (section B).

The aim of this review is to bring together and summarize a
large amount of information related to a crucial aspect of CMB
data analysis. The final scope is to provide a handy, yet self-
consistent document to those who are approaching the field and
those who are interested in learning some basic aspects of the
field, and help them to navigate the vast literature produced
over the past decades on these topics. If you have gone so
far in your reading, we hope to have reached, at least partly,
our goal.
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